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Abstract 

Objective  To construct a highly accurate and interpretable feeding intolerance (FI) risk prediction model for preterm 
newborns based on machine learning (ML) to assist medical staff in clinical diagnosis.

Methods  In this study, a sample of 350 hospitalized preterm newborns were retrospectively analysed. First, dual 
feature selection was conducted to identify important feature variables for model construction. Second, ML models 
were constructed based on the logistic regression (LR), decision tree (DT), support vector machine (SVM) and eXtreme 
Gradient Boosting (XGBoost) algorithms, after which random sampling and tenfold cross-validation were separately 
used to evaluate and compare these models and identify the optimal model. Finally, we apply the SHapley Addi-
tive exPlanation (SHAP) interpretable framework to analyse the decision-making principles of the optimal model 
and expound upon the important factors affecting FI in preterm newborns and their modes of action.

Results  The accuracy of XGBoost was 87.62%, and the area under the curve (AUC) was 92.2%. After the applica-
tion of tenfold cross-validation, the accuracy was 83.43%, and the AUC was 89.45%, which was significantly better 
than those of the other models. Analysis of the XGBoost model with the SHAP interpretable framework showed 
that a history of resuscitation, use of probiotics, milk opening time, interval between two stools and gestational 
age were the main factors affecting the occurrence of FI in preterm newborns, yielding importance scores of 0.632, 
0.407, 0.313, 0.313, and 0.258, respectively. A history of resuscitation, first milk opening time ≥ 24 h and interval 
between stools ≥ 3 days were risk factors for FI, while the use of probiotics and gestational age ≥ 34 weeks were pro-
tective factors against FI in preterm newborns.

Conclusions  In practice, we should improve perinatal care and obstetrics with the aim of reducing the occurrence 
of hypoxia and preterm delivery. When feeding, early milk opening, the use of probiotics, the stimulation of defecation 
and other measures should be implemented with the aim of reducing the occurrence of FI.
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Introduction
Preterm newborns are live-born babies whose gestational 
age is less than 37 weeks [1]. Compared with full-term 
newborns, preterm newborns exhibit immature gastroin-
testinal tract development, and gastrointestinal peristal-
sis develops more slowly than digestion and absorption; 
thus, preterm newborns are more likely to develop feed-
ing intolerance (FI), which is characterized by vomiting, 
abdominal distension, gastric retention and other symp-
toms [2]. Studies have shown that the incidence of FI in 
preterm newborns in China is 33.80% ~ 53.45% [3], com-
pared with approximately 25% worldwide [4]. FI leads 
to insufficient nutrient intake and delayed extrauterine 
growth in preterm newborns [5] and increases the inci-
dence of hospital infection, metabolic disorders, liver 
damage and other complications [6]. This condition can 
even increase the financial burden of families and affect 
their survival rate and quality of life [7, 8]. According to 
the WHO, approximately 15 million premature babies 
are born worldwide each year, and approximately 10% to 
30% of these babies may die because of FI [9]. Therefore, 
there is an urgent need to prevent the occurrence of FI.

FI is a common clinical condition with a complex 
pathogenesis and many influencing factors, so it is dif-
ficult to diagnose subjectively. An accurate and effec-
tive evaluation tool could help medical staff make early 
diagnoses and treatment plans. Bozzetti [10] used logistic 
regression (LR) to predict the FI of newborns with intra-
uterine growth restriction (IGR). Li Yan et  al. [11] used 
Spearman correlation analysis to explore the relationship 
between changes in superior mesenteric artery blood 
flow and FI in preterm newborns before and after feed-
ing. Bozzetti et  al. [12] used a generalized linear model 
to evaluate the relationship between visceral oxygen satu-
ration, superior mesenteric artery Doppler blood flow 
velocity and FI. In addition, Irles [13] and Lure [14] used 
artificial neural networks (ANNs) and random forests 
(RFs) to construct models to predict the risk of neonatal 
intestinal diseases.

Despite the wealth of information obtained from stud-
ies on predicting FI, several shortcomings remain to be 
addressed. First, models based on traditional statistical 
methods are easy to operate and do not require substan-
tial human or material resources; however, they often 
use only a single data mining method, so the resulting 
model may not be optimal [15, 16]. Second, although a 
few scholars have introduced machine learning (ML) for 
model creation, methods for interpreting these results 
are lacking [17]. Finally, although some biological mark-
ers can be used as a basis for the early diagnosis of FI, 
they are costly and operationally complex and require 
high human and material resources; moreover, some 
assessment tools require the use of imaging examinations 

for prediction, which increases the economic burden for 
patients and does not meet the public’s expectations for a 
convenient and rapid screening method [18]. Therefore, a 
systematic, convenient and accurate prediction method is 
urgently needed to compensate for these shortcomings.

ML enables computers to recognize and acquire knowl-
edge through programming languages and mathematical 
principles while continuously improving its performance. 
Compared with traditional statistical methods, ML 
methods can better acquire hidden information in data 
and have better learning and generalization abilities [19]. 
However, ML is limited by the lack of interpretability 
[20]; on their own, it is impossible to know the mecha-
nisms underlying ML model decisions and whether the 
results are reliable. For medical diagnosis systems, inter-
pretability is highly important; only by making the model 
transparent can the decision results be considered more 
reliable and safer [21]. Based on the above background, 
this study sought to construct ML models based on the 
LR, decision tree (DT), support vector machine (SVM) 
and eXtreme Gradient Boosting (XGBoost) algorithms 
and determine the best risk prediction model. Then, 
we aimed to introduce the SHapley Additive exPlana-
tion (SHAP) interpretable framework, which quantifies 
and attributes the importance of each feature variable 
through global and partially interpretable methods and 
explains the important factors affecting FI in preterm 
newborns. These findings can provide decision references 
for clinical workers, thereby facilitating disease manage-
ment and offering new research ideas for optimizing FI 
prevention and treatment programs.

Methods
Study design and setting
This was a retrospective, single-centre, cross-sectional 
study. We reviewed a total of 787 patients in the neona-
tal intensive care unit of the First Affiliated Hospital of 
Bengbu Medical University from January 2021 to Febru-
ary 2022 were analysed. The exclusion criteria were as fol-
lows: gestational age ≥ 37 weeks (n = 196), hospitalization 
beyond 24 h after birth (n = 122), hospital stay < 7 days 
(n = 64), abnormal development of the digestive system 
or congenital disease (n = 11) and the caregivers gave up 
treatment automatically without opening milk (n = 39). 
According to the exclusion criteria, 432 patients were 
excluded. In addition, records with more than 70% miss-
ing data (n = 5) were also excluded from the analysis, the 
remaining missing values were imputed with the mean 
or mode of each variable. Noisy and abnormal values, 
errors, duplicates, and meaningless data were assessed 
by researchers in collaboration with two specialists in 
paediatrics. For different interpretations of the data pre-
processing procedure, we contacted the corresponding 
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physicians, the final sample in this study included 350 
hospitalized preterm newborns. The detailed exclusions 
are shown in Fig. 1.

Of these 350 preterm newborns, including 207 male 
preterm newborns (59.1%) and 143 female preterm new-
borns (40.9%), there were 122 newborns (34.9%) with 
FI and 228 (65.1%) without FI. The results are shown in 
Table 1.

Relevant variables
This study collected relevant risk factors for FI in preterm 
newborns after consulting the literature and consulta-
tion experts. In the database, a total of 30 variables were 
obtained for each patient, including general preterm 
newborn information (5 variables), maternal conditions 
(10 variables), neonatal diseases (6 variables), the use of 
medications (4 variables), and other variables (5 vari-
ables). The occurrence of FI was considered the outcome 
variable, and the presence of one or more of the follow-
ing symptoms within two weeks of birth was defined as 
FI [22, 23]: ① multiple episodes of postfeeding vomiting 
with a frequency of ≥ 3 times/day; ② abdominal disten-
tion (abdominal circumference increased > 1.5 cm within 
24 h); ③ gastric residual > 50% of the previous feeding; ④ 
frequency of feeding schedule interruption (fasting) > 2 

times/day; and ⑤ dark liquid in the stomach. These vari-
ables and their assignments are shown in Table 1.

Database splitting
In this study, 70% (245 samples) of the 350 samples were 
randomly selected as the training set, while the remaining 
30% (105 samples) were selected as the test set. We used 
the training set for feature selection and model training, 
to ensure the full learning of the models, a grid search 
was used for parameter tuning (with optimal accuracy as 
the selection criterion), and the Youden rule was used to 
calculate the Youden index to derive the optimal classifi-
cation threshold of the model; secondly, we use the same 
training set for tenfold cross-validation; finally, the test 
set was used to evaluate the model.

Dual feature selection
The purpose of dual feature selection [24] is to iden-
tify informative features from high-dimensional data 
by removing redundant and irrelevant features to 
improve classification accuracy. Spearman correlation 
[25] indicates the direction and strength of the correla-
tion between two variables by calculating the correla-
tion coefficient. RF [26] obtains the importance score 
and ranking of each feature by calculating the average 
contribution of each feature to multiple decision trees 

Fig. 1  Flow chart describing patient selection
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that construct the corresponding model so that the 
more important features can be selected.

Spearman correlation analysis was first used to 
determine the feature variables that were significantly 
correlated with FI in preterm newborns. We deter-
mined the strength of the relationship by calculating 
the correlation coefficient, and P < 0.05 was consid-
ered to indicate statistical significance. The feature 
importance ranking of each factor was subsequently 
obtained via RF, and those factors with an importance 
greater than 5 were selected for inclusion in the model.

Model development and cross‑validation
We used various ML methods to develop four models for 
predicting FI: LR, DT, SVM, and XGBoost. LR [20] uses 
the maximum likelihood to determine the regression 
coefficient for predicting the probability that the depend-
ent variable belongs to a certain category.

DT [21] summarizes and classifies a data sample and 
finds an exact description and classification model for 
the attributes exhibited. SVM [27] classifies data sam-
ples according to the decision surface with the larg-
est geometric interval; this approach is suitable for 

Table 1  Relevant variables and their assignments

NRDS neonatal respiratory distress syndrome, HIE hypoxic ischemic encephalopathy, PDA patent ductus arteriosus, PS pulmonary surfactant; FI feeding intolerance

Classes Variables Assignments Frequencies Classes Variables Assignments Frequencies

General informa-
tion of preterm 
newborns

Sex 0 = Male 207(59.1%) Neonatal diseases Neonatal asphyxia 0 = No 245(70.0%)

1 = Female 143(40.9%) 1 = Yes 105(30.0%)

Birth weight 0 = ≤ 1.5 kg 43(12.3%) NRDS 0 = No 238(68.0%)

1 = < 2.5 kg 176(50.3%) 1 = Yes 112(32.0%)

2 = ≥ 2.5 kg 131(37.4%) HIE 0 = No 248(70.9%)

Gestational age 0 = < 34w 139(39.7%) 1 = Yes 102(29.1%)

1 = ≥ 34w 211(60.3%) Infection 0 = No 68(19.4%)

Apgar score in one 
minute

0 = ≤ 6 points 81(23.1%) 1 = Yes 282(80.6%)

1 = ≥ 7 points 269(76.9%) Neonatal hyperbiliru-
binemia

0 = No 248(70.9%)

History of resuscita-
tion

0 = No 208(59.4%) 1 = Yes 102(29.1%)

1 = Yes 142(40.6%) PDA 0 = No 335(95.7%)

Maternal conditions Polyembryony 0 = No 276(78.9%) 1 = Yes 15(4.3%)

1 = Yes 74(21.1%) Use of medications PS 0 = No 264(75.4%)

Assisted reproductive 0 = No 306(87.4%) 1 = Yes 86(24.6%)

1 = Yes 44(12.6%) Probiotics 0 = No 117(33.4%)

Mother’s age 0 = ≤ 24 years 58(16.6%) 1 = Yes 233(66.6%)

1 = < 35 years 229(65.4%) Antibiotic 0 = Free 27(7.7%)

2 = ≥ 35 years 63(18.0%) 1 = Single 226(64.6%)

Mode of delivery 0 = Eutocia 93(26.6%) 2 = Combined 97(27.7%)

1 = Cesarean 257(73.4%) Blood transfusion 0 = No 326(93.1%)

Abnormal fetal 
position

0 = No 304(86.9%) 1 = Yes 24(6.9%)

1 = Yes 46(13.1%) Others Apnea 0 = No 262(74.9%)

Amniotic fluid abnor-
mality

0 = No 238(68.0%) 1 = Yes 88(25.1%)

1 = Yes 112(32.0%) High temperature 0 = No 248(70.9%)

Umbilical cord 
abnormality

0 = No 231(66.0%) 1 = Yes 102(29.1%)

1 = Yes 119(34.0%) Interval 
between two stools

0 = < 3 days 263(75.1%)

Placenta abnormality 0 = No 270(77.1%) 1 = ≥ 3 days 87(24.9%)

1 = Yes 80(22.9%) Milk opening time 0 = < 24 h 226(64.6%)

Premature rupture 
of membranes

0 = No 223(63.7%) 1 = ≥ 24 h 124(35.4%)

1 = Yes 127(36.3%) Mechanical ventila-
tion

0 = No 246(70.3%)

Pregnancy complica-
tions

0 = No 148(42.3%) 1 = Yes 104(29.7%)

1 = Yes 202(57.7%) Outcome variable Occurrence of FI 0 = No 228(65.1%)

1 = Yes 122(34.9%)
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classifying a small amount of high-dimensional data 
and has good effectiveness and generalizability. 
XGBoost [28, 29] is a boosting tree model that forms 
a strong classifier by integrating multiple classification 
and regression trees (CARTs) together. It has demon-
strated high accuracy and a fast running speed in cer-
tain scenarios, can effectively reduce overfitting using 
regularization techniques, and has good tolerance for 
outliers and missing values.

To reduce the impact of data division on the predic-
tion results and to verify the generalization ability of the 
models, the tenfold cross-validation [30] method was 
employed. The dataset was divided into 10 parts; for each 
fold, 9 of the parts were selected as the training set, and 
the remaining one was used as the test set. These data 
are subsequently used for model training and evaluation. 
Unlike in the random sampling method, in the tenfold 
cross-validation method, the average of the 10 Youden 
indices is taken as the optimal classification threshold of 
the model, and the average of the 10 prediction outcomes 
is taken as the evaluation index.

Indicators for model evaluation
The accuracy (Acc), sensitivity (Sen), specificity (Spe), 
positive predictive value (PPV), negative predictive value 
(NPV) and area under the curve (AUC) on the test set 
were selected as indicators for model evaluation. Further-
more, the model with the best performance was selected 
for identification of the risk factors most related to FI, as 
interpreted by the SHAP method.

SHAP interpretable framework
The SHAP interpretable framework is a method for 
resolving the "black box" nature of the model. SHAP 
provides an estimate of the contribution of each feature, 
that is SHAP value, and the final prediction results of the 
model can be obtained by adding the contribution value 
of each feature [31]. Compared with traditional feature 
importance methods, the SHAP interpretable framework 
can reveal the positive and negative relationships of each 
predictive factor relative to the target variable and can 
be used for global and partial interpretation [32]. In this 
study, the SHAP interpretable framework was introduced 
to analyse the risk factors for FI in preterm newborns by 
global and partially interpretable methods.

The overall process is shown in Fig. 2. All the statisti-
cal analyses, ML algorithm, and SHAP methods were 
conducted in R (version 4.2.0; Austria), an open-source, 
freely available, integrated software environment for data 
manipulation, computation, analysis, and graphical dis-
play [33].

Results
Spearman correlation analysis
A total of 16 factors were significantly related to FI in 
preterm newborns; of these factors, gestational age, birth 
weight, Apgar score in one minute, and probiotics were 
negatively correlated with FI in preterm newborns, while 
neonatal respiratory distress syndrome (NRDS), neona-
tal asphyxia, infection, patent ductus arteriosus (PDA), 
apnoea, high temperature, mechanical ventilation, his-
tory of resuscitation, milk opening time, interval between 
two stools, blood transfusion, and pulmonary surfactant 
(PS) were positively correlated with FI in preterm new-
borns. The data are shown in Table 2.

Model development, cross‑validation and model 
evaluation
RF was used to further select the features from among 
the 16 factors above, yielding the feature importance 
rankings, as shown in Fig. 3. Finally, 12 features with an 
importance value greater than 5 were selected for inclu-
sion in the model; these included probiotics, history of 
resuscitation, interval between two stools, milk opening 
time, blood transfusion, mechanical ventilation, gesta-
tional age, neonatal asphyxia, Apgar score in one minute, 
PS, birth weight, and high temperature.

Four classification prediction models built from the 
LR, DT, SVM and XGBoost algorithms were constructed 
using the 12 feature variables obtained after dual feature 
selection as dependent variables and the occurrence of 
FI as the predictor variable. These models were subse-
quently validated in the original dataset separately via 
random sampling and tenfold cross-validation methods, 
and the Acc, Sen, Spe, PPV, NPV and AUC values of each 
model were obtained on the test set, as shown in Table 3. 
The receiver operating characteristic (ROC) curves of the 
two verification methods are shown in Figs.  4 and 5. A 
comparison of the data revealed that XGBoost yielded 
the optimal evaluation indices under both validation 
methods.

SHAP interpretable framework
Feature importance ranking with the SHAP interpretable 
framework
The importance of each feature was ranked according 
to the absolute SHAP value. The five most common fea-
tures were history of resuscitation, probiotics, milk open-
ing time, interval between two stools and gestational age 
(Fig. 6).

Global interpretability with the SHAP interpretable 
framework
To clarify the effect of these feature variables on the 
occurrence of FI in preterm newborns, the SHAP feature 
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Fig. 2  Modeling process of risk prediction model for FI of preterm newborns. Notes: RF, random forest; LR, logistic regression; DT, decision tree; SVM, 
support vector machine; XGBoost, eXtreme Gradient Boosting; TP, true positive; FP, false positive; FN, false negative; TN, true negative; Acc, accuracy; 
Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value
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summary of the XGBoost model was further derived, as 
shown in Fig. 7. The vertical coordinates in the figure are 
the feature variables in order of importance, the colours 
from blue to red indicate that the feature values change 
from low to high, and the horizontal coordinates are 
the SHAP values. A positive SHAP value indicates that 
the feature value has a positive effect on FI; otherwise, 
it has a negative effect. The use of probiotics, increased 
gestational age and increased birth weight reduce the 
probability of FI in preterm newborns, while a history of 

resuscitation, late milk opening time, and a long interval 
between two stools increase the probability of FI in pre-
term newborns.

Partial interpretability with the SHAP interpretable 
framework
This study used the Youden rule to obtain the optimal 
classification threshold. According to the feature input 
of each case sample, the model outputs the predicted 
probability of FI; if the predicted probability is greater 

Table 2  Spearman correlation analysis of FI in preterm newborns

FI feeding intolerance, NRDS neonatal respiratory distress syndrome, HIE hypoxic ischemic encephalopathy, PDA patent ductus arteriosus, PS pulmonary surfactant
* P < 0.05; **P < 0.01

Risk factors Correlation coefficient Risk factors Correlation
coefficient

Gender -0.071 HIE -0.021

Gestational age -0.472** Neonatal asphyxia 0.280**

Birth weight -0.513** Neonatal hyperbilirubinemia 0.032

Apgar score in one minute -0.295** Infection 0.147**

Mother’s age -0.008 PDA 0.171**

Polyembryony 0.018 Apnea 0.309**

Assisted reproductive -0.024 High temperature 0.309**

Pregnancy complications -0.005 Mechanical ventilation 0.417**

Mode of delivery -0.089 History of resuscitation 0.556**

Abnormal fetal position 0.088 Milk opening time 0.398**

Amniotic fluid abnormality -0.013 Interval between two stools 0.481**

Umbilical cord abnormality 0.032 Blood transfusion 0.323**

Placenta abnormality 0.016 Antibiotic 0.105

Premature rupture of membranes 0.034 PS 0.321**

NRDS 0.359** Probiotics -0.371**

Fig. 3  Feature importance ranking of RF. Notes: PS, Pulmonary surfactant; NRDS, Neonatal respiratory distress syndrome; PDA, Patent ductus 
arteriosus
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than the classification threshold, the patient is expected 
to develop FI; otherwise, they are expected to have 
feeding tolerance (FT). The classification threshold for 
the XGBoost model was 0.342 in this study. By compar-
ing the total SHAP value and the prediction probability 
of each sample, a positive correlation was identified, as 
shown in Fig. 8.

To illustrate the relationships among the SHAP value, 
prediction probability and prediction classification of 
samples with the XGBoost model, two samples yielding 

accurate predictions but different results were selected 
for analysis.

Figure  9 shows a sample predicted to be FI, with a 
total SHAP value of 0.685 and a predicted probability of 
0.461, which is greater than the classification threshold 
and therefore accurately judged to be FI. This patient had 
been treated with probiotics and had a normal tempera-
ture, normal stool time, etc.; each of these features had 
a negative SHAP value, indicating that these conditions 
would reduce the probability of FI. The patient also had 

Table 3  Confusion matrix and AUC values of each model on the test set

AUC​ area under the curve, Acc accuracy, Sen sensitivity, Spe specificity, PPV positive predictive value, NPV negative predictive value, LR logistic regression, DT decision 
tree, SVM support vector machine, XGBoost eXtreme Gradient Boosting

Random sampling Acc (%) Sen (%) Spe (%) PPV (%) NPV (%) AUC (%)

  LR 80.95 75.00 85.25 78.57 82.54 89.40

  DT 74.29 61.36 83.61 72.97 75.00 84.30

  SVM 85.71 81.82 88.52 83.72 87.10 90.50

  XGBoost 87.62 86.36 88.52 84.44 90.00 92.20

tenfold cross-validation

  LR 79.61 78.53 80.24 68.38 87.98 87.98

  DT 78.75 77.69 79.33 68.15 87.10 78.38

  SVM 76.13 70.83 78.95 69.42 81.51 87.27

  XGBoost 83.43 82.83 83.83 72.12 90.51 89.45

Fig. 4  The ROC curves of each model obtained by random sampling method on the test set. Notes: LR, logistic regression; DT, decision tree; SVM, 
support vector machine; XGBoost, eXtreme Gradient Boosting
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Fig. 5  The ROC curves of each model obtained by tenfold cross-validation on the test set. Notes: LR, logistic regression; DT, decision tree; SVM, 
support vector machine; XGBoost, eXtreme Gradient Boosting

Fig. 6  Feature importance ranking of SHAP interpretable framework. Notes: PS, Pulmonary surfactant
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a history of resuscitation, low birth weight, young ges-
tational age, etc.; all of these features had positive SHAP 
values, indicating that these conditions increase the 
probability of FI. The sample was ultimately predicted to 
have FI, indicating that the latter group of features had 
a greater impact on the development of the condition in 
these patients.

Figure 10 shows that a patient was predicted to have 
FT with a total SHAP value of 0.129 and a predicted 
probability of 0.329, which is less than the classification 

threshold; therefore, the patient was correctly judged to 
have FT. Compared to the patient in Fig. 9, high birth 
weight, a normal stool interval and the use of probiotics 
dominated the predictions for this patient, resulting in 
a correct prediction of FT.

A comparison of the two samples revealed that 
the occurrence of FI was the result of the combined 
effect of the above 12 features, and different values of 
the same feature may have opposite effects. This find-
ing also showed that the pathogenesis of FI is complex 
and involves many influencing factors, which makes 

Fig. 7  SHAP feature summary of the XGBoost. Notes: PS, Pulmonary surfactant

Fig. 8  Relationship between total SHAP value and prediction probability
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diagnosis difficult; however, a model based on XGBoost 
can accurately identify and predict FI.

Discussion
This study proposes for the first time the construction 
and SHAP interpretability analysis of a risk prediction 
model for FI in preterm newborns based on ML, which 
fills the gap in the prediction of FI in preterm newborns 
by ML. At the same time, these findings can provide 

decision references for clinical workers, thereby facilitat-
ing disease management and offering new research ideas 
for optimizing FI prevention and treatment programs. 
We found that the XGBoost algorithm was significantly 
superior to the other classifiers, and SHAP interpretabil-
ity analysis revealed that a history of resuscitation, use 
of probiotics, milk opening time, interval between two 
stools and gestational age were the main factors affecting 
the occurrence of FI.

Fig. 9  Partial interpretability of FI in preterm newborns

Fig. 10  Partial interpretability of FT in preterm newborns
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We found that preterm newborns with a history of 
resuscitation, late opening of milk, or longer intervals 
between stools were more likely to develop FI. First, a his-
tory of resuscitation is usually accompanied by hypoxia, 
which can cause multiple-organ dysfunction. To ensure 
blood flow to vital organs such as the brain and heart, 
blood flow to organs such as the stomach and muscles is 
reduced, leading to a disturbance in energy metabolism 
in intestinal epithelial cells and damage to the mucosal 
barrier. In addition, many free radicals are produced dur-
ing hypoxia-reperfusion, which can cause gastrointestinal 
mucosal damage. It has been reported [34] that the inci-
dence of FI in preterm newborns with hypoxia reaches 
35.37%. Second, early feeding can promote gastric elec-
trophysiological activity and gastrointestinal maturation 
as well as the activation and release of gastrointestinal 
hormones, improve the digestive function and gastroin-
testinal structure of preterm newborns, and prevent the 
occurrence of FI to a certain extent. Finally, normal new-
borns defecate for the first time within 12 h after birth. 
Longer intervals between stools may be related to gastro-
intestinal tract injury in preterm newborns.

In contrast, preterm newborns who have been treated 
with probiotics and are older are less likely to develop 
FI for several reasons: First, probiotics have the poten-
tial to improve intestinal maturity and function in many 
ways and have been shown to reduce the risk of FI [35]. 
A previous study [36] also showed that probiotics have 
a protective effect on the intestine of very-low-birth-
weight newborns. Second, functional peristalsis of the 
small intestine first emerges at approximately 30 weeks 
of gestation, and regular compound movement emerges 
at 33 ~ 34 weeks of gestation. Gastrin, motilin and other 
gastrin-intestinal peptide hormones in the foetus reach 
normal secretion levels at term [37]. Several studies 
[38] have shown that the incidence of FI in foetuses ≤ 32 
weeks old is 41.18%, whereas that in foetuses > 32 weeks 
old is 22.38%, indicating that the incidence of FI increases 
with decreasing gestational age. In addition, Boo et  al. 
[39] showed that the only significant risk factor associ-
ated with FI was the time of first feeding; the earlier the 
first feeding time was, the lower the risk of FI. Other fac-
tors, such as birth weight, history of resuscitation, peri-
natal asphyxia, Apgar score in one minute, mechanical 
ventilation, use of PS, NRDS, PDA, mode of delivery and 
sex, were not associated with FI.

This study has several limitations. First, this was a ret-
rospective, single-centre, cross-sectional study in which 
the temporal sequence of exposure factors and disease 
was often difficult to assess. Second, the sample size was 
small, and additional data are needed to optimize and 
validate the learning and generalizability of the model. 
Finally, the parameters of the ML algorithms were 

adjusted only to select the optimal model but not to opti-
mize the algorithm itself.

Conclusions
The integrated classifier based on XGBoost showed sig-
nificantly superior accuracy and reliability compared 
to other single classifiers. A history of resuscitation, a 
first milk opening time ≥ 24 h after birth and an inter-
val between defecations ≥ 3 days were risk factors for 
FI, while the use of probiotics and a gestational age ≥ 34 
weeks were protective factors against FI in preterm new-
borns. These findings can provide decision references for 
clinical workers and offer new research ideas for optimiz-
ing FI prevention and treatment programs. However, the 
results of this study need to be further verified through 
additional studies.
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