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Abstract 

Deprivation of oxygen in an infant during and after birth leads to birth asphyxia, which is considered one of the lead‑
ing causes of death in the neonatal period. Adequate resuscitation activities are performed immediately after birth 
to save the majority of newborns. The primary resuscitation activities include ventilation, stimulation, drying, suction, 
and chest compression. While resuscitation guidelines exist, little research has been conducted on measured resus‑
citation episodes. Objective data collected for measuring and registration of the executed resuscitation activities can 
be used to generate temporal timelines. This paper is primarily aimed to introduce methods for analyzing newborn 
resuscitation activity timelines, through visualization, aggregation, redundancy and dimensionality reduction. We 
are using two datasets: 1) from Stavanger University Hospital with 108 resuscitation episodes, and 2) from Haydom 
Lutheran Hospital with 76 episodes. The resuscitation activity timelines were manually annotated, but in future work 
we will use the proposed method on automatically generated timelines from video and sensor data. We propose 
an encoding generator with unique codes for combination of activities. A visualization of aggregated episodes 
is proposed using sparse nearest neighbor graph, shown to be useful to compare datasets and give insights. Finally, 
we propose a method consisting of an autoencoder trained for reducing redundancy in encoded resuscitation 
timeline descriptions, followed by a neighborhood component analysis for dimensionality reduction. Visualization 
of the resulting features shows very good class separability and potential for clustering the resuscitation files accord‑
ing to the outcome of the newborns as dead, admitted to NICU or normal. This shows great potential for extracting 
important resuscitation patterns when tested on larger datasets.
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Background
Deprivation of oxygen during and after birth leads to 
birth asphyxia, a condition recognized as a prominent 
factor in newborn mortality, as well as in the occurrence 
of cerebral palsy, learning disabilities, and other devel-
opmental delays [1, 2]. To minimize the risk and effect 
of birth asphyxia, it is important to resuscitate a non-
breathing newborn as quickly and efficient as possible. 
Approximately 85% of term newborns start breathing 
within 10-30 sec without help, 10 % will respond to stim-
ulation and drying, but around 5-6 % needs ventilation 
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(including positive airway pressure (CPAP) and positive 
pressure ventilation (PPV)) [3, 4].

Guidelines for newborn resuscitation have been estab-
lished by the world health organization (WHO) and 
the International Liaison Committee on Resuscitation 
(ILCOR) [3, 5]. The guideline advices to start the new-
born resuscitation with ventilation within the first min-
ute (golden minute) for a non-breathing newborn [6]. 
The guidelines are mostly based on best practice and 
more evidence based research on newborn resuscitation 
is highly sought for [7]. The main therapeutic measures 
during newborn resuscitation include ventilation, stimu-
lation, and suction [8, 9]. Other activities that occur less 
frequent and/or has less direct therapeutic effect include 
chest compression, drying, warming, epinefrine injec-
tions and others [2, 10].

In practice, disparities or variations might arise 
between guidelines and the actual conducted procedures. 
Factors such as stress, inadequate training, equipment 
and staff shortages, physical distances, non-optimal pro-
cedures, like delayed resuscitation initiation or insuf-
ficient resuscitation duration, can contribute to these 
discrepancies [11]. To evaluate whether the resuscita-
tion complies with the guidelines and/or if revision of 
guidelines should be considered, it is necessary with 
a comprehensive analysis of newborn resuscitation 
activities coupled with the status of the newborn after 
resuscitation.

NewbornTime1 is a collaborative project, titled 
“Improved newborn care based on video and artificial 
intelligence” [12], and the primary objective is to auto-
matically generate an objective timeline describing the 
activities during newborn resuscitation, including the 
time of birth (ToB). The data measured for producing 
the timelines include ordinary (visual light) video over 
resuscitation tables and thermal video at the labour 
room. NewbornTimes objectives include the utilization 
of artificial intelligence (AI), in terms of machine learning 
(ML) techniques, to objectively detect the resuscitation 
activities and ToB, producing the resuscitation timeline 
automatically [12–14]. In clinical practice ToB is usually 
manually recorded with minute precision. By identifying 
the ToB automatically with second precision, it becomes 
possible to ascertain whether resuscitation was initiated 
during the critical “golden minute” or if there was a delay 
in the overall resuscitation process.

The goal of NewbornTime is to produce the timeline 
automatically, but as a step on the way resuscitation time-
lines can be produced by clinicians manually observing 
and delineating the recorded videos retrospectively [2]. 

This gives high-quality labelled data to use when learning 
AI systems, but it also gives timeline descriptions of the 
newborn resuscitation that we can start to analyze. The 
data used in this work originate from video recordings of 
the resuscitation table. The manual annotations studied 
in this paper are made using the ELAN video-annotation 
tool, manually watching the video-recordings, producing 
text files. In future work, when we have fully functional 
automated activity recognition models, we will analyze 
a larger set of episodes with automated timelines. In this 
paper we focus on the method for extracting knowledge 
from the available manual annotated file.

Knowledge extraction is the process of automatically 
gathering structured information from possible unstruc-
tured sources of data. Extracted knowledge can for 
example be used for data analysis and data mining tasks 
[15–17]. In this paper, we propose to utilize knowledge 
extraction and data mining methods for encoding and 
visualizing the temporal data extracted from the new-
born resuscitation annotation text files, and to discover 
pattern trends and get insights from a larger batch of 
resuscitation episodes. An overview of the approach pre-
sented in the paper can be seen in Fig. 1.

Somewhat related research can be seen in Sheikhtaheri 
et  al. [18] predicting outcome of newborns admitted to 
the Newborn Intensive Care Unit (NICU) using machine 
learning. However, they are using clinical variables and 
not a description of resuscitation activities as functions 
of time. In Urdal et al. [19] signal processing and machine 
learning are used to find important parameters for sur-
vival after newborn resuscitation. Here, it is shown that 
in addition to clinical parameters such as birth weight 
and gestational age, therapeutic strategies, i.e., resuscita-
tion activities, are important for newborn survival. How-
ever, specific features are used, not the entire description 
of the combination of activities. We want to explore 
whether we can encode the entire timeline information in 
a way that is useful to identify good patterns of activities.

There are two main contributions: (i) the introduction 
of a method that encodes the annotation of resuscitation 
episodes by using a periodic encoding generator, facili-
tating further data mining. (ii) Redundancy reduction 
is proposed through a learned autoencoder (AE), fol-
lowed by a neighborhood component analysis (NCA) for 
dimensionality reduction. The AE-NCA is visually shown 
to have much better class separability than NCA alone. 
In addition, a straightforward timeline visualization 
with and without ToB is presented, and visualization of 
batches of episodes.

1 https:// www. uis. no/ newbo rntime

https://www.uis.no/newborntime
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Methods
In this section, we present the proposed encoding meth-
odology, redundancy reduction and visualization derived 
from textual data pertaining to resuscitation activi-
ties, which correspond to the annotations of resuscita-
tion videos. We begin by formalizing the core concepts 
underlying our approach in  the Notations and formali-
zation  section. Subsequently, we provide a comprehen-
sive description of the dataset employed in our study 
in  the  Dataset  section. We introduce the proposed 
encoding generator method in  the  Proposed periodic 
encoding methodology  section. Furthermore, we intro-
duce the redundancy and dimensionality reduction 
through the incorporation of NCA and AE techniques, 

which contribute to the visualization of the dataset. The 
framework is illustrated in Fig. 1.

Notations and formalization
Because knowledge extraction, representation learning, 
dimensionality reduction, and visualization have been 
explored and applied in various fields, the terminologies 
and mathematical notations can vary, even when referring 
to the same methods and concepts. Therefore, we define 
the notation used in this paper in this subsection, and it is 
listed in Table 1.

In this paper, we analyze annotation text files, where each 
file corresponds to a single resuscitation episode, Ej . Let C 
be a set of H types of (the main) resuscitation activities ci:

Fig. 1 The proposed approach for information extraction and the execution of machine learning tasks, encompassing dimensionality reduction 
and visualization processes

Table 1 List of notations and mathematical symbols used in this paper

Notation Description Notation Description

C A list of resuscitation activities Ge Periodic encoding generator

G A matrix of generated feature codes gi Generated feature vector\ code

X ∈ R
N×M Fused data matrix Z ∈ R

d×M A compact\ latent\ embedded version of X

N, d Dimensionality of the data and latent spaces H The number of main resuscitation activities

N The length of the activ generated feature code M The number of dataset episodes

f : RN → R
d Mapping or encoding function X̃ Reconstructed data after learning

g : Rd → R
N Reconstruction or decoding function L Optimization target

G ∈ R
H×N×M

3
rd‑order tensor Q Orthogonal learnable metric distance

Pij Probabilistic softmax distance Y Class labels

θe A set of encoding weights, We , and biases Be θd A set of decoding weights, Wd , and biases Bd
A Transformation matrix η Learning rate
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Within one specific resuscitation episode, Ej , of length 
N seconds, each activity, ci , can occur multiple times with 
different duration, and multiple activities can occur at 
overlapping time-intervals.

For Ej we generate a set of feature code vectors, gi , of 
length N, indicating at second precision when activity ci 
takes place. For each episode Ej , j = 1 . . .M , we define a 
matrix Gj ∈ R

HxN with gi as the ith row:

If Gj(n, i)  = 0 it means that for episode j, at time-
point n, activity ci is being performed. Finally, the Gj for 
all M episodes are stacked to form a 3rd-order tensor 
G ∈ R

HxNxM.
To perform various machine learning tasks such as 

visualization, dimensionality reduction, and AE learning 
(as depicted in Fig.  1), and to illustrate the occurrence 
of activities across all dataset episodes, we introduce the 
concept of fusion through addition among the generated 
feature codes of each sub-matrix, Gj . This fusion process 
results in a 2-D fused data matrix denoted as X ∈ R

NxM , 
where M is the number of resuscitation episodes in the 
dataset. The fused vectors xj ∈ R

N in the columns of X, is 
one for each episode.

1H is a size H column vector of ones.
We employ an AE to reduce theredundancy and dimen-

sionality of the fused data vector, xj ∈ R
N , resulting in 

the compact feature vector, zj = f (xj) ∈ R
d . The matrix 

Z = [z1 . . . zM] ∈ R
dxM , where d < N  , can be seen as 

an embedded or latent representation of the fused data 
matrix X.

Dataset
In this paper, two datasets are subjected to analysis: the 
Stavanger University Hospital (SUS) dataset, acquired 

(1)C = {ci , i = 1 , . . . , H}

(2)Gj = [g1 . . . gH ]
T

(3)X = [x1 . . . xM], where xTj = 1
T
HGj

for the NewbornTime [12] and Neobeat [20] projects, 
and the Haydom Lutheran Hospital (Haydom) data-
set, collected as part of the Safer Birth project2. Each 
dataset consists of annotation text files that correspond 
to distinct episodes of resuscitation. The SUS dataset 
encompasses 108 text files, while the Haydom dataset 
comprises 76 text files. These annotated text files result 
from manual annotations of video recordings from resus-
citation scenarios, utilizing the ELAN video annotation 
tool. Additionally, the ToB has been manually recorded 
by an observer writing down the time in second preci-
sion at an early stage in the Safer Births project, and by 
pushing a button in the Liveborn app3 in the SUS dataset. 
The annotation process has focused on the main resus-
citation activities, denoted as C, performed during these 
episodes. This partial annotation, carried out by domain 
experts, serves as training data for ML tasks.

Every annotation text file, aj , is structured with four 
columns of data. The initial column signifies the name of 
the respective resuscitation activity, ci , while the remain-
ing columns indicate the start, stop, and duration of that 
particular activity, measured in milliseconds. Our analy-
sis involves extracting information from these annota-
tion text files to visualize the timeline of activities and 
conduct ML tasks. We focus on the six primary activi-
ties within the SUS dataset, denoted as {c1 : c6} : 1) baby 
on table, 2) drying, 3) stimulation, 4) ventilation, 5) suc-
tion, and 6) chest compression. Similarly, within the Hay-
dom dataset, we consider seven key activities denoted 
as {c1 : c7} : 1) unwrapped baby, 2) stimulation, 3) venti-
lation, 4) suction, 5) attaching dry-electrode ECG (Neo-
Beat4), 6) wrapped baby, and 7) chest compression. For a 
concise overview of both datasets, refer to Table 2.

Table 2 A brief description of the SUS and Haydom datasets

Indicator SUS Dataset Haydom Dataset

# of annotation files 108 76

Type of annotation files Text Text

Total duration of annotations 14071 sec 53436 sec

Total number\ duration of stimulation annotations 532\3832 sec 620\4193 sec

Total number\ duration of ventilation annotations 520\5162 sec 342\8808 sec

Total number\ duration of suction annotations 117\1869 sec 197\2769 sec

Total number\ duration of chest compression annotations 142\408 sec 21\134 sec

2 https:// safer births. com/
3 Liveborn app is developed by Laerdal medical AS
4 https:// shop. laerd alglo balhe alth. com/ produ ct/ neobe at/

https://saferbirths.com/
https://shop.laerdalglobalhealth.com/product/neobeat/
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Proposed periodic encoding methodology
We propose a periodic encoding generator denoted as 
Ge(i):

Let each nonzero element in gi(n) = Ge(i) , where n 
denotes the time index, and i corresponds to the dis-
tinct activities, ci.

A distinguishing feature of the proposed generator is 
its fusion uniqueness property. Specifically, the summa-
tion of any two or more generated numbers, even from 
distinct activities, results in values that do not corre-
spond to any of the individual generated numbers or 
their fusion:

To practically generate invariant codes across the 
chosen activities, our proposed encoding generator fol-
lows the subsequent steps: 

1. Load each annotation text file for episode Ej and read 
it line-by-line.

2. Group the relevant activities, C, from each file and 
store them in a new container.

3. Arrange the selected activities to maintain an invari-
ant order (example from the SUS dataset): c1=baby 
on table, c2=drying, c3=stimulation, c4=ventilation, c5
=suction, and c6=chest compression.

4. Generate the corresponding feature code vectors, 
gi , for each of the ordered activities, ci based on the 
duration when the activity is performed. Store the 
generated feature codes in a matrix Gj , as described 
in section Eq. 2.

As an example, Table 3 shows the encoding for 4 activi-
ties over a 10-second period of resuscitation, with each 
number corresponding to one second. Zeros indicate 
periods where the specific activities where not per-
formed. The methodology for periodic encoding gen-
eration can be employed to encode any number C of 

(4)Ge(i) = 2i − 1

(5)gl(n)+ gk(n) �= Ge(i) ∀ i, k , l

(6)gl(n)+ gk(n) �= gi(n)+ gm(n) ∀ i, k , l,m

activities over a given resuscitation time period. Each 
annotation file is encoded into a matrix Gj , which is 
then stacked into 3rd-order tensor G . Refer to Eq. 2 and 
Fig. 1 for further details.

For SUS dataset, the encoding generator, Ge(n) , pro-
duces 6 unique numbers at each second whenever 
the activity is being performed. These numbers are 
{1,3,7,15,31,63} and correspond to the activities listed 
in  the  Dataset  section, respectively. Similarly, for the 
Haydom dataset, the encoder generates 7 unique num-
bers as {1,3,7,15,31,63,127}, corresponding to the activi-
ties listed in the Methods section, respectively.

Resuscitation activity timeline visualization
A timeline provides a visual representation of the resus-
citation activities performed on a newborn over time [2]. 
Resuscitation episodes have different duration. We limit 
the duration to include the first 12 minutes (720 seconds) 
of resuscitation, as this includes the most interesting 
part. The first couple of minutes are the most important 
for newborn resuscitation. From [9] the duration of the 
newborn resuscitation episodes plotted in the figures are 
limited to the first 10 minutes, but it is mentioned that in 
some examples the resuscitation lasts longer. As we see 
some activities after 10 minutes in some of our episodes 
we have limited the duration to 12 minutes, but for most 
episodes a duration of 8-10 minutes is sufficient. The 
reason for defining a limit is to have a fixed size vector 
describing the episode.

The SUS dataset is chosen for visualizing the activities 
performed on a newborn, primarily because it contains 
the ToB, which is essential for constructing a reliable 
timeline. We employed the periodic encoding generator, 
as discussed in  the  Proposed periodic encoding meth-
odology section, to produce the corresponding codes for 
sequentially ordered resuscitation activities, represented 
by G . These activities include ventilation, stimulation, 
drying, suction, and chest compression. Additionally, we 
have incorporated an “Baby on table” entry in the time-
line visualization. This entry serves to highlight the inter-
val between the ToB and the actual commencement of 

Table 3 Example of encoding of activities over a period of 10 seconds. For each activity, ci , the positive numbers indicate the presence 
of the activity, while zeros denote its absence. The generated code‑vectors g2 and g3 are shown, and last line, x show the fusion of the 
to activity codes for the episode j into vector xj

Baby in table c1 : g1 1 1 1 1 1 1 1 1 1 0

drying c2 : g2 3 3 3 0 0 0 0 0 0 0

stimulation c3 : g3 0 0 0 7 7 7 7 0 0 0

ventilation c4 : g4 0 0 0 0 15 15 15 15 15 0

example xj = i gi 4 4 4 8 23 23 23 16 16 0
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the resuscitation activities, effectively signaling the onset 
of the resuscitation procedure.

Aggregated dataset visualization
We want to illustrate the occurrence of different resusci-
tation activities denoted as C, among all episodes in each 
dataset. To visualize the occurrence of activities across 
the aggregated dataset, we employ fusion by addition 
on the generated codes of the activities, as described in 
Eq. 3. Specifically, this entails accumulating the codes of 
resuscitation activities according to the depth, H, of the 
data tensor, G , as depicted in Fig. 1.

The final data matrix, X, comprises all fused feature 
codes, or vectors, over the dataset. xj ∈ R

N represent the 
feature code for episode j, where the code encapsulate the 
occurrence of all activities performed at each time point. 
Subsequently, we use the sparse nearest neighbor graph 
SNN algorithm [21] to present a visualization of activi-
ties across episodes derived from X. The SNN is a search 
method based on constructing a directed graph defined 
for a set of data points situated in a metric space, such as 
the Euclidean distance or other types of distances, on a 
2-D uniform metric plane.

Utilizing the SNN, visualization is accomplished by 
mapping sparse points onto a 2-D grid using the indices 
and values of activities. The computational complexity 
of the algorithm, specifically for sorting the components 
of X, is O(N logN ) [22]. In our study, we represent the 
activities throughout all episodes in the dataset without 
subjecting the numerical values of X to normalization or 
standardization. By doing so, we bypass data transfor-
mations that could potentially displace the centroid of 
the data samples, adversely affecting the quality of the 
visualization.

Dimensionality reduction
Dimensionality reduction can uncover structures and 
help in understanding the inherent groupings within 
dataset classes. In this section, we outline the methodol-
ogy adopted in this paper, showing that learned redun-
dancy reduction is necessary prior to a dimensionality 
reduction technique for good class separability for our 
data.

Neighborhood component analysis (NCA)
NCA is a dimensionality reduction technique designed 
to establish a linear mapping from data space, X, to an 
embedding space, W, using a learnable Mahalanobis dis-
tance metric, proposed to be used with a k-NN clustering 
scheme [23]. The transformation is done by a learnable 
matrix A.

NCA is employed for dimensionality reduction on both 
datasets learning a linear mapping for transforming the 

episodes from the SUS and Haydom datasets into cohe-
sive clusters or groups. By mapping the fused data sam-
ple, X, as described in Eq.  3, into the mapping space, 
W, NCA optimizes the coordinates of the latent points, 
wj , within this space. For a given fused data matrix, 
X = {xj | xj ∈ RN , j = 1 , . . . , M} , and class labels vec-
tor, Y, the NCA algorithm maximizes a metric distance 
in the mapping space, W = {wj |wj ∈ R

d , j = 1 , . . . , M} , 
between data points belonging to different clusters. That 
is by finding a learnable linear transformation RN → R

d 
( d < N  ) to obtain the mapped space, W by A ∈ R

d×N , 
W = AX.

NCA employs stochastic soft neighbor assignment in 
the mapping space. This is achieved using a soft probabil-
ity measure, often referred to as the stochastic selection 
rule. Consequently, the latent point, wj , in the mapped 
space, W, chooses its neighbor point, wk using a proba-
bilistic softmax metric, Pjk , which is grounded on the 
Euclidean distance:

The latent point wj is correctly clustered according to 
the probability Pj:

where Yj comprises the labels of all input data samples 
belonging to the same cluster, i.e., Yj = {k|yj = yk} . As 
a result, each data sample, xj , represented in a vector is 
mapped into a latent point, wj , in the mapped space W. 
The conjugate gradient descent optimization [24] maxi-
mizes the expected number of latent points (each cor-
responds to an input vector of activities) assigned to the 
same class:

In the experiments described in  the  Redundancy 
and dimensionality reduction results  section, NCA 
is employed to reduce the dimensionality and visual-
ize clusters in resuscitation episodes based on encoded 
annotations. The effectiveness of clustering across the 
two datasets is demonstrated using labels assigned to the 
resuscitation episodes, guided by medical professionals 
and domain experts. First, labels defined by presence or 
absence of ventilation in an episode is used, represent-
ing information that is easy to discover from the encoded 
episodes. Thereafter labels are based on the newborn’s 
outcome following the resuscitation procedure, rep-
resenting information that is not directly encoded. 

(7)Pjk =
exp(−||wj − wk ||

2)
∑

l �=j exp(−||wl − wl ||
2)

(8)Pj =
∑

k∈Yj

Pjk

(9)Lmaximize = f (A) =
∑

j

∑

k∈Yj

Pjk =
∑

j

Pj
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Table 4 outlines the labeling protocol used with the NCA 
experiments.

Combining learned autoencoder with NCA
AEs are unsupervised models designed to encode and 
reconstruct data, and they are formed in shallow or deep 
architectures [25]. AEs share a similar optimization objec-
tive of capturing the latent structures of data through 
reconstruction, benefiting from the characteristics distinct 
encoding and decoding phases. For a given data sample, xi , 
in a dataset, X = {xi | xi ∈ R

N , i = 1 , . . . , M} , the encod-
ing phase produces a mapping f : RN → R

d , 0 < d < N  , 
to the corresponding encoded data zi = f (xi; θ̂e) . 
The decoding phase produces an inverse mapping 
g : Rd → R

N , which reconstructs an approximation/ esti-
mation of the input data: x̃i = g(zei ; θ̂d).

Ultimately, the optimization objective is to find the 
parameters of the encoding and decoding processes that 
minimize the reconstruction loss:

where the reconstruction loss, X̃ = g(f (X , θ̂e), θ̂d) , Err , 
is typically measured for the shallow and dense AEs by 
using the mean square error (MSE) metric. However, in 
specific applications, other metrics such as Frobenius 
norm, reconstruction cross-entropy, or β - divergence can 
be used [26]. We use MSE as the metric in the loss func-
tion in this paper.

We propose the AE-NCA model, doing a redundancy 
reduction through an AE before the final dimensionality 
reduction and clustering with NCA, introduced in  the 
Neighborhood component analysis (NCA)  section. The 

(10)min
θ̂e , θ̂d

LREC = min
θ̂e , θ̂d

�X − X̃�Err

Table 4 Protocol for labeling episodes for dimensionality reduction and visualization of clusters in the neonatal intensive care Unit 
(NICU)

Episode Labeling SUS Dataset Haydom Dataset

Newborn outcome Binary labeling (admitted to NICU =1, otherwise=0 ) Multi‑class labeling (normal=1, death=2, 
admitted to NICU=3, stillborn=4)

Ventilation presence Binary labeling (presence=1, absence=0) Binary labeling (presence=1, absence=0)

Fig. 2 The proposed AE‑NCA model. The input data X comprises vectors of activities and fused activities, and the AE produces reconstruction X̃  
through encoding and decoding parameters, θje and θjd . The latent space data Ze of the AE is utilized in the NCA clustering
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AE is shallow, composed of three fully connected layers: 
input, output, and the latent (or bottleneck) layer. The 
latter captures the latent representations of our resus-
citation data vectors, as illustrated in Fig. 2. The size (or 
dimensionality) of both the input and output layers of 
the AE matches the size of the input data xi , specifically, 
N = 720 neurons, aligning with our fused data vectors. 
The optimal size of the latent bottleneck layer remains 
a topic of debate in AE learning. Hence, we adopted the 
methodologies from [26, 27] to determine the necessary 
neuron count for the latent space’s dimensionality. Both 
methods suggest halving the dimensionality of the fea-
ture space (input data) and using the resulting value as 
the dimensionality of the latent space.

In our experiments, the bottleneck layer of the AE 
used 360 neurons to learn the Haydom data. However, to 
accommodate the sparsity observed in the SUS data sam-
ples that were characterized by a higher proportion of 
zeros in the data vectors, we increased the dimensionality 
of the latent space to 500 neurons. This expansion in bot-
tleneck size is necessitated by the data sparsity [26]. All 
AE experiments were conducted consistently with 4000 
epochs, a saturated linear encoder and decoder transfer 
function, regularization parameter l2 = 0.0001 , spar-
sity regularizer with coefficient l = 0.01 , learning rate 
η = 0.01 . For consistent experimental reproducibility, 
we set two distinct random seeds: (seed = 0) for train-
ing data with outcome labels, and (seed = 42) for training 
data based on the presence of ventilation labels.

The loss during learning of the auto-encoder, is calcu-
lated as MSE between the input matrix X and the result-
ing X̃  . After learning, the final output X̃  is coded back 

to original values by finding the closest of the allowed 
values, consisting of the codes 1,3, 7,15,31,63,127 and 
the sum of combinations of these. As potential misclas-
sifications are done with lower MSEs in the numerical 
low numbers than in the high numbers, we are consid-
ering weighting the loss in future work. However, in 
our experiments of this paper we can reconstruct cor-
rect values after compression for all the episodes, thus 
there is no actual loss in the compression scheme, only 
removal of redundant information.

Results
In this section, we present the results obtained from 
our experiments. Firstly, we present examples of ToB-
based timelines at episode level. Thereafter, our focus 
shifts to the ensemble of episodes form the two dataset, 
visualizing different aspects.

ToB‑based timeline visualization
The activity timeline from the resucsitation table might 
be the results of manual observations of resuscitations, 
or based on video from the table, and does not neces-
sarily include ToB observations. To have access to the 
actual ToB synchronized with the activity timeline at 
the resuscitation table is crucial to get the proper value 
of such timeline. Figure 3 depicts an example of a time-
line from a resuscitation episode from the SUS dataset, 
emphasizing the ToB. It also shows the time step (slot) 
in seconds without considering the ToB.

Fig. 3 Timeline visualization incorporating the ToB shows the x‑axis as time in seconds, while the y‑axis enumerates the principal resuscitation 
activities assessed in our analysis
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Fig. 4 Visualization of episodes from the SUS dataset: the x‑axis, represents the index of each annotation text file, while the y‑axis features acronyms 
representing the activities. BOT: Baby On Table, Dry: Drying, Stim: Stimulation, Vent: Ventilation, Suc: Suction, Chest: Chest Compression, and “+” 
means the existence of these activities performed at the same time. The color bar located in the top‑right corner visually translates numerical values 
from X and is associated with the labels on the y‑axis

Fig. 5 Visualization of episodes from the Haydom dataset: the x‑axis represents the index of each annotation text file, while the y‑axis features 
acronyms representing the activities. Uw:unwrapped baby, Stim: stimulation, Vent: ventilation, Suc: suction, Atta:attaching dry‑electrode ECG, 
Wrap:wrapped baby, and Chest:chest compression. “+” means the existence of these activities performed at the same time. The color bar located 
in the top‑right corner visually translates numerical values from X and is associated with the labels on the y‑axis
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The ventilation activity, which serves as the main 
therapeutic resuscitation activity, has been initiated 35 
seconds post-birth. This initiation aligns with WHO 
guidelines, which recommend beginning therapeutic 
resuscitation activities within the crucial first minute 
after birth [5].

Aggregated dataset visualization based on SNN
This section visualizes some results from the aggregated 
datasets using SNN, as described in the Aggregated data-
set visualization section.

Figures 4 and 5 gives a visualization of the existence of 
resuscitation activities and the fused activities for each 
episode from the SUS and Haydom datasets, respec-
tively, over the first 12 minutes of resuscitation. In both 
figures, the horizontal axis (x-axis) represents the index 
of the annotation text files, corresponding to individual 
newborn resuscitation episodes. The vertical axis (y-axis) 
denotes the tags associated with activities and the fused 
activities observed in each episode.

As can be noticed from both figures, ventilation and 
stimulation are the predominant resuscitation activi-
ties in the SUS dataset, and suction is relatively rare. In 
contrast, in the Haydom dataset, suction occurs much 
more frequently, and ventilation is used less frequently, 
whereas stimulation is used frequently in both datasets. 
Furthermore, both datasets infrequently implement chest 
compression. The data was collected under different pro-
tocols and cannot be compared directly. Nevertheless it 
shows some interesting trends and indicates that looking 
at existence of fused activities might be useful.

Redundancy and dimensionality reduction results
In this section, we will demonstrate the capability of the 
AE-NCA method introduced in  the Combining learned 
autoencoder with NCA section to reduce the dimension 
and visually cluster the fused activities from both data-
sets consistently. This is compared to using NCA alone.

The data matrix, X, is normalized (centered) first and 
then supplied to the NCA algorithm for clustering based 
on the labeling protocol reported in Table  4. Figure  6 
shows the clustering visualization of the SUS and Hay-
dom datasets from the fused data matrix X. As it can 
be observed the figures appears cluttered, with no clear 
indications of clusters or data sample trends. The visuali-
zation primarily resembles scatter plots of random points 
in a 2-D space. The 12 minutes long resuscitation epi-
sodes contains redundancies which makes the clustering 
challenging.

We introduced the AE-NCA model, which first 
encodes the data using a fully dense AE providing the 
latent embeddings, Z, and thereafter use NCA for dimen-
sionality reduction and cluster visualization. The results 

are depicted in Fig. 7. We can observe compact cluster-
ing, much more promising than direct clustering of the 
data matrices X in Fig. 6.

The first column in both figure is the most interest-
ing as this is illustrating cluster in the episodes accord-
ing to the outcome of the resuscitation. If we can learn 
a dimensionality reduction that gives us clusters with 
good coherence with the outcome classes, i.e. which 
infants that dies, has to be admitted to NICU or are fine, 
that can help identify which factors that are most impor-
tant for success. The second column in Figs.  6 and 7 is 
dimensionality reduction learned based on a label we 
know exist in the fused data matrix X,and the episodes 
could easily have been separated based on a simple test. 
The purpose of the experiment with these labels is to see 
how well the visualized clusters performs in terms of as 
an indicator of the trustworthiness of the more interest-
ing results in column one.

Discussion
Newborn resuscitation involves a sequence of emergency 
procedures carried out by pediatricians or midwives to 
aid newborns who are gasping, not breathing, or exhib-
iting a weak heartbeat after birth. Moreover, the imple-
mentation of these resuscitation procedures adheres to 
protocols and guidelines established by international 
entities, such as WHO, and local health authorities. The 
compliance with the recommended resuscitation proto-
col can be verified through retrospective analysis of the 
collected data, which, in our context, encompasses vid-
eos, recorded signals, and associated annotation files. 
We consider our research around newborn resuscitation 
as exploratory, being a part of one of the largest research 
networks in the world working on this topic. In the New-
bornTime and SaferBirths projects mentioned earlier, 
data collection is ongoing. We believe that with timelines 
of many 100s and 1000s of episodes coupled with the sta-
tus of the newborn before and after, can provide valuable 
insights on what treatment that works the best, can give 
debriefing tools, compare practice at different hospitals 
relative to guidelines etc. Getting such timelines is com-
plicated, collecting objective data, manually annotating 
or extracting automatically timelines from videos and 
sensor data. When accurate timelines are available, the 
next step is to explore and extract interesting knowledge 
from the data. In this paper we are considering this last 
step, looking at manually annotated timelines as text files.

The annotation files detail the primary resuscitation 
activities and their respective duration, as discussed 
in the Dataset section. The essence of our approach and 
proposed methods revolves around representing activ-
ity occurrences over time via a series of data vectors 
organized into a multi-dimensional array. As part of this 
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process, we introduced the periodic encoding genera-
tor, Ge(n) , in  the Proposed periodic encoding method-
ology section. The generator captures periods of activity 
presence or absence as sequences of distinct codes, with 
each activity tied to a unique number. This number is 
repeated for every second the activity is observed and 
any fusion of numbers, representing simultaneous activi-
ties, yields a distinct result, as shown in Table  3. We 
subjected the resulting data or feature codes, G, to vari-
ous tasks pertinent to newborn resuscitation, including 
visualization of single episodes and aggregated datasets, 

redundancy reduction through AE learning, and dimen-
sionality reduction preserving class separability.

In the Resuscitation activity timeline visualization sec-
tion, we visualized a timeline of resuscitation activities. 
The Time of Birth is leveraged to display the interval 
between the exact moment of birth and the commence-
ment of the resuscitation procedure. The timeline offers 
a visual representation of when resuscitation activities 
begin and their subsequent duration, and if they are per-
formed in a continuous sequence or with multiple start 
and stop. Such timelines gives a quantitative description 
of an episode an can be useful in debriefing tools or in 

Fig. 6 Clustering visualization of the SUS and Haydom datasets. The axes represent the NCA1 and NCA2 features after dimensionality reduction. a 
Haydom dataset employing the outcome labels; b Haydom dataset employing the ventilation labels; c SUS dataset employing outcome labels; d 
SUS dataset employing the ventilation labels
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quality improvement tools to study particular episodes, 
especially if it can be seen in context with the status of 
the newborn before and after resuscitation. Compliance 
to guidelines can be found from the timeline descrip-
tion as in Fig. 3, or aggregated with statistics over many 
episodes.

In  the Aggregated dataset visualization  section, we 
presented a visualization method for the entire dataset, 
summarizing the occurrence of resuscitation activities 
using the SNN method on generated feature codes. The 
method accounts for the fusion of activities that occur 
simultaneously, converting the feature code from a 3rd

-order tensor G , into a 2-D stacked array, as depicted 
in Eq.  3. The visual representation adopts a scatter plot 
format on a 2-D grid. Each point on this grid symbol-
izes either a specific resuscitation activity or a fusion of 
concurrent activities, and can be useful to compare dif-
ferent datasets, in quality improvement tools, and to get 
an overview. The visualizations made in Figs. 4 and 5 can 
give valuable aggregated insights, like here we can see 
that there is more suction activity in the Haydom data-
set compared to SUS dataset and that chest compression 
is relatively rare, however note that we want to postpone 
medical conclusions to a more comprehensive dataset.

Fig. 7 Clustering visualization of our proposed AE‑NCA considering the SUS and Haydom datasets.The axes represent the NCA1 and NCA2 features 
after dimensionality reduction. a Haydom dataset employing the outcome labels; b Haydom dataset employing the ventilation labels; c SUS dataset 
employing outcome labels; d SUS dataset employing the ventilation labels
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The results of the dimensionality reduction experi-
ments in  the Redundancy and dimensionality reduction 
results section show that using NCA directly on the long 
sequence of activities presented in the fused data-vec-
tor xj does not provide visually good clusters. However, 
when we first use an AE to reduce the redundancy in the 
vectors, followed by NCA on the feature vectors zj , the 
class separability is much better. The separate clusters 
in the left column of Fig. 7 indicates that it is possible to 
find patterns in the activity sequence that strongly cor-
relate with the outcome. i.e. success of the resuscitation. 
When we have a larger number of episodes, we will fur-
ther study the episodes to see what the common factors 
of these groups are, and if we can discover factors that 
increases the chance of a healthy outcome for newborns 
with similar status after birth.

Limitations, challenges, and future work
In the following we list some limitations and challenges 
and plans for future work:

• Challenges and Future Investigations on Data Avail-
ability: The datasets derived from both SUS and 
Haydom, as presented in this study, represent only 
a fraction of the comprehensive video data amassed 
during the Safer Births, Neobeat, and NewbornTime 
studies. The decision to use a subset stems primar-
ily from the labor-intensive nature of manual anno-
tations. Consequently, our current intent is not to 
derive definitive medical inferences but rather to 
forge a method that will accelerate the analysis of 
entire datasets in upcoming ventures. Our primary 
data source for assessment is the resuscitation table 
videos, with annotations limited to activities that are 
straightforwardly distinguishable. This means that 
certain actions may go unannotated if, for instance, 
healthcare providers obstruct the view of the new-
born or other visual challenges arise. While these 
annotations are pivotal as ground truth in machine 
learning applications, they might not provide a full 
medical representation, where a subset of activities 
might remain unmarked or have their durations inac-
curately noted. In future work, our ongoing efforts in 
the NewbornTime project are directed toward pio-
neering automated recognition techniques that can 
shed light on activity timelines over an expansive set 
of episodes.

• Challenges and Future Investigations on the Periodic 
Generator: The periodic encoding generator was pro-
posed to produce a succession of data vectors, each 
mirroring the resuscitation activities. These vectors 
were specifically based on the durations of individual 
activities. A notable limitation arises from redun-

dancy within these feature vectors. This redundancy 
is attributed to the generator’s propensity to assign 
identical numerical values every second activity is 
ongoing. To counteract this, the AE-NCA model was 
formulated, leveraging an AE to reconstruct the orig-
inal dataset, followed by clustering within the AE’s 
latent space. However, melding AE with NCA is not 
without its challenges. The data reconstruction pro-
cess becomes notably time-consuming. As we move 
forward, we anticipate alternative methodologies that 
might either replace or enhance the AE’s role, urging 
the generator toward the creation of more compact, 
information-rich codes within the feature vector.

• Scarcity of previous work: Analyzing the tempo-
ral data of the resuscitation activities performed on 
a newborn through visualization and clustering is a 
step towards the optimization of the resuscitation 
protocol. However, there is hardly any work in the 
literature to compare with. The collaborative effort 
through the SaferBirths network, where the New-
bornTime project [12] is one of several project, will 
continue to collect data from different hospitals and 
propose methods to study these important questions.

• Lack of clustering metrics and quantitative results: In 
future work we will use the method on a more com-
prehensive dataset. We will do proper clustering fol-
lowing the dimensionality reduction, giving quantita-
tive results in respect to the clustering capabilities for 
outcome classes and other possible clusters. Classify-
ing with respect to outcome is not a main task but 
discovering successful resuscitation patterns might 
come as a consequence.

• Newborn mortality risk prediction. The good cluster-
ing capability visualized in this paper indicates that a 
newborn mortality risk prediction score can be partly 
based on the resuscitation patterns. In future work 
we wish to look at newborn mortality risk prediction, 
including knowledge on the health of the mother, 
information from the labor, like fetal heart rate, labor 
length, delivery mode, and about the status of the 
newborn right after birth. Status of the newborn can 
be measured for example as heart rate or apgar score. 
With this information as a starting point we can 
make a risk prediction that updates over time during 
resuscitation activities.

Conclusion
This paper is aimed to introduce methods for analyzing 
newborn resuscitation activity data, through encoding, 
visualization, aggregation, and dimensionality reduc-
tion. The resuscitation data were initially provided as 
annotation text files, and as a first step an encoding gen-
erator with unique codes for combination of activities is 
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proposed. In future work the input can be automatically 
annotated activity files from video and/or signal data. 
Dataset aggregation and visualization through SNN can 
provide insights into, for example, the frequency of activ-
ities and variances across different hospitals. Redundancy 
reduction and dimensionality reduction with the learned 
AE-NCA method is visually shown to have promising 
clustering capabilities, indicating a potential for discover-
ing important patterns in resuscitation timelines once the 
dataset reaches a significant size, and for developing risk 
prediction scores in future work.
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