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Abstract 

Background  In medical diagnostics, estimating post-test or posterior probabilities for disease, positive and negative 
predictive values, and their associated uncertainty is essential for patient care.

Objective  The aim of this work is to introduce a software tool developed in the Wolfram Language for the parametric 
estimation, visualization, and comparison of Bayesian diagnostic measures and their uncertainty.

Methods  This tool employs Bayes’ theorem to estimate positive and negative predictive values and posterior prob-
abilities for the presence and absence of a disease. It estimates their standard sampling, measurement, and combined 
uncertainty, as well as their confidence intervals, applying uncertainty propagation methods based on first-order 
Taylor series approximations. It employs normal, lognormal, and gamma distributions.

Results  The software generates plots and tables of the estimates to support clinical decision-making. An illustra-
tive case study using fasting plasma glucose data from the National Health and Nutrition Examination Survey 
(NHANES) demonstrates its application in diagnosing diabetes mellitus. The results highlight the significant impact 
of measurement uncertainty on Bayesian diagnostic measures, particularly on positive predictive value and posterior 
probabilities.

Conclusion  The software tool enhances the estimation and facilitates the comparison of Bayesian diagnostic meas-
ures, which are critical for medical practice. It provides a framework for their uncertainty quantification and assists 
in understanding and applying Bayes’ theorem in medical diagnostics.
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Introduction
Medical diagnosis
Diagnosis in medicine is fundamentally the process of 
identifying a disease by analyzing its unique characteris-
tics through abduction, deduction, and induction [1]. The 
term  ’diagnosis’, originating from the Greek ’διάγνωσις’ 

meaning ’discernment’ [2], underscores the critical role 
of distinguishing between healthy and diseased states in 
individuals. Diagnosis can be defined as the stochastic 
mapping of symptoms, signs, as well as laboratory and 
medical imaging findings onto a particular disease condi-
tion, based on medical knowledge.

Threshold based diagnosis
Diagnostic tests or procedures are often applied to 
classify individuals into diseased or nondiseased pop-
ulations in a binary manner. Although the probability 
distributions of measurands from a quantitative diag-
nostic test in these populations may overlap, results are 
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typically dichotomized by setting a diagnostic threshold 
or cut-off point [3]. Reliance on a single threshold for 
diagnosis across a spectrum of data points introduces 
uncertainty due to this overlap [4]. Nonetheless, this 
dichotomous approach represents a significant trans-
formation in medical decision-making by correlating a 
continuous spectrum of evidence with binary clinical 
decisions, such as whether to treat or not [5].

Diagnostic accuracy measures  To ensure patient safety, 
the correctness of this classification must be rigorously 
evaluated. Although numerous diagnostic accuracy meas-
ures are described in the literature, only a few are routinely 
used in clinical research and practice to assess the diagnos-
tic accuracy of threshold-based tests [6]. These include the 
prevalence-dependent positive and negative predictive val-
ues, defined conditionally on the test outcome.

Bayesian diagnosis
Bayes’ theorem [7, 8] plays a pivotal role in medical diag-
nostics by transforming the pre-test or prior probabil-
ity for a disease into a post-test or posterior probability 
after considering diagnostic test results [4, 7, 9–12]. This 
theorem connects the posterior probability P(H|E) of a 
hypothesis H being true given specific evidence E to the 
likelihood P(E|H) of observing the evidence E given that 
hypothesis H is true [13].

Bayesian inference  In purely Bayesian inference, the 
process begins with a prior distribution representing 
initial beliefs about the parameters of interest before 
observing any evidence. This prior distribution is then 
updated with the likelihood function—which represents 
the probability of the observed evidence given different 
parameter values—using Bayes’ theorem to obtain the 
posterior distribution [10].

a) Prior distribution  The prior distribution embodies 
the beliefs held by researchers about parameters before 
seeing the evidence. Priors can be informative, weakly 
informative, or diffuse, depending on the level of cer-
tainty or uncertainty they reflect.

b) Likelihood function  The likelihood function describes 
the probability of the observed evidence given various 
parameter values. It is essential in updating the prior dis-
tribution to form the posterior distribution.

c) Posterior distribution  The posterior distribution 
results from combining the prior distribution and the 

likelihood function. It reflects the updated understand-
ing of the parameters after considering the observed 
evidence.

d) Workflow  The typical Bayesian workflow involves:

a.	 Specifying the prior distribution
	 Defining initial beliefs about the parameters based on 

prior knowledge or assumptions.
b.	 Determining the likelihood function
	 Modeling how likely the observed data is, given dif-

ferent parameter values.
c.	 Computing the posterior distribution
	 Applying Bayes’ theorem to update the prior distri-

bution with the likelihood function.
d.	 Model checking and refinement
	 Assessing the model’s fit and making necessary 

adjustments.
e.	 Sensitivity analysis
	 Evaluating how sensitive the results are to changes in 

the prior assumptions or model specifications.
These steps ensure the robustness of Bayesian 

inference.

Empirical Bayesian methods  The empirical Bayesian 
approach simplifies the purely Bayesian framework by 
using available data to estimate the prior distribution, 
making it practical when prior information is sparse or 
unavailable [14, 15]. Instead of specifying a fixed prior 
distribution, the empirical Bayesian method treats the 
prior as an unknown quantity to be estimated from this 
data. This approach is particularly suitable for medical 
diagnostics, where real-time data integration is crucial.

The typical empirical Bayesian workflow involves:

a)	 Data collection and preliminary analysis
	 Gathering a large dataset and performing statistical 

analyses to understand the distributions and charac-
teristics of available data.

b)	 Estimating prior distributions
	 Using empirical data to estimate prior distributions 

and probabilities through methods such as maximum 
likelihood estimation.

c)	 Applying Bayes’ theorem
	 Computing posterior probabilities by combining the 

estimated prior distributions and probabilities with 
the likelihood function, thereby incorporating the 
observed data.

This method allows for adaptive updating of beliefs 
based on available data, enhancing the applicability of 
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Bayesian methods in practical settings where prior infor-
mation may be limited.

Uncertainty
Uncertainty reflects imperfect or incomplete informa-
tion. When quantifiable, it can be expressed using prob-
ability [16]. In our empirical Bayesian approach, we 
integrate frequentist methods for uncertainty quantifica-
tion due to their established reliability and ease of imple-
mentation in clinical settings [17].

Measurement uncertainty
Due to the intrinsic variability of measurements, meas-
urement uncertainty is defined as a ’parameter associated 
with the result of a measurement, that characterizes the 
dispersion of the values that could reasonably be attrib-
uted to the measurand’. This measurement uncertainty 
concept supplants the traditional notion of total analyti-
cal error [18].

Sampling uncertainty
Diagnostic measures are derived from screening or diag-
nostic tests applied to population samples. The variability 
within these samples contributes to the overall uncer-
tainty of the measures [19]. This intrinsic heterogeneity is 
present even when simple random sampling techniques 
are employed [20].

Uncertainty of diagnostic accuracy measures and Bayesian 
posterior probabilities
Previous studies have explored the uncertainty associ-
ated with diagnostic accuracy measures and the posterior 
probabilities for disease derived from Bayes’ theorem, 
demonstrating that this uncertainty can significantly 
impact their clinical usefulness [21, 22]. Estimating, eval-
uating, and mitigating this uncertainty are critical tasks 
in medical diagnosis.

Bayesian diagnostic measures
This project introduces a novel software tool designed for 
the parametric estimation and visualization of four diag-
nostic measures derived from Bayes’ theorem, along with 
their associated uncertainty:

a) Positive predictive value and negative predictive 
value [11].

b) Posterior probability for disease and its complement, 
posterior probability for the absence of disease.

To the best of our knowledge, this is the first publica-
tion that compares these four Bayesian diagnostic meas-
ures mentioned above and their associated uncertainty.

Methods
Calculations
Calculation of Bayesian diagnostic measures
Bayes’ theorem relates the probability P(H |E) of a 
hypothesis H being true given observed evidence E to the 
inverse probability P(E|H) of observing E given that H is 
true. It is expressed as:

where H  represents the negation of hypothesis H . Substi-
tuting back into Bayes’ theorem:

In medical diagnostics, Bayes’ theorem provides a 
robust framework for updating the probability of a dis-
ease (hypothesis H ) being present given new evidence 
E (such as test results). By combining prior knowledge 
(pre-test probability) with new data (test results), Bayes-
ian methods offer a comprehensive approach to the med-
ical diagnostic process.
Positive and negative predictive value  Let D denote 
the presence and D the absence of a disease, FD(x|θ) the 
cumulative distribution function (CDF) of the test meas-
urements T  in individuals with the disease, FD(x|θ) the 
CDF in individuals without the disease, and v the preva-
lence or prior probability for disease. The positive predic-
tive value of a diagnostic test T  for a diagnostic threshold 
t is calculated as:

Similarly, the negative predictive value is:

In these equations, 1− FD(t|θ) represents the sensitiv-
ity of the test at threshold t and FD(t|θ) its specificity.

These measures assess the test’s ability to correctly 
identify diseased and nondiseased individuals based on 
the threshold t.

Posterior probability for disease and the absence of dis-
ease  Let fD(x|θ) denote the probability density function 
(PDF) of the test measurements T  in individuals with the 
disease, fD(x; θ) the PDF in individuals without the dis-
ease, and v the prevalence or prior probability for disease. 

P(H |E) =
P(E|H)P(H)

P(E)
=

P(E|H)P(H)

P(E|H)P(H)+ P E|H P H

P(H |E) =
P(E|H)P(H)

P(E|H)P(H)+ P
(

E|H
)

(1− P(H))

P(D|T ≥ t) =
(1− FD(t|θ))v

(1− FD(t|θ))v +
(

1− F
D
(t|θ)

)

(1− v)

P
(

D|T < t
)

=
FD(t|θ)(1− v)

(

1− FD(t|θ)
)

(1− v)+ F
D
(t|θ)v
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The posterior or post-test probability for disease given a 
diagnostic test result T = t is:

Similarly, the posterior or post-test probability for the 
absence of disease is:

These posterior probabilities provide a continuous 
assessment of disease likelihood based on the test meas-
urement t , rather than dichotomizing the results using a 
threshold.

Uncertainty quantification
Uncertainty in input parameters can be represented as 
standard uncertainty u(t) , which is the standard devia-
tion of t , and expanded uncertainty U(t) , which defines a 
range around t with a specified probability p [23].

Measurement uncertainty  Measurement uncertainty is 
estimated according to "Guide to the Expression of Uncer-
tainty in Measurement" (GUM) [24] and "Expression of 
Measurement Uncertainty in Laboratory Medicine" [23]. 
Bias is considered a component of this uncertainty [25]. 
The relation between the standard measurement uncer-
tainty um(t) , and the value of the measurement t , is typi-
cally represented as [20]:

where b0 and b1 are constants.

For a linear approximation, it is expressed as [20]:

Sampling uncertainty of means and standard devia-
tions  Standard uncertainty of means and standard devi-
ations is estimated utilizing the central limit theorem and 
the chi-square distribution [26–28] as:

where mP and sP are the mean and standard deviation of 
measurements in a population sample of size nP.

P(D|T = t) =
fD(t|θ)v

fD(t|θ)v + f
D
(t|θ)(1− v)

P
(

D|T = t
)

=
f
D
(t|θ)(1− v)

f
D
(t|θ)(1− v)+ fD(t|θ)v

= 1− P(D|T = t)

um(t) =
√

b20 + b21t
2

um(t) ∼= b0 + b1t

us(mP) ∼=
sP√
nP

us(sP) ∼=
sp√

2(nP − 1)

Sampling uncertainty of prevalence or prior probability 
for disease  Given the numbers nD and nD of diseased 
and nondiseased individuals in a population sample, the 
standard uncertainty of the prevalence or prior probabil-
ity for disease v =

nD
n
D
+n

D

 is approximated as:

using the Agresti–Coull adjustment of the Waldo interval 
[29].

Measures combined uncertainty  When there are l inde-
pendent and uncorrelated components of uncertainty, 
each with standard uncertainty ui(t) , then their standard 
combined uncertainty luc(t) is calculated as [23]:

If the components are correlated, then [24]:

where ρij(t) is the correlation coefficient between the 
uncertainties ui(t) and uj(t).

The standard combined uncertainty of the Bayesian 
diagnostic measures are computed via uncertainty propa-
gation rules, employing a first-order Taylor series approx-
imation [30] (refer to Supplemental File II: BayesianDiag-
nosticInsightsCalculations.nb). Assuming uncorrelated 
parameters, we use the following formula to compute 
uncertainty propagation [24]:

where g(t|θ) is a Bayesian diagnostic measure with a 
parameter vector θ = (x1, x2, . . . , xl) , luc(t) is the stand-
ard combined uncertainty of g(t|θ) , and ui(t) is the stand-
ard uncertainty of xi at t.

The estimated standard uncertainty of the Bayesian 
diagnostic measures is truncated to the [0, 1] range.

Measures expanded uncertainty  The effective degrees 
of freedom lνeff (t) for the combined standard uncertainty 
luc(t) with l components ui(t) with νi degrees of freedom 

us(v) ∼=
√

(2+ nD)(2+ nD)
(

4 + nD + nD
)3

luc(t) =

√

√

√

√

l
∑

i=1

(ui(t))
2

luc(t) =

√

√

√

√

√

l
∑

i=1

l
∑

j=1

ui(t)uj(t)ρij(t)

luc(t) =

√

√

√

√

l
∑

i=1

(

∂g(t|θ)
∂xi

)2

(ui(t))
2
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each are determined using the Welch–Satterthwaite for-
mula [31, 32]:

It can be shown that if νmin the minimum of ν1, ν2, . . . , νl , 
then :

The expanded combined uncertainty Uc(t) at a confi-
dence level p is estimated as:

where F−1
ν (z) is the inverse CDF of the Student’s t-distri-

bution with ν = lνeff (t) degrees of freedom and luc(t) is 
the standard combined uncertainty of the Bayesian diag-
nostic measure.

Consequently, the confidence interval of t at the same 
confidence level p is approximated as:

The estimated confidence intervals of the Bayesian 
diagnostic measures are truncated to the [0, 1] range.

The software
Program overview
The software program Bayesian Diagnostic Insights was 
developed using the Wolfram Language with Wolfram 
Mathematica® Ver 14.1 (Wolfram Research, Inc., Cham-
paign, IL, USA). It facilitates the estimation and comparison 
of Bayesian diagnostic measures. This interactive program is 
designed to estimate and plot the values, standard sampling 
uncertainty, measurement uncertainty, combined uncer-
tainty, and confidence intervals of Bayesian diagnostic meas-
ures for a screening or diagnostic test (refer to Figs. 1 and 2).

The program is freely accessible as a Wolfram Language 
notebook (.nb) (Supplemental File I: BayesianDiagnos-
ticInsights.nb). It can be executed using Wolfram Player® 
or Wolfram Mathematica® (refer to Appendix A.3). The 
intricate nature of the required computations necessitates 
substantial computational resources.

Input parameters

Parametric distributions  Users can select the distribu-
tions of the measurements for diseased and nondiseased 

lνeff (t)
∼=

(luc(t))
4

∑l
i=1

(ui(t))
4

νi

νmin ≤ lνeff (t) ≤
l

∑

i=1

νi

Uc(t) ∼=
(

F−1

ν

(

1− p

2

)

l

uc(t), F
−1

ν

(

1+ p

2

)

l

uc(t)

)

CIp(t) ∼=
(

x + F−1

ν

(

1− p

2

)

l

uc(t), x + F−1

ν

(

1+ p

2

)

l

uc(t)

)

populations from a predefined list of univariate paramet-
ric distributions:

a)	 Normal distribution
b)	 Lognormal distribution
c)	 Gamma distribution.

Bayesian diagnostic measures  Users select the Bayesian 
diagnostic measures to be evaluated from the following 
options:

a)	 The positive predictive value P(D|T ≥ t)

b)	 The negative predictive value P
(

D|T < t
)

c)	 The posterior probability for disease P(D|T = t)

d)	 The posterior probability for the absence of disease 
P
(

D|T = t
)

Definition of populations and samples parameters 
and statistics  For each population, users define the 
mean µ  and the standard deviation  σ  of the measure-
ments (in arbitrary units), along with the prior probabil-
ity or prevalence v of disease.

For each population sample, users define its size n , the 
mean m , and the standard deviation  s  of the measure-
ments (in arbitrary units).

Measurement uncertainty  Users select a linear or a 
nonlinear equation to describe the measurement uncer-
tainty as a function of the measurement value t . They 
define the constant contribution b0 to the standard meas-
urement uncertainty, the proportionality constant b1 , and 
the number nU of quality control (QC) samples analyzed 
for its estimation.

For more details about the program’s input, please refer 
to Appendix A2.

Output
The program generates plots and tables detailing the 
diagnostic measures, including their standard sampling 
uncertainty, measurement uncertainty, combined uncer-
tainty, and associated confidence intervals. By providing 
this extensive array of input parameters, output plots, 
and tables, the program offers a platform for exploring 
and comparing Bayesian diagnostic measures and their 
uncertainty using univariate parametric distributions of 
medical diagnostic measurands.

More detailed documentation of the program’s inter-
face is provided in Supplemental file III: BayesianDiag-
nosticInsightsInterface.pdf
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Fig. 1  A simplified flowchart of the program Bayesian Diagnostic Insights 

Fig. 2  A screenshot of the program Bayesian Diagnostic Insights 
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Illustrative case study
As previously described [22], we conducted an illus-
trative case study to demonstrate the program’s appli-
cation. We used fasting plasma glucose (FPG) as the 
diagnostic test measurand for the Bayesian diagnosis 
of diabetes mellitus (hereafter referred to as "diabe-
tes"), with the oral glucose tolerance test (OGTT) serv-
ing as the reference method. Diabetes was diagnosed 
if the plasma glucose value was equal to or greater 
than  200mg/dL , measured two hours after the oral 
administration of  75 g  of glucose during an OGTT 
(2-hour PG) [33]. The study focused on individuals 
aged 70 to 80 years, reflecting the significant correlation 
between age and diabetes prevalence [34].

Data was  collected from the National Health and 
Nutrition Examination Survey (NHANES) participants 
from 2005 to 2016 (n = 60,936), as previously described 
[22]. NHANES is a comprehensive survey assessing the 
health and nutritional status of adults and children in the 
United States [35].

The inclusion criteria were valid FPG and OGTT 
results (n = 13,836), no prior diabetes diagnosis [36] (n = 
13,465), and age 70–80 years (n = 976).

Participants with a 2-h PG measurement ≥ 200mg/dl 
were classified as diabetic (n = 154).

The prevalence or prior probability for diabetes, along 
with the probability distributions for fasting plasma glu-
cose (FPG) in both diabetic and nondiabetic participants, 
were estimated using empirical Bayes’ methods [37]. We 
estimated the prevalence or prior probability for diabetes 
as follows:

The FPG datasets statistics are presented in Table  1 
(hereafter, FPG and its uncertainty are expressed

in mg/dl).

v ∼=
154

976
= 0.158

Lognormal distributions were employed to model FPG 
measurements in diabetic and nondiabetic participants 
using the maximum likelihood estimation method [38]. 
Parametrized for their means mD and mD , and standard 
deviations sD and sD , were defined as:

QC data for FPG measurements from NHANES for the 
same period (2005–2016) included 1350 QC samples. Non-
linear least squares regression [39, 40] applied to the QC 
data provided the following function for standard measure-
ment uncertainty um(t) relative to the measurement value t:

where b0 = 0.8124 and b1 = 0.0119.
We estimated the means of the standard measurement 

uncertainty of FPG in the diabetic and nondiabetic par-
ticipants as follows:

Consequently, we estimated the distributions of the 
measurements, assuming negligible measurement uncer-
tainty, as:

LD = Lognormal(mD, sD) = Lognormal(120.671,17.791)

LD = Lognormal
(

mD, sD
)

= Lognormal(102.642,10.747)

um(t) =
√

b20 + b21t
2 =

√

0.6600+ 0.00014t2

ûD ∼= 1.665mg/dl
ûD

∼= 1.473mg/dl

dD ∼= Lognormal

(

mD,

√

s2D − û2D

)

∼= Lognormal(120.671,17.713)

dD
∼= Lognormal

(

mD,

√

s2
D
− û2

D

)

∼= Lognormal(102.642,10.747)

Table 1  Descriptive statistics of the datasets and the estimated lognormal distributions of the diabetic and nondiabetic participants

Diabetic Participants Nondiabetic Participants

Dataset LD lD Dataset L
D

l
D

n 154 - - 822 - -

Mean (mg/dl) 120.7 120.7 120.7 102.6 102.6 102.6

Median (mg/dl) 117.0 119.4 118.1 102.0 102.1 101.5

Standard Deviation (mg/dl) 19.1 17.8 17.7 10.9 10.7 10.7

Mean standard measurement uncertainty 
(mg/dl)

1.665 1.665 0 1.473 1.473 0

Skewness 1.448 0.446 0.448 0.523 0.315 0.314

Kurtosis 6.354 3.355 3.360 3.445 3.177 3.176

p-value (Cramér–von Mises test) - 0.294 0.562 - 0.281 0.260
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Table 1 presents the descriptive statistics of the estimated 
lognormal distributions for diabetic and nondiabetic par-
ticipants and the respective p-values from the Cramér–
von Mises goodness-of-fit test [41]. This test assesses the 
goodness-of-fit by comparing the empirical CDFs of the 
measurement samples with those of the estimated distribu-
tions. The calculated p-values indicate that any observed 
differences between the empirical data and the estimated 
distributions can be attributed to random sampling vari-
ability, suggesting that the lognormal distributions provide 
an acceptable fit to the FPG measurements in both groups.

Figures  3 and 4 show the estimated PDFs of FPG in 
the diabetic and nondiabetic participants, assuming 
a lognormal distribution and negligible measurement 
uncertainty, along with the histograms of the respective 
NHANES datasets.

Likelihoods and posterior probabilities were estimated 
accordingly.

Results
The results of applying the program to the illustrative 
case study data are presented in Figs. 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, and the program settings are 
detailed in Tables 2 and 3.

Measures
Figure 5 displays the plots of:

a)	 Positive predictive value P(D|T ≥ t) of FPG for dia-
betes versus threshold value t (mg/dl) (orange curve). 
The curve is smooth, increasing monotonically, and 

approximately sigmoidal. P(D|T ≥ t) is asymptoti-
cally equal to the prevalence of diabetes for lower val-
ues of t , then rises rapidly to approach an asymptote 
at 1.00.

b)	Posterior probability for diabetes versus FPG 
value t  (mg/dl)  (blue curve). The curve is 
smooth, approximately double sigmoidal. For 
t = 86.7mg/dl, P(D|T = t)  has a minimum value 
of 0.04 . P(D|T = t) , is asymptotically equal to 1.00 
for very low and very high values of t , decreasing 
rapidly to its minimum before increasing rapidly 
again.

Figure 6 presents the plots of:

a)	 The negative predictive value P
(

D|T < t
)

 of FPG 
for diabetes versus threshold value t (mg/dl)  (orange 
curve). The curve is smooth and unimodal, with a max-
imum value of 0.96 at t = 91.0mg/dl . P

(

D|T < t
)

 is 
asymptotically equal to 0.00 for lower values of t , then 
rises rapidly to its maximum and becomes asymptoti-
cally equal to 1.00− v , where v the prevalence of diabe-
tes.

b)	 The posterior probability P
(

D|T = t
)

 for the absence 
of diabetes versus FPG value t (mg/dl)  (blue curve). 
The curve is smooth, unimodal, and approximately 
double sigmoidal. For an FPG value t = 86.7mg/dl , 
P
(

D|T = t
)

 has a maximum value of 0.96 . P
(

D|T = t
)

 
is asymptotically equal to 0.00 for lower and higher val-
ues of t.

Fig. 3  The estimated PDF of the FPG (mg/dl) in diabetic participants, assuming a lognormal distribution and negligible measurement uncertainty, 
and the histogram of the respective NHANES dataset, with the distribution parameters in Table 2
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Additionally:

a)	 For t = 67.0mg/dl , we have P(D|T ≥ t) =
P(D|T = t) = 0.158 = v

b)	 For t < 67.0mg/dl , we have P(D|T ≥ t) < P(D|T = t),
c)	 For t > 67.0mg/dl , we have P(D|T ≥ t) > P(D|T = t).
d)	 For t = 91.0mg/dl , we have P

(

D|T < t
)

=

P
(

D|T = t
)

= 0.96.
e)	 For t < 91.0mg/dl , we have P

(

D|T < t
)

< P
(

D|T = t
)

f)	 For t > 91.0mg/dl , we have P
(

D|T < t
)

> P
(

D|T = t
)

.

As shown in Figs.  7 and 8, for an FPG value 
t = 126.0mg/dl and varying prevalence 0.0 < v < 1.0:

a)	 Both P(D|T ≥ t) and P(D|T = t) curves are smooth, 
starting from a probability asymptotically equal to 0.00 , 
monotonically increasing as prevalence increases.

b)	 Both P
(

D|T < t
)

 and P
(

D|T = t
)

 curves are 
smooth, starting from a probability asymptotically 
equal to 1.00 , monotonically decreasing as prevalence 
increases.

Fig. 4  The estimated PDF of the FPG (mg/dl) in nondiabetic participants, assuming a lognormal distribution and negligible measurement 
uncertainty, and the histogram of the respective NHANES dataset, with the parameters of the distribution in Table 2

Fig. 5  Positive predictive value and posterior probability for diabetes versus FPG value t  (mg/dl) curves plot, with the program’s settings in Table 2



Page 10 of 25Chatzimichail and Hatjimihail ﻿BMC Medical Informatics and Decision Making  (2024) 24:399

c)	 It is observed that P(D|T ≥ t) > P(D|T = t) and 
P
(

D|T < t
)

> P
(

D|T = t
)

.

Figure 9 shows a table of the Bayesian diagnostic meas-
ures for an FPG value t = 126mg/dl , the established 
threshold for the diagnosis of diabetes [42], assuming 
normal, lognormal, and gamma distributions of FPG.

Uncertainty
Figure 10 shows the plots of:

a)	 The standard sampling, measurement, and com-
bined uncertainty of the positive predictive value for 
diabetes versus FPG value t (mg/dl) . The curves are 
smooth and unimodal.

b)	 The standard sampling, measurement, and combined 
uncertainty of the posterior probability for diabetes 
versus FPG value t (mg/dl) . The curves are smooth 
and bimodal.

Figure 11 shows the plots of:

Fig. 6  Negative predictive value for diabetes and posterior probability for the absence of diabetes versus FPG value t  (mg/dl) curves plot, 
with the program’s settings in Table 2

Fig. 7  Positive predictive value and posterior probability for diabetes versus prior probability or prevalence of diabetes v curves plot for an FPG 
value t = 126mg/dl , with the other program settings in Table 2
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a)	 The standard sampling, measurement, and combined 
uncertainty of the negative predictive value for dia-
betes versus FPG value t  (mg/dl) . The curves are 
smooth and unimodal.

b)	 The standard sampling, measurement, and com-
bined uncertainty of the posterior probability for the 
absence of diabetes versus FPG value t (mg/dl) . The 
curves are smooth and bimodal.

In the assessment of the combined standard uncer-
tainty of posterior probability for diabetes uc[P(D|T = t)] 
and for the absence of diabetes uc

[

P
(

D|T = t
)]

:

a)	 They are equal.
b)	 They are substantially affected by the measurement 

uncertainty of FPG.

Fig. 8  Negative predictive value for diabetes and posterior probability for the absence of diabetes versus prior probability or prevalence of diabetes 
v curves plot, for an FPG value t = 126mg/dl , with the other settings of the program in Table 2

Fig. 9  Table of positive predictive value, posterior probability, and negative predictive value for diabetes, and posterior probability for the absence 
of diabetes, for an FPG value t = 126mg/dl , with the other settings of the program in Table 2
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c)	 Two local maxima are observed, corresponding to 
the regions near the steepest segments of the pos-
terior probability curves, which exhibit an approxi-
mately double sigmoidal configuration. The maxima 
are quantitatively approximated as follows:

a.	 At an FPG value of t = 58.5mg/dl , the com-
bined standard uncertainty is 0.898mg/dl , where 
P(D|T = t) = 0.581 and P

(

D|T = t
)

= 0.419.

b.	 At an FPG value of t = 133.1mg/dl , the com-
bined standard uncertainty is 0.190mg/dl , where 
P(D|T = t) = 0.726 and P

(

D|T = t
)

= 0.274.
c.	 The standard combined uncertainty uc[P(D|T ≥ t)] 

of the positive predictive value for diabetes of 
FPG has a maximum value of 0.150mg/dl for 
t = 126.0mg/dl , where P(D|T ≥ t) = 0.758.

d.	 The standard combined uncertainty uc[P
(

D|T < t
)

] 
of the negative predictive value for diabetes has a 
maximum value of 0.900mg/dl for t = 58.5mg/dl , 
where P

(

D|T < t
)

= 0.321.

Fig. 10  Standard sampling, measurement, and combined uncertainty of the positive predictive value and posterior probability for diabetes 
versus FPG value t  (mg/dl) curves plot, with the program’s settings in Table 3

Fig. 11  Standard sampling, measurement, and combined uncertainty of the negative predictive value for diabetes and posterior probability 
for the absence of diabetes versus FPG value t  (mg/dl) curves plot, with the program’s settings in Table 3
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e.	 This pattern indicates heightened uncertainty in 
the regions where the diagnostic measures curves 
have their most pronounced inflections (Figs.  5 
and 6).

In addition:

a)	 For t = 95.7mg/dl, we have uc[P(D|T ≥ t)] =
uc[P(D|T = t)] = 0.013mg/dl , while P(D|T ≥ t) = 0.193 
and P(D|T = t) = 0.049.

b)	 For t = 126.7mg/dl, we have uc[P(D|T ≥ t)] =
uc[P(D|T = t)] = 0.149mg/dl , while P(D|T ≥ t) = 0.774 
and P(D|T = t) = 0.517.

c)	 For 0 < t < 95.7mg/dl and t > 126.7mg/dl we have 
uc[P(D|T ≥ t)] < uc[P(D|T = t)].

d)	 For 95.7mg/dl < t < 126.7 mg/dl we have 
uc[P(D|T ≥ t)] > uc[P(D|T = t)]

e)	 For t = 59.1 mg/dl, we have uc

[

P
(

D|T < t
)]

=

uc

[

P
(

D|T = t
)]

= 0.887mg/dl , while P
(

D|T < t
)

= 0.362 
and P

(

D|T = t
)

= 0.463.
f )	 For t = 103.8 mg/dl, we have uc

[

P
(

D|T < t
)]

=

uc

[

P
(

D|T = t
)]

= 0.015 mg/dl , while P
(

D|T < t
)

= 0.947 
and P

(

D|T = t
)

= 0.921.

Fig. 12  Confidence intervals of the positive predictive value and posterior probability for diabetes versus FPG value t(mg/dl) curves plot, 
with the program’s settings in Table 3

Fig. 13  Confidence intervals of the negative predictive value and posterior probability for the absence of diabetes versus FPG value t  
(mg/dl) curves plot, with the program’s settings in Table 3
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g)	 For 0 < t < 59.1 mg/dl and t > 103.8mg/dl we have 
uc
[

P
(

D|T < t
)]

< uc
[

P
(

D|T = t
)]

.
h)	 For 59.1 mg/dl < t < 103.8 mg/dl we have 

uc
[

P
(

D|T < t
)]

> uc
[

P
(

D|T = t
)]

.

The confidence intervals are affected accordingly (refer 
to Figs. 12 and 13):

a)	 The confidence intervals of Bayesian posterior prob-
ability P(D|T = t) for diabetes (blue curves) are nar-
rower for both lower and higher values of t.

b)	 The confidence intervals of positive predictive value 
P(D|T ≥ t) (orange curves) narrow considerably for 
lower values of t.

c)	 The confidence intervals of Bayesian posterior prob-
ability P

(

D|T = t
)

 for the absence of diabetes  (blue 
curves) are wider at the extremes of the t spectrum.

Fig. 14  Standard sampling, measurement, and combined uncertainty of the positive predictive value and posterior probability for diabetes 
versus prior probability or prevalence of diabetes v curves plot, for an FPG value t = 126mg/dl , with the other settings of the program in Table 3

Fig. 15  Standard sampling, measurement, and combined uncertainty of the negative predictive value for diabetes, and posterior probability 
for the absence of diabetes versus prior probability or prevalence of diabetes v curves plot, for an FPG value t = 126mg/dl , with the other settings 
of the program in Table 3
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d)	 The confidence intervals of negative predictive value 
P
(

D|T < t
)

 (orange curves) are wide at lower t values, 
to become considerably narrower at higher values.

For an FPG value t = 126mg/dl, Figs. 14 and 15 show 
the plots of the standard sampling, measurement, and 
combined uncertainty of positive predictive value, the 
posterior probability for diabetes, the negative predic-
tive value, and the posterior probability for the absence 
of diabetes versus prior probability or prevalence of 
diabetes v . The combined uncertainty of the diagnostic 
measures is substantially affected by the measurement 

uncertainty of FPG. The curves are unimodal, with max-
ima approximately:

a)	 For v = 0.055, uc[P(D|T ≥ t)] = 0.205mg/dl where 
P(D|T ≥ t) = 0.493.

b)	 For v = 0.158, uc[P(D|T = t)] = 0.141mg/dl where 
P(D|T = t) = 0.494.

c)	 For v = 0.631, uc
[

P
(

D|T < t
)]

= 0.023mg/dl 
where P

(

D|T < t
)

= 0.471.
d)	 For v = 0.158, uc

[

P
(

D|T = t
)]

= 0.141mg/dl 
where P

(

D|T = t
)

= 0.506.

Fig. 16  Confidence intervals of the positive predictive value and posterior probability for diabetes versus prior probability or prevalence of diabetes 
v curves plot, for an FPG value t = 126mg/dl , with the other settings of the program in Table 3

Fig. 17  Confidence intervals of the negative predictive value for diabetes and posterior probability for the absence of diabetes versus prior 
probability or prevalence of diabetes v curves plot for an FPG value t = 126mg/dl , with the other settings of the program in Table 3
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The local maxima indicate heightened uncertainty in 
regions where the diagnostic measures curves have their 
most pronounced inflections (refer to Figs. 7 and 8).

Additionally:

a)	 For v = 0.173 we have uc[P(D|T ≥ t)] =
uc[P(D|T = t)] = 0.141mg/dl , P(D|T ≥ t) =
0.777mg/dl and P(D|T = t) = 0.521.

b)	 For 0 < v < 0.173 we have uc[P(D|T ≥ t)] >

uc[P(D|T = t)].
c)	 For 0.173 < v < 1.0 we have uc[P(D|T ≥ t)] <

uc[P(D|T = t)].
d)	 For 0 < v < 1.0 we have uc

[

P
(

D|T < t
)]

<

uc

[

P
(

D|T = t
)]

.

Notably, the combined uncertainty of the negative 
predictive value is considerably less than the combined 
uncertainty of the posterior probability for the absence 
of diabetes.

The confidence intervals are adjusted accordingly 
(refer to Figs. 16 and 17):

a)	 The confidence intervals of Bayesian posterior prob-
ability P(D|T = t) for diabetes (Fig. 16, blue curves), 
positive predictive value P(D|T ≥ t) (Fig. 16, orange 
curves), Bayesian posterior probability P

(

D|T = t
)

 
for the absence of diabetes (Fig. 17, blue curves) and 
negative predictive value P

(

D|T < t
)

 (Fig. 17, orange 
curves) are narrowest at both lower and higher prev-
alences.

Fig. 18  Table of the sampling, measurement, and combined uncertainty of the Bayesian diagnostic measures for an FPG value t = 126mg/dl , 
with the other program settings in Table 3

Fig. 19  Table of the confidence intervals of the Bayesian diagnostic measures for an FPG value t = 126mg/dl , with the other settings 
of the program in Table 3
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b)	 The confidence intervals of P(D|T ≥ t) (Fig.  16, 
orange curves) are generally narrower than those of 
P(D|T = t) (Fig. 16, blue curves).

c)	 The confidence intervals of P
(

D|T < t
)

 (Fig.  17, 
orange curves) are considerably narrower than those 
of P

(

D|T = t
)

 (Fig. 17, blue curves).

Figures  18 and 19 present tables of Bayesian diagnos-
tic measures for FPG measurements at the diabetes diag-
nostic threshold t = 126mg/dl , following the American 
Diabetes Association (ADA) guidelines. The standard 
for diagnosing diabetes used in this study is OGTT with 
a 200mg/dl threshold. The limited concordance between 
these two diagnostic thresholds is evident from the point 
estimations and their associated uncertainty. For an FPG 
diagnostic threshold t = 126mg/dl:

a)	 P(D|T ≥ t) = 0.758 , with a confidence interval 
of (0.465− 1.000).

b)	P(D|T = t) = 0.494 , with a confidence interval 
of (0.217− 0.770).

c)	 P
(

D|T < t
)

= 0.890 , with a confidence interval 
of (0.868− 0.912).

d)	P
(

D|T = t
)

= 0.506 , with a confidence interval 
of (0.230− 0.783).

Therefore:

a)	 P(D|T = t) < P(D|T ≥ t)

b)	 The sizes of the confidence intervals of P(D|T ≥ t) 
and P(D|T = t) are comparable.

c)	 There is a considerable overlap between the confi-
dence intervals of P(D|T ≥ t) and P(D|T = t).

d)	P
(

D|T = t
)

< P
(

D|T < t
)

e)	 The size of the confidence interval of P
(

D|T < t
)

 
is considerably less than the size of the confidence 
interval of P

(

D|T = t
)

.
f )	 There is no overlap between the confidence intervals 

of P
(

D|T < t
)

 and P
(

D|T = t
)

.

In addition, the table with the standard uncertainty of 
the Bayesian diagnostic measures of Fig.  18 shows that 
for t = 126mg/dl, measurement uncertainty is the main 
component of their combined uncertainty.

All the figures provided by the program about the illus-
trative case study data are presented in Supplemental file 
IV: BayesianDiagnosticInsightsFigures.pdf.

Table 2  The settings of the program Bayesian Diagnostic Insights 
for Figs. 5, 6, 7, 8 and 9

Units Figures 5- 6 Figures 7- 8 Figure 9

t mg/dl 32.0– 210.0 126.0 126.0

µD mg/dl 120.7 120.7 120.7

σD mg/dl 17.7 17.7 17.7

µ
D

mg/dl 102.6 102.6 102.6

σ
D

mg/dl 10.7 10.7 10.7

v 0.158 0.001-0.999 0.158

dD lognormal lognormal normal
lognormal
gamma

d
D

lognormal lognormal normal
lognormal
gamma

Table 3  The settings of the program Bayesian Diagnostic Insights for Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19

Units Figures 10- 11 Figures 12- 13 Figures 14- 15 Figures 16- 17 Figure 18 Figure 19

p - 0.95 - 0.95 - 0.95

t mg/dl 32.0– 210.0 32.0– 210.0 126.0 126.0 126.0 126.0

mD mg/dl 120.7 120.7 120.7 120.7 120.7 120.7

sD mg/dl 17.7 17.7 17.7 17.7 17.7 17.7

nD 154 154 - - 154 154

m
D

mg/dl 102.6 102.6 102.6 102.6 102.6 102.6

s
D

mg/dl 10.7 10.7 10.7 10.7 10.7 10.7

n
D

822 822 - - 822 822

n 976 976 976 976 976 976

v 0.158 0.158 0.001-0.999 0.001-0.999 0.158 0.158

b0 0.812 0.812 0.812 0.812 0.812 0.812

b1 0.0119 0.0119 0.0119 0.0119 0.0119 0.0119

nU - 1350 - 1350 - 1350

dD lognormal lognormal lognormal lognormal lognormal lognormal

d
D

lognormal lognormal lognormal lognormal lognormal lognormal
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Discussion
There is a persistent need to estimate diagnostic meas-
ures and their uncertainty, especially concerning screen-
ing and diagnostic tests for potentially life-threatening 
diseases. The COVID-19 pandemic has highlighted this 
necessity [43–48].

Traditional diagnostic approaches often rely on fixed 
thresholds, which may overlook certain aspects of dis-
ease pathology. While historically influential, these meth-
ods may lack the comprehensive perspective required 
in modern patient-centered medicine. The continuous 
evolution of disease progression and changing patient 
demographics further complicate the diagnostic process, 
challenging the limits of traditional methods. In this con-
text, Bayesian inference emerges as a viable alternative, 
offering probabilistic assessments tailored to individual 
patient profiles [4, 49]. Bayes’ theorem provides a statisti-
cal framework to update the probability estimate of a dis-
ease as new information or test results become available, 
enabling healthcare professionals to refine disease prob-
ability estimates based on new data and prior knowledge.

We developed the software tool introduced in this 
study to facilitate the application of Bayes’ theorem in 
medical diagnosis. It allows for the exploration and com-
parison of two pairs of Bayesian diagnostic measures for 
screening or diagnostic tests, assuming parametric distri-
butions of the measurements:

a)	 The positive predictive value and the posterior prob-
ability for disease and

b)	 The negative predictive value and the posterior prob-
ability for the absence of disease.

Academic publications that thoroughly explore the sta-
tistical distributions of diagnostic test measurements in 
diseased and nondiseased populations are limited [50]. 
Therefore, exploratory data analysis and fitting of statisti-
cal distributions to diagnostic measurement data may be 
necessary to apply the software tool effectively [51]. Our 
previously developed Bayesian Diagnosis program may be 
helpful in this regard [4].

Our choice of parametric distributions was motivated 
by their broad applicability in modeling medical diagnos-
tic measurements:

a) Normal distribution

	 A normal distribution is suited for data symmet-
ric around the mean, indicating minimal skewness. 
This distribution assumes that data points are equally 
likely to occur on either side of the mean, forming 
the well-known bell curve.

b) Lognormal distribution

	 A lognormal distribution is appropriate for mod-
eling positively skewed data, where the logarithm of 
the variable follows a normal distribution. Defined 
by a location parameter and a scale parameter of the 
underlying normal distribution, it can model data 
that cannot assume negative values and exhibit a long 
right tail, such as many biological measurements.

c) Gamma distribution

	 The gamma distribution is suitable for data with 
varying skewness and kurtosis that a lognormal dis-
tribution cannot adequately model. It is character-
ized by a shape parameter and a scale parameter. 
The flexibility of these parameters allows the gamma 
distribution to model a wide range of data behaviors, 
including varying degrees of skewness and kurtosis.

In our illustrative case study, we implemented an 
empirical Bayesian approach due to several advantages:

a) Adaptability

	 It can adapt to the specific characteristics of the 
dataset, making it more flexible and applicable to 
diverse clinical settings.

b) Robustness

	 Using empirical data to inform the prior miti-
gates the risk of bias introduced by subjective prior 
choices.

c) Computational efficiency

	 Estimating the prior from data reduces the com-
putational burden compared to purely Bayesian 
methods that require specifying and integrating com-
plex prior distributions.

Estimating the uncertainty inherent in diagnostic 
measures is a considerable challenge in medical diagnos-
tics [21, 22, 52]. This challenge is particularly pronounced 
in medical decision-making for potentially life-threaten-
ing conditions. Assessing uncertainty is vital for ensuring 
reliable diagnoses and appropriate clinical interventions. 
Several notable examples of diagnostic measures where 
uncertainty estimation is critical include:

a) Cardiac troponin for diagnosing myocardial 
injury and infarction
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	 Cardiac troponin is a crucial biomarker for diag-
nosing myocardial injury and infarction [53].

b) Natriuretic peptides for diagnosing heart failure

	 Natriuretic peptides, such as B-type natriuretic 
peptide (BNP) and N-terminal pro-b-type natriuretic 
peptide (NT-proBNP), are essential in diagnosing 
heart failure [54].

c) D-dimer for diagnosing thromboembolic events

	 The measurement of D-dimer levels plays a crucial 
role in diagnosing thromboembolic events, such as 
deep vein thrombosis and pulmonary embolism [55].

d) FPG, OGTT, and glycated hemoglobin (HbA1c) for 
diagnosing diabetes

	 Diagnosing diabetes relies on measuring blood 
glucose levels through tests like FPG, OGTT, and 
HbA1c [42].

e) OGTT for diagnosing gestational diabetes

	 OGTT is the standard diagnostic tool for gesta-
tional diabetes and is vital for the health of both the 
mother and the developing fetus [56].

f ) Thyroid stimulating hormone (TSH), free serum 
triiodothyronine (T3), and free serum thyroxine (T4) 
for diagnosing thyroid dysfunction

	 Measurement of thyroid function tests, including 
TSH, free T3, and free T4, is essential for diagnosing 
thyroid dysfunction [57].

Our software allows the estimation and plotting of 
the sampling, measurement, and combined uncertainty 
of Bayesian diagnostic measures and their confidence 
intervals.

Confidence interval plots serve multiple purposes:

a) Precision assessment

	 They provide insights into the precision of prob-
ability estimates at different measurement levels [58].

b) Decision-making support

	 For clinical decision-making, these plots can 
highlight the measurement thresholds where the 

probability for disease shifts significantly, guiding 
interventions or further testing.

c) Epidemiological insights

	 In epidemiological studies, understanding how 
disease probability varies across a population’s meas-
urement spectrum helps identify risk factors and 
inform public health strategies.

Quantifying diagnostic uncertainty is imperative in 
laboratory medicine to define analytical  performance 
specifications, manage quality and risk, and design and 
implement test  accuracy studies [59]. However, despite 
extensive research on Bayesian diagnosis and uncertainty, 
their intersection remains relatively unexplored [60, 61].

The illustrative case study aimed to minimize age-related 
variations in disease prevalence by focusing on individuals 
aged 70 to 80 years. This focus demonstrates the consider-
ations required in modern diagnostics, where factors such 
as age, genetics, and lifestyle choices must be accounted 
for in the diagnostic equation. This case study underscores 
the substantial impact of combined uncertainty on the 
diagnostic process, highlighting the predominant role of 
measurement uncertainty and the challenges in enhanc-
ing diagnostic accuracy. Improving the analytical methods 
of screening and diagnostic tests could enable the medical 
community to achieve more accurate diagnoses, facilitat-
ing more effective and personalized patient care.

A detailed analysis of Figs. 5, 6, 7, 8, 12, 13, 16, and 17 
from the illustrative case study reveals several clinical 
implications:

a)	 Influence of threshold and prevalence on positive pre-
dictive value

	 The positive predictive value P(D|T ≥ t) is highly 
influenced by the chosen threshold and the preva-
lence of diabetes, emphasizing the importance of 
selecting the appropriate cut-off for accurate diagno-
sis.

b)	 Double-threshold pattern in posterior probability
	 The double-threshold pattern observed in the Bayes-

ian posterior probability P(D|T = t) for diabetes 
suggests the need to understand the pathological 
implications of different FPG levels for tailored diag-
nostic strategies.

c)	 Variability in confidence intervals at intermediate 
FPG levels

	 The variability in confidence intervals of both 
P(D|T ≥ t) and P(D|T = t) at intermediate FPG 
levels suggests an increased risk of false positives or 
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false negatives. This variability could result in unnec-
essary treatments or missed diagnoses, highlighting 
the importance of carefully interpreting test results 
within this range.

d)	 Significance of threshold selection for negative predic-
tive value

	 The differing trends in negative predictive value 
P
(

D|T < t
)

 highlight the significance of selecting the 
appropriate threshold for excluding diabetes.

e)	 Unique behavior of posterior probability for absence of 
disease

	 The unique behavior of Bayesian posterior probabil-
ity P

(

D|T = t
)

 for the absence of diabetes at lower 
FPG values, and the variability in its confidence 
intervals at both lower and higher FPG values impact 
diagnostic decisions, necessitating careful interpreta-
tion.

f )	 Robustness of negative predictive value
	 Despite the interpretative challenges of P

(

D|T < t
)

 
at lower FPG values, it is generally more robust than 
P
(

D|T = t
)

 at higher FPG values.
The tables in Figs. 18 and 19:

a)	 Indicate limited concordance between the diabe-
tes classification criteria derived from the OGTT 
and FPG tests, consistent with findings previously 
reported in the literature [62, 63].

b)	 Show that for FPG and diabetes, the point estimation 
of each Bayesian posterior probability is substantially 
less than the respective predictive value.

The discrepancies between FPG and OGTT thresholds 
for diagnosing diabetes highlight the need for a care-
ful and comprehensive approach in clinical practice. By 
implementing combined testing strategies, repeat testing 
protocols, and informed clinical judgment, healthcare 
providers can improve diagnostic accuracy and patient 
outcomes. Further research and patient education are 
also necessary in addressing the challenges posed by the 
limited concordance between these diagnostic methods 
and their considerable uncertainty.

Our approach integrates frequentist methods for 
uncertainty quantification due to their established reli-
ability and ease of implementation in clinical settings. 
This empirical Bayesian framework allows for the prac-
tical application of Bayes’ theorem while leveraging the 
robustness of frequentist techniques for estimating sam-
pling and measurement uncertainty.

Future research should focus on improving the estima-
tions of the uncertainty of Bayesian diagnostic measures 
of different measurands under a diverse array of clinically 
and laboratory-relevant parameter settings. Further-
more, the full implementation of Bayesian methods for all 

aspects of uncertainty quantification could be explored, 
including utilizing Bayesian hierarchical models [7, 64]. 
Additionally, applying Bayes’ factors to compare the evi-
dence provided by different diagnostic measures repre-
sents a promising area for further investigation [65, 66]. 
These advancements could enhance the robustness and 
applicability of Bayesian methods in medical diagnostics, 
overcoming their current limitations [17, 67].

To transition from research to practical application, 
clinical decision analysis, cost-effectiveness studies, and 
research on risk assessment and quality of care, including 
implementing studies, are required [68]. These efforts are 
essential for addressing the complex issues in diagnostic 
medicine and developing new and effective strategies to 
overcome ongoing challenges.

All major general or medical statistical software pack-
ages (JASP® ver. 0.19.1, Mathematica® ver. 14.1, Matlab® 
ver. R2024a, MedCalc® ver. 23.0.2, metRology ver. 1.1-
3, NCSS® ver. 24.0.3, NIST Uncertainty Machine ver. 
1.6.2, OpenBUGS ver. 3.2.3, R ver. 4.4.1, SAS Viya® ver. 
2024.09, SPSS® ver. 30.0.0, Stan ver. 2.35, Stata® ver. 
19, and UQLab ver. 2.0) include routines for calculat-
ing and plotting various diagnostic measures and their 
confidence intervals. However, the program presented 
in this work provides 34 types of plots and 16 types of 
comprehensive tables of the four Bayesian diagnostic 
measures, their uncertainty, and the associated confi-
dence intervals (Fig. 1), many of which are novel. To the 
best of our knowledge, neither the programs mentioned 
above, nor any other software offers this extensive range 
of plots and tables without requiring advanced statistical 
programming.

The program complements our previously published 
tools for exploring diagnostic measures and posterior 
probability for disease and their uncertainty [4, 21, 22, 
69], facilitating their comparison.

Limitations of the program
This program’s limitations, which provide paths for fur-
ther research, include:

a)	 Underlying assumptions

a.	 Existence of "gold standards" in diagnostics: The 
program assumes the availability of a "gold stand-
ard" for disease classification. Without a "gold 
standard", alternative approaches like latent class 
models or expert consensus methods may be 
necessary [70–73].

b.	 Assumption of specific distributions: The tool 
assumes that the measurements or their transfor-
mations follow normal, lognormal, or gamma dis-
tributions. While these distributions are often used 
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in biomedical data, they may not accurately repre-
sent the underlying data characteristics. Literature 
on reference intervals, diagnostic thresholds, and 
clinical decision limits provides alternative distri-
bution models that could be considered [74–78].

c.	 Assumption of bimodality: The program generally 
accepts that the measurements are bimodally dis-
tributed, corresponding to diseased and nondiseased 
populations. However, in some cases, an unimodal 
distribution might be more appropriate [79, 80].

b)	 Approximations used for the estimations

a.	 Uncertainty approximation in disease prevalence: 
The uncertainty associated with a disease’s preva-
lence is approximated using the Agresti–Coull-
adjusted Wald interval. Although this method is 
widely used, more accurate techniques are avail-
able, especially for small sample sizes or extreme 
probabilities [81].

b.	 Sampling uncertainty approximations: The pro-
gram approximations of the sampling uncertainty 
for sample means and standard deviations may be 
less reliable for small sample sizes or when the data 
exhibit significant skewness, as is often the case 
with lognormal and gamma distributions [82, 83].

c.	 First-order Taylor series approximations: The pro-
gram employs first-order Taylor series approxi-
mations for uncertainty propagation. While this 
method simplifies calculations, it may not capture 
the complexity of uncertainty in nonlinear functions. 
Higher-order approximations or Monte Carlo simu-
lations could provide more accurate results [24, 84].

d.	 Confidence intervals based on the t-distribution: 
Confidence intervals are derived using the t-dis-
tribution, which, despite the high relative uncer-
tainty [85], is a practical choice in selected sce-
narios, particularly in metrology [7, 17, 67, 86]. 
Alternatives like credible intervals in a Bayesian 
framework could provide more accurate uncer-
tainty quantification of nonlinear functions, espe-
cially for small samples.

e.	 Truncation to the [0, 1]  range: Truncation of the 
estimated standard uncertainty and the confi-
dence intervals to the [0, 1]  range is implemented 
since probabilities cannot logically assume values 
less than zero or greater than one. However, this 
approach may distort the uncertainty representa-
tion. Quantile-derived credible intervals inherently 
avoid truncation by constructing intervals within 
the [0, 1] range.

While addressing these limitations would consider-
ably increase computational complexity, they represent 
critical areas for future enhancement [84, 87]. We should, 
however, keep in mind that "all models will be based on 
assumptions and can only approach complex reality" [88], 
as "all models are wrong, but some models are useful" [89].

Limitations of the case study
The primary limitations of the case study are:

a)	 Dependence on the OGTT as the reference method 
for diagnosing diabetes mellitus, despite various fac-
tors affecting glucose tolerance [90–98].

b)	 Approximation of the FPG measurements distribu-
tions from NHANES datasets by lognormal distribu-
tions.

c)	 The implied assumption of simple random sampling.

Conclusion
Bayesian Diagnostic Insights provides modules for esti-
mating, visualizing, and comparing Bayesian diagnostic 
measures, including their associated uncertainty. Explor-
ing the uncertainty of disease probability estimates can 
assist in the clinical decision-making process. The illus-
trative case study using FPG for diabetes diagnosis dem-
onstrates the impact of measurement uncertainty on 
diagnostic measures, highlighting its relevance in clini-
cal and laboratory practices. While the software offers a 
framework for applying Bayes’ theorem in medical diag-
nostics, further research is needed to fully assess its util-
ity in diagnosing various health conditions.

Appendix A
A.1. Notation

A.1.1. Acronyms
CDF: cumulative distribution function
PDF: probability density function 
FPG: fasting plasma glucose
OGTT: oral glucose tolerance test
QC: quality control
NHANES: National Health and Nutrition Examination 

Survey
A.1.2. Abbreviations
D : disease
D : absence of disease
T  : diagnostic test result
A.1.3. Parameters
t : diagnostic threshold
µD : mean of the measurements of the diseased 

population
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σD : standard deviation of the measurements of the dis-
eased population
dD : distribution of the measurements of the diseased 

population
µD : mean of the measurements of the nondiseased 

population
σD : standard deviation of the measurements of the 

nondiseased population
dD : distribution of the measurements of the nondis-

eased population
nD : size of the diseased population sample
mD : mean of the measurements of the diseased popula-

tion sample
sD : standard deviation of the measurements of the dis-

eased population sample
nD : size of the nondiseased population sample
mD : mean of the measurements of the nondiseased 

population sample
sD : standard deviation of the measurements of the 

nondiseased population sample
v : prior probability for disease or prevalence rate
nU : number of QC measurements
b0 : constant contribution to measurement uncertainty
b1 : measurement uncertainty proportionality constant
p : confidence level
θ : Parameter vector
A.1.4. Bayesian Diagnostic Measures
P(D|T ≥ t) : positive predictive value
P
(

D|T < t
)

 : negative predictive value
P(D|T = t) : posterior probability for disease
P
(

D|T = t
)

 : posterior probability for the absence of 
disease

A.1.5. Functions
f (x) : probability density function
F(x) : cumulative distribution function
um(x) : standard measurement uncertainty
us(x) : standard sampling uncertainty
luc(x) : standard combined uncertainty
lνeff (x) : effective degrees of freedom
inf (f ) : lower bound of f
sup(f ) : upper bound of f
A.2. Input
A.2.1. Range of input parameters
t :maximum(0,minimum

(

m
D
− 5s

D
,mD − 5s

D

)

)

−maximum(m
D
+ 5s

D
,mD + 5s

D
)

 

nD : 2 – 10,000
mD : 0.1 – 10,000
sD : 0.01 – 1,000
nD : 2 – 10,000
mD : 0.1 – 10,000
sD : 0.01 – 1,000
v : 0.001 – 0.999
nU : 20 – 10,000

b0 : 0 – σD
b1 : 0 – 0.1000
p : 0.900 – 0.999
t,mD, sD,mD, and sD are defined in arbitrary units.
A.2.2. Additional input options
A.2.2.1. Plots
Users can select between an extended and limited plot 

range.
A.2.2.2.2. Tables
Users can define the number of decimal digits for 

results, ranging from 1 to 10.
A.3. Software availability and requirements
Program name: Bayesian Diagnostic Insights
Version: 2.1.0
Project home page:https://​www.​hcsl.​com/​Tools/​Bayes​

ianDi​agnos​ticIn​sights/ (accessed on October 4, 2024)
Program source: BayesianDiagnosticInsights.nb. Avail-

able at: https://​www.​hcsl.​com/​Tools/​Bayes​ianDi​agnos​
ticIn​sights/​Bayes​ianDi​agnos​ticIn​sights.​nb (accessed on 
October 4, 2024).

Operating systems: Microsoft Windows 10+, Linux 
3.15+, Apple macOS 11+

Programming language: Wolfram Language
Other software requirements: To run the program and 

read the BayesianDiagnosticInsightsCalculations.nb file 
Wolfram Player® ver. 14.0+ is required, freely available at 
https://​www.​wolfr​am.​com/​player/ (accessed on Septem-
ber 23, 2024) or Wolfram Mathematica® ver. 14.0+.

System requirements: Intel® i9™ or equivalent CPU 
and 32 GB of RAM

License: Attri​butio​n—Nonco​mmerc​ial—Share​Alike​ 4.​0 
Inter​natio​nal Creat​ive Commo​ns License

A.4. A note about the program controls
The program features an intuitive tabbed user inter-

face to streamline user interaction and facilitate effortless 
navigation across multiple modules and submodules.

Users may define the numerical settings with menus or 
sliders. Sliders are finely manipulated by pressing the alt 
or opt key while dragging the mouse. Pressing the shift or 
ctrl keys can even more finely manipulate them.

Dragging with the mouse while pressing the ctrl, alt, or 
opt keys zooms plots in or out. When the mouse cursor 
is positioned over a point on a curve in a plot, the coor-
dinates of that point are displayed, and vertical drop lines 
are drawn to the respective axes.
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