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Abstract 

Background Recently, machine learning (ML), deep learning (DL), and natural language processing (NLP) have pro‑
vided promising results in the free‑form radiological reports’ classification in the respective medical domain. In order 
to classify radiological reports properly, a high‑quality annotated and curated dataset is required. Currently, no pub‑
licly available breast imaging‑based radiological dataset exists for the classification of Breast Imaging Reporting 
and Data System (BI‑RADS) categories and breast density scores, as characterized by the American College of Radiol‑
ogy (ACR). To tackle this problem, we construct and annotate a breast imaging‑based radiological reports dataset 
and its benchmark results. 

The dataset was originally in Spanish. Board‑certified radiologists collected and annotated it according to the BI‑
RADS lexicon and categories at the Breast Radiology department, TecSalud Hospitals Monterrey, Mexico. Initially, it 
was translated into English language using Google Translate. Afterwards, it was preprocessed by removing dupli‑
cates and missing values. After preprocessing, the final dataset consists of 5046 unique reports from 5046 patients 
with an average age of 53 years and 100% women. Furthermore, we used word‑level NLP‑based embedding tech‑
niques, term frequency‑inverse document frequency (TF‑IDF) and word2vec to extract semantic and syntactic 
information. We also compared the performance of ML, DL and large language models (LLMs) classifiers for BI‑RADS 
category classification.

Results The final breast imaging‑based radiological reports dataset contains 5046 unique reports. We compared 
K‑Nearest Neighbour (KNN), Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), Adaptive Boosting 
(AdaBoost), Gradient‑Boosting (GB), Extreme Gradient Boosting (XGB), Long Short‑Term Memory (LSTM), Bidirectional 
Encoder Representations from Transformers (BERT) and Biomedical Generative Pre‑trained Transformer (BioGPT) 
classifiers. It is observed that the BioGPT classifier with preprocessed data performed 6% better with a mean sensitiv‑
ity of 0.60 (95% confidence interval (CI), 0.391‑0.812) compared to the second best performing classifier BERT, which 
achieved mean sensitivity of 0.54 (95% CI, 0.477‑0.607).
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Conclusion In this work, we propose a curated and annotated benchmark dataset that can be used for BI‑RADS 
and breast density category classification. We also provide baseline results of most ML, DL and LLMs models for BI‑
RADS classification that can be used as a starting point for future investigation. The main objective of this investiga‑
tion is to provide a repository for the investigators who wish to enter the field to push the boundaries further.

Keywords BI‑RADS classification, Breast radiological reports, TF‑IDF, Word2vec, NLP, ML

Introduction
Breast cancer is the leading type of cancer diagnosed in 
women worldwide [1]. It poses a significant public health 
concern and carries a substantial economic burden. Early 
breast cancer diagnosis is widely recognized as a criti-
cal factor in reducing mortality rates [2]. Mammography 
screening is a recommended method for the early detec-
tion of breast cancer in average-risk women [3, 4]. To 
standardize terminology and categorize results for each 
breast imaging modality (i.e., mammography, ultrasound, 
MRI, and DBT), the ACR developed the BI-RADS. This 
system consists of seven categories, ranging from (0 
through 6), where 0 is inconclusive, 1 is negative, 2 is 
benign, 3 is probably benign, 4 is suspicious, 5 is highly 
suggestive of malignancy, and 6 is known biopsy-proven 
malignancy. In addition to clinical settings, the BI-RADS 
system is a quality assurance tool in research [5].

The manual method is the state-of-the-art (SOTA) of 
extracting information from free text, which is costly, 
error-prone, and time-consuming, especially when deal-
ing with large datasets. Free-form text is a way of writ-
ing radiology reports without a template, which can be 
more expressive and efficient but also more challenging 
to standardize and interpret [6–8]. To overcome these 
challenges, different NLP methods have been devel-
oped. These methods have revealed promising results in 
extracting crucial information from radiological reports, 
enabling easy access to appropriate information to be 
analyzed for various clinical applications [9–11].

Recently, there has been a great interest in using AI 
algorithms to increase the accuracy of BI-RADS pre-
diction from breast imaging-based radiological reports 
[12–17]. Nonetheless, the development and evaluation of 
such AI algorithms require quality and large-scale data-
sets, including radiological reports, that are very rare. 
Therefore, we are annotating and releasing a novel data-
set. This work presents a new dataset on breast imaging-
based radiological reports and its baselines. The dataset 
contains over 5,000 radiological reports from 2D mam-
mography, 3D mammography, and breast ultrasound 
(US). The data was collected from TecSalud Hospitals 
(Monterrey, Mexico). The dataset was translated into 
English from Spanish and preprocessing techniques were 
applied to remove the duplicates and missing values 
with the consultation of radiologists. We tried different 

word embedding techniques to vectorize the radiologi-
cal reports in order to extract the syntactic and seman-
tic meaning that is subsequently helpful for BIRADS 
classification. We also used different ML, DL and LLMs 
architectures to provide baselines for classifying BI-
RADS. This dataset and baselines can serve as a valuable 
resource for researchers working on AI algorithms for 
breast imaging-based radiological reports and can con-
tribute to enhancing the accuracy and efficacy of breast 
cancer diagnosis.

Methods
Breast imaging is the angular stone for early detection 
and diagnosis of breast cancer and other breast-related 
conditions [4, 18]. Currently, the reporting system for 
breast imaging studies differs significantly among radi-
ologists and institutions and is predominantly based on 
traditional free-text reporting [19]. However, structured 
reporting is being promoted to improve reporting in 
radiology, which would benefit radiological, clinical prac-
tice, and data mining in an ongoing project. Meanwhile, 
we have substantial pre-existing data that requires retro-
spective analysis. To address this issue, the ACR devel-
oped the BI-RADS, a standardized system for describing 
and communicating breast imaging results [20]. The BI-
RADS provides a common language and a classification 
scheme for mammography, ultrasound, MRI, and DBT 
of the breast, as well as guidance for follow-up and out-
come monitoring. The BI-RADS also enables radiologists 
to perform quality assurance and improvement through 
medical audits and data analysis.

This paper presents a new breast imaging-based radio-
logical reports dataset that follows the BI-RADS frame-
work and covers multiple imaging modalities. Our 
dataset contains over 5,000 radiology reports from dif-
ferent patients, annotated by board-certified radiologists 
according to the BI-RADS lexicon and categories [21, 22]. 
The BI-RADS category 0 was assigned when additional 
evaluation was required. The BI-RADS category 1, com-
monly known as negative, was assigned when there was 
no evidence of malignancy in either breast, and they are 
symmetrical with no masses, architectural distortion, 
or suspicious calcifications. The BI-RADS category 2, 
i,e benign, was assigned when a benign finding did not 
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require further evaluation or follow-up, such as a sim-
ple cyst, fibroadenoma, intramammary lymph node, or 
benign calcifications. The BI-RADS category 3 (prob-
ably benign) was assigned when there was less than a 2% 
chance of being malignant and can be safely monitored 
with short-interval follow-up imaging, such as a prob-
ably benign mass, focal asymmetry, or clustered micro-
cysts. The BI-RADS category 4 (suspicious) was assigned 
when there was a 2-94% chance of being malignant, and 
biopsy should be considered, such as a spiculated mass, 
architectural distortion, or suspicious calcifications. The 
BI-RADS category 5 (highly suggestive of malignancy) 
was assigned when there was a chance of greater than 
95% of being malignant and appropriate action should be 
taken. The BI-RADS category 6 (known biopsy-proven 
malignancy) was assigned when there was histologi-
cal confirmation of malignancy in the breast before any 
treatment had been initiated [23, 24]. We use our dataset 
to benchmark several ML, DL and LLMs methods on the 
BI-RADS correct category classification. We also provide 
clinical applications and insights based on our dataset 
and results. This dataset can be requested to use.

We introduce a novel and comprehensive breast 
imaging-based radiological reports dataset that adheres 
to the BI-RADS standard and covers multiple modali-
ties reports. Using our dataset, we propose SOTA NLP 
pipeline-based ML, DL and LLMs benchmarks on the BI-
RADS correct category classification, demonstrating its 
potential for advancing research in both domains.

Data
The dataset was collected from the Breast Radiology 
department, TecSalud hospitals (Monterrey, Mexico). It 
was approved by the ethical committee to give access to 
the data upon reasonable request. This dataset comprises 
digital mammography (DM), digital breast tomosynthe-
sis (DBT), and breast ultrasound (US) based radiological 
reports. All the reports were anonymized. These reports 

were originally in Spanish and collected from January to 
December 2014. The reports were then translated online 
using Google Translate and were verified by the radi-
ologist, who is better aware of English and Spanish. The 
reports were created and evaluated by (n=2) trained radi-
ologists. There were (n=7904) actual entries in our data-
set. However, after preprocessing, i.e., removing reports 
with missing values, duplicate records, and BI-RADS cat-
egories (0-inconclusive) and (6-biopsy proven), we were 
able to utilize 5,046 unique reports with an average age 
of 53 years and 5046 (100.0%) women from 7,904 reports 
for the final model building and evaluation. The overview 
of the dataset is given in Table 1.

Preprocessing
Our original dataset was in the Spanish language. The 
dataset was translated online using Google Translate. The 
single entry of the patient consists of a brief clinical indi-
cation of the study, and personal risk history, both imag-
ing description, findings, and diagnostic impression. As 
shown in Fig.  1, each original DM, DBT, and breast US 
report consists of multiple paragraphs. We developed an 
NLP-based pipeline to extract associated imaging fea-
tures for the final BI-RADS category classification. The 
pipeline consists of various analysis filters for different 
clinical and linguistics tasks, like sentence segmenta-
tion, sentence detection, tokenization, detection of con-
cepts, and data normalization. The pipeline is described 
in Fig. 2.

Data curation
Data curation was conducted on the TECRR dataset to 
ensure its quality and suitability for analysis. The process 
involved several key steps: first, all references to doctors 
were removed to maintain privacy and confidentiality. 
Duplicated structured radiological reports were then iden-
tified and eliminated to prevent redundant informa-
tion. Dates within the reports were removed to minimize 

Fig. 1 Breast imaging based radiological report (This is a fabricated report for demonstration purpose)
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potential bias related to temporal factors, and any non-
radiological information was excluded to focus solely on 
the relevant radiological data. Additionally, density scores 
and BI-RADS scores were standardized across the data-
set to enhance comparability and consistency. Finally, the 
structured reports were segmented into sections, including 
the main body, patient description, and report conclusion.

Word embedding techniques
We employed word-level NLP-based embedding tech-
niques such as TF-IDF [25] and word2vec [26] to extract 
semantic and syntactic information from the free-form 
text of radiological reports. TF-IDF is a statistical meas-
ure that evaluates the importance of words based on 
their frequency in a document and their rarity across the 
entire corpus. It assigns higher weights to words that fre-
quently occur in a document but are rare in the corpus. 
The formula for TF-IDF is:

where w is a word, d is a document, and D is the collec-
tion of documents. The term frequency, tf (w, d) , repre-
sents how often word w appears in document d , while the 
inverse document frequency, idf (w,D) , is calculated as:

(1)tf-idf(w, d,D) = tf(w, d)× idf(w,D)

Here, |D| is the total number of documents, and 
|d ∈ D : w ∈ d| represents the number of documents that 
contain the wordw . TF-IDF increases for words that appear 
frequently in a specific document but are rare across the 
collection, thus emphasizing distinctive terms. Word2vec 
[26], on the other hand, is a neural network-based model 
that generates word embeddings-vector representations of 
words that capture both semantic and syntactic relation-
ships. Word2vec uses either a skip-gram model, which pre-
dicts context words given a target word, or a continuous 
bag-of-words (CBOW) model, which predicts the target 
word from its surrounding context. The word2vec skip-
gram objective is to maximize the likelihood of context 
words given a target word:

where w is the target word, c is a context word, D is the 
vocabulary, and vTwvc represents the dot product of 
the word embeddings of w and c . This formula can be 

(2)idf(w,D) = log
|D|

|d ∈ D : w ∈ d|

(3)word2vec(w, c,D) = log
exp vTwvc

w′∈D exp vTw′vc

Fig. 2 NLP workflow for preprocessing reports and BI‑RADS classification
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interpreted as the probability of observing a context word 
given a target word, normalized by a softmax function 
over the vocabulary. The word embeddings are learned 
by maximizing this probability over all word-context 
pairs in the corpus.

State‑of‑the‑art models
We compared the performance of ML, DL and LLMs 
models. The ML models are KNN, SVM, NB, RF, Ada-
Boost, GB and XGBoost; the DL model is LSTM [27]; 
and the LLMs models are BERT [28] and BioGPT [29]. 
LSTM networks capture long-term dependencies in 
sequential data, making them suitable for modelling tem-
poral patterns in radiological reports. BERT, particularly 
the “bert-base-uncased” model, leverages a bidirectional 
transformer architecture to capture context from both 
directions in a sentence. This version of BERT consists of 
12 layers, 12 attention heads, and approximately 110 mil-
lion parameters, focusing on uncased English text. Fur-
thermore, BioGPT, a specialized transformer model for 
biomedical text generation, is employed for tasks such as 
medical report generation and knowledge extraction. The 
tokenization for BioGPT is handled using the BioGPT 
Tokenizer, which processes biomedical vocabulary and 
ensures precise tokenization of medical terminology. 
These advanced models capture more complex contex-
tual and semantic relationships than traditional methods, 
enhancing tasks such as information retrieval, classifica-
tion, and summarization of radiological reports. These 
methods enable the extraction of key information from 
the often unstructured text of radiological reports, which 
may contain specialized medical terminology [30]. The 
semantic relationships between words, captured by these 
embeddings, facilitate tasks such as information retrieval, 
classification, and summarization of radiological reports 
[31].

Evaluation metrics
We report sensitivity and accuracy with 95% CI. A 95% 
CI indicates that the model is confident that, in 95 out of 
100 cases, the true prediction will fall within the upper 
and lower bounds of the interval. Sensitivity or recall is 
the proportion of true positives among all positive cases. 
Sensitivity is a measure of how well a test can correctly 
identify true positives, i.e., cases of breast cancer. Sensi-
tivity is good for BI-RADS prediction because it can help 
reduce the number of false negatives, i.e., cases of breast 
cancer that are missed by the test. A high sensitivity 
means that the test can capture most of the breast can-
cer cases and avoid unnecessary delays in diagnosis and 
treatment [32]. The formula for the sensitivity is given 
below,

Accuracy measures the total number of correct classifi-
cations divided by the total number of cases. The formula 
is given as follows,

Training and test sets
Our dataset contained 5046 studies from 5046 patients. 
Data were randomly split into training and testing to 
avoid overlap between subjects. The 80% of the data was 
allocated to the training set, while 20% was allocated to 
the testing set. The training set includes 4036 subjects, 
while the remaining data of 1010 subjects was used for 
testing.

Exploratory data analysis
In this work, we applied Exploratory Data Analysis 
(EDA) on dataset of radiological reports from the Breast 
Radiology department, TecSalud hospitals (Monterrey, 
Mexico) database. We used different graphical and statis-
tical tools, like bar graphs, pie charts and word clouding 
methods, to examine the distribution of data set in dif-
ferent ways. The results of EDA provided insights into 
the structure and quality of the data set and the potential 
factors influencing radiological outcomes. The EDA also 
helped us selecting appropriate statistical models and 
hypotheses for further analysis.

To understand the distribution of each BIRADS cat-
egory better, we have shown the BI-RADS distribution 
and percentage in Fig.  3. Moreover, an average number 
of letters and words per BI-RADS distribution is shown 
in Figure. S1 and Figure. S2 (Supplementary material), 
respectively. Furthermore, we used the word clouding 
technique to represent the 100 most common words in 
Fig. 4 in the dataset to understand the data further. Ulti-
mately, in order to get further insights from each BI-
RADS category (1,2,3,4,5), we have shown the frequency 
of the 25 most common words in Figures S3, S4, S5, S6 
and S7 (Supplementary material), respectively.

Results
Evaluation results are presented in Table  2, where we 
report the mean sensitivity and accuracy for each model 
with 95% CI using TF-IDF and word2vec as word embed-
ding techniques on unpreprocessed and preprocessed 
data.

We used TF-IDF and word2vec as a word vectorizer 
to convert text into associated vectors to extract desired 
keywords and embeddings. We applied TF-IDF and 

(4)Sensitivity =
TP

TP + FN

(5)Accuracy =
TP + TN

TP + TN + FP + FN
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word2vec on the data that was preprocessed and the one 
that was not preprocessed. We used mean sensitivity and 
accuracy as evaluation metrics to measure the perfor-
mance across all the models.

The KNN classifier using TF-IDF achieved mean sen-
sitivity and accuracy scores of 0.34 and 0.81, respectively, 
on unprocessed data, and 0.36 and 0.80 on preprocessed 

data. In contrast, using Word2Vec, it achieved 0.33 and 
0.78 on unprocessed data, and 0.30 and 0.78 on preproc-
essed data. The SVM classifier using TF-IDF achieved 
mean sensitivity and accuracy scores of 0.44 and 0.85, 
respectively, on unprocessed data, and 0.42 and 0.85 on 
preprocessed data. When using Word2Vec, it obtained 
0.20 and 0.77 on both unprocessed and preprocessed 

Fig. 3 Overview of the BIRADS percentage in the dataset

Fig. 4 Representation of 100 most common words in our dataset using word clouding
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data. For the NB classifier, using TF-IDF resulted in sen-
sitivity and accuracy scores of 0.20 and 0.78, respectively, 
on unprocessed data, and 0.22 and 0.79 on preprocessed 
data. Using Word2Vec, the scores were 0.20 and 0.76 on 
unprocessed data, and 0.24 and 0.70 on preprocessed 
data.

The RF classifier using TF-IDF achieved mean sensitiv-
ity and accuracy scores of 0.34 and 0.81, respectively, on 
both unprocessed and preprocessed data. With Word-
2Vec, the scores were 0.20 and 0.77, consistent across 
both unprocessed and preprocessed data. Using TF-IDF, 
the AdaBoost classifier achieved sensitivity and accu-
racy scores of 0.33 and 0.41, respectively, on unprocessed 
data, and 0.33 and 0.74 on preprocessed data. When 
using Word2Vec, the scores were 0.33 and 0.65 on unpro-
cessed data, and 0.35 and 0.61 on preprocessed data. The 
GB classifier using TF-IDF achieved mean sensitivity and 
accuracy scores of 0.43 and 0.84, respectively, on unpro-
cessed data, and 0.45 and 0.85 on preprocessed data. 
Using Word2Vec, it achieved 0.30 and 0.79 on unpro-
cessed data, and 0.31 and 0.79 on preprocessed data. 
The XGB classifier using TF-IDF achieved mean sensi-
tivity and accuracy scores of 0.49 and 0.85, respectively, 
on unprocessed data, and 0.52 and 0.86 on preprocessed 
data. Using Word2Vec, it achieved 0.33 and 0.80 on both 
unprocessed and preprocessed data.

The LSTM classifier achieved mean sensitivity and 
accuracy scores of 0.42 and 0.70, respectively, on unpro-
cessed data, and 0.53 and 0.78 on preprocessed data. 
The BERT classifier achieved scores of 0.40 and 0.72 on 
unprocessed data, and 0.54 and 0.79 on preprocessed 
data. Finally, the BioGPT classifier achieved mean sen-
sitivity and accuracy scores of 0.45 and 0.74 on unpro-
cessed data, and 0.60 and 0.80 on preprocessed data.

From Table 2, it can be observed that BioGPT performs 
the best among all models on BI-RADS correct category 
classification in terms of mean sensitivity and XGB per-
formed best in terms of accuracy. On the other hand, 
SVM and RF performed worse than any other model.

Discussion
Numerous studies have been conducted on informa-
tion extraction from radiological reports [30, 33–41] but 
only a few studies have released datasets on radiological 
reports and baselines [42–46]. Furthermore, a few studies 
have focused on structured information extraction from 
breast imaging-based radiological reports [12, 47–49], 
however, the data has not been released publicly. It has 
been shown in the literature that AI based breast cancer 
diagnosis can be greatly enhanced by the information 
extracted from the patient radiological reports, however, 
lack of public dataset has restricted further research into 
this domain. In order to address this gap, we have curated 
and make the radiological report based dataset available 
to drive further research in this direction.

In this work, we compared ML, DL and LLMs-based 
architectures. We evaluated the model’s performance 
using mean sensitivity and accuracy. We observed that 
the LLM i.e., BioGPT model achieved best mean sensitiv-
ity of 0.60, which is 6% higher than the second best clas-
sifier BERT. In terms of accuracy, XGB performed best 
compared to all other models with an accuracy of 0.86.

In this work, we explored two word embedding tech-
niques with ML-based classifiers to extract relevant 
information. We also limit our work to only extracting 
BI-RADS category classification. In future, we plan to 
extend the dataset and add associated mammography 
images while applying vision-language models to ana-
lyze the performance. Also, we plan to classify various 
other factors necessary for breast cancer diagnosis and 
prognosis, such as benign and malignant cases, age of the 
patient, family history of the cancer, risk of the cancer, 
recurrence, breast density and more.

Our benchmark will help and encourage the scientific 
community to work on extracting relevant information 
by applying SOTA ML, DL and LLMs architectures that 
will lead to rapid improvement in radiological language 
processing.

Table 1 The dataset comprises data from 5046 female 
participants of Mexican descent. It includes demographic 
details such as age and medical history, including breast 
implant status, prior cancer history, and previous surgeries or 
biopsies. Furthermore, it contains information on family cancer 
history, breast density classifications (A, B, C, D), and BI‑RADS 
assessments across five categories. The dataset also records 
biopsy recommendations and confirmed cancer cases, as well as 
the mean time to a cancer event

Characteristics of dataset

No. of Examples 5046

Sex Women(5046), 100%

Race Mexican Population

Age (Mean, SD, Range) 53, 9.99, 25‑90

Patients Implants No: 4185, Yes: 861

History of Previous Cancer No: 4525, Yes: 521

Previous Surgeries/Biopsies No: 4160, Yes: 886

Family History of Cancer No: 4296, Yes: 750

Breast Density Distribution A: 641, B: 1271, C: 2053, D: 1064

Distribution of BIRADS 1: 117, 2: 3921, 3: 802, 4: 129, 5: 77

Biopsy Recommendation No: 4796, Yes: 250

Patients with Confirmed Cancer 30

Cancer Development in Five Years 61

Mean Time to Cancer Event Mean: 1000.008 Days, SD: 898.91
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Conclusion
In conclusion, we curated and annotated a new breast 
imaging-based radiological reports dataset. This data-
set consists of 5,046 radiological reports. These reports 
are based on mammography, DBT and breast US. We 
also compared the baseline performance of ML, DL and 
LLMs architectures on the dataset. This study used TF-
IDF and word2vec as word embedding techniques. The 
BioGPT classifier with preprocessed text performed 
better with a mean sensitivity of 0.60, compared to all 
the other classifiers using TF-IDF and word2vec word 
embedding techniques. In terms of accuracy, XGB out-
performed all the other classifiers by achieving a score of 
0.86. Our work provides baselines on TECRR dataset for 
the researchers and clinicians for further investigation. 
It can improve the classification accuracy using different 
ML, DL and LLMs based techniques.
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RF 0.20 0.20 0.77 0.77 0.34 0.36 0.81 0.81

(0.122‑0.278) (0.122‑0.278) (0.750‑0.801) (0.750‑0.801) (0.247‑0.433) (0.266‑0.454) (0.787‑0.835) (0.789‑0.837)

AdaBoost 0.33 0.35 0.65 0.61 0.33 0.33 0.41 0.74

(0.238‑0.422) (0.256‑0.443) (0.627‑0.686) (0.589‑0.649) (0.238‑0.422) ( 0.238‑0.422) (0.389‑0.450) (0.715‑0.769)

GB 0.30 0.31 0.79 0.79 0.43 0.45 0.84 0.85

(0.210‑0.389) (0.219‑0.400) (0.773‑0.823) (0.774‑0.824) (0.333‑0.527) (0.352‑0.547) (0.818‑0.863) (0.829‑0.872)

XGB 0.33 0.33 0.80 0.80 0.49 0.52 0.85 0.86

(0.238‑0.422) (0.238‑0.422) (0.778‑0.828) (0.784‑0.832) (0.392‑0.588) (0.422‑0.618) (0.838‑0.881) (0.840‑0.883)

Deep learning methods

Model U‑Data(mSen) P‑Data(mSen) U‑Data(Accuracy) P‑Data(Accuracy)

LSTM 0.42 0.53 0.70 0.78

(0.346‑0.490) (0.455‑0.619) (0.673‑0.730) (0.753‑0.805)

BERT 0.40 0.54 0.72 0.79

(0.331‑0.459) (0.477‑0.607) (0.692‑0.746) (0.768‑0.819)

BioGPT 0.45 0.60 0.74 0.80

(0.235‑0.669) (0.391‑0.811) (0.710‑0.764) (0.772‑0.822)

https://doi.org/10.1186/s12911-024-02717-7
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