
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:   //creativecommo ns.  org/lice ns e s/by/4.0/.

Lee et al. BMC Medical Informatics and Decision Making          (2024) 24:366 
https://doi.org/10.1186/s12911-024-02709-7

BMC Medical Informatics 
and Decision Making

*Correspondence:
Jaeyong Shin
drshin@yuhs.ac
Belong Cho
belong@snu.ac.kr
1Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, 
Republic of Korea
2Department of Human Systems Medicine, Seoul National University 
College of Medicine, Seoul, Republic of Korea
3Department of Bigdata AI Management Information, Seoul National 
University of Science and Technology, Seoul, Republic of Korea

4Department of Preventive Medicine and Public Health, Yonsei University 
College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul  
03722, Republic of Korea
5Institute of Health Services Research, Yonsei University College of 
Medicine, Seoul, Korea
6Department of Family Medicine, Seoul National University Hospital, 
Seoul, Republic of Korea
7Department of Family Medicine, Seoul National University College of 
Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea

Abstract
Background Owing to the rapid growth in the popularity of Large Language Models (LLMs), various performance 
evaluation studies have been conducted to confirm their applicability in the medical field. However, there is still no 
clear framework for evaluating LLMs.

Objective This study reviews studies on LLM evaluations in the medical field and analyzes the research methods 
used in these studies. It aims to provide a reference for future researchers designing LLM studies.

Methods & materials We conducted a scoping review of three databases (PubMed, Embase, and MEDLINE) to 
identify LLM-related articles published between January 1, 2023, and September 30, 2023. We analyzed the types 
of methods, number of questions (queries), evaluators, repeat measurements, additional analysis methods, use of 
prompt engineering, and metrics other than accuracy.

Results A total of 142 articles met the inclusion criteria. LLM evaluation was primarily categorized as either providing 
test examinations (n = 53, 37.3%) or being evaluated by a medical professional (n = 80, 56.3%), with some hybrid cases 
(n = 5, 3.5%) or a combination of the two (n = 4, 2.8%). Most studies had 100 or fewer questions (n = 18, 29.0%), 15 
(24.2%) performed repeated measurements, 18 (29.0%) performed additional analyses, and 8 (12.9%) used prompt 
engineering. For medical assessment, most studies used 50 or fewer queries (n = 54, 64.3%), had two evaluators 
(n = 43, 48.3%), and 14 (14.7%) used prompt engineering.

Conclusions More research is required regarding the application of LLMs in healthcare. Although previous 
studies have evaluated performance, future studies will likely focus on improving performance. A well-structured 
methodology is required for these studies to be conducted systematically.
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Introduction
A Large Language Model (LLM) is a type of artificial 
intelligence (AI) designed to mimic human language 
processing using deep learning techniques trained on 
large amounts of textual data from various sources [1]. 
The rapid increase in the popularity of LLMs has led to 
numerous attempts to utilize them across different fields, 
with many demonstrating a significant level of compe-
tence [2]. LLMs are designed to respond to a wide range 
of topics, making them helpful tools for customer service, 
chatbots, and many other applications, hence the keen 
interest in their use in the medical field [3–6].

Several LLMs are currently accessible to researchers, 
each with unique features. OpenAI’s ChatGPT is widely 
used for its strong language understanding and genera-
tion capabilities [7]. Google’s Bard leverages vast search 
data to provide factual and accurate information [8]. 
Microsoft’s Bing Chat integrates chat with search for 
real-time information access [9]. In contrast, open-source 
LLMs like Meta’s LLaMA and Stanford’s Alpaca allow for 
customization and experimentation. While commercial 
models offer ease of use and technical support, open-
source models provide flexibility and cost-effectiveness.

Various studies have been conducted in the medical 
field to verify the performance of LLMs. The following 
topics are being studied for the application of LLMs: (1) 
diagnostic and clinical decision support, (2) automation 
of medical records, (3) patient education and support, 
and (4) medical research and data analytics. LLMs can 
be utilized in diagnostic and clinical decision support to 
suggest possible diagnoses or treatment options based 
on a patient’s symptoms, medical history, and test results 
[10]. For medical record automation, LLMs have been 
studied for their potential to automatically organize and 
document patient encounters or generate explanatory 
materials to provide patients with information from their 
medical records [11]. Additionally, LLMs can enhance 
patient health literacy by explaining diseases, treatment 
options, and medication instructions in easy-to-under-
stand language [12].

Only when LLMs perform at a human-like level in 
medical knowledge and reasoning assessments can users 
have sufficient confidence in their responses, and LLMs 
are useful in medical settings [13–15]. A framework 
has been proposed for LLM evaluation [16]. However, 
no clear methodology exists for evaluating LLMs in the 
medical field. In this study, we review the evaluation of 
LLMs in medicine. Based on these findings, we discuss 
essential points to consider when evaluating LLMs in 
medical applications.

Methods & materials
Study design
A scoping review aims to systematically synthesize 
knowledge within a defined area and explore and map 
key concepts, available evidence, and shortcomings of 
the existing research; it was determined to be the most 
appropriate method for this study [17, 18]. We con-
sidered several methodological approaches, including 
a systematic and narrative review. Systematic reviews 
focus narrowly on specific questions and similar method-
ologies, making them unsuitable for emerging technical 
areas with diverse evidence [19]. Narrative reviews offer 
the flexibility to synthesize diverse literature but lack the 
systematic rigor required to comprehensively map the 
research landscape and identify gaps in the literature 
[20]. The study followed the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses extension for 
Scoping Reviews (PRISMA-ScR) [21].

Search strategy
We conducted a preliminary review to establish the 
search strategies. Initially, we searched the PubMed 
database using the keyword “Large Language Model*.” 
PubMed was utilized in the preliminary review of this 
study because it is a commonly suggested database to use 
when conducting a systematic review. A total of 498 arti-
cles were retrieved, and the review found that 73 articles 
that evaluated LLMs were identified.

We found that papers assessing LLMs tended to use 
keywords such as “evaluation, assessment, performance, 
and comparison.” In addition, we included commercially 
available programs such as ChatGPT, Google’s Bard, 
and Microsoft’s Bing Chat in our search strategy. Given 
that the terminology for LLM gained prominence after 
2023, we focused our search on the literature published 
between January 1, 2023, and September 30, 2023. We 
opted not to utilize MeSH terms, as the term LLM has 
only been in full use since early 2023; therefore, using 
MeSH terms may not reflect the latest research trends. 
After establishing the search strategy, we systematically 
searched MEDLINE, PubMed, and EMBASE (Fig. 1). The 
final search results were sent to EndNote to remove any 
duplicates. The search strategy used in this study is pre-
sented in Appendix Table 2.

Selecting and screening studies
The screening process comprised two stages. Initially, 
articles were screened for relevance based on the infor-
mation presented in the title and abstract, followed by a 
thorough assessment of inclusion based on the full text. 
Two authors (JB and SK) independently reviewed the 
articles. In cases of disagreement between the review-
ers, a third independent reviewer (JY) was consulted to 
reach a consensus. For studies to be eligible for inclusion, 



Page 3 of 11Lee et al. BMC Medical Informatics and Decision Making          (2024) 24:366 

they had to meet specific criteria, including being writ-
ten in English and addressing the evaluation of LLMs in 
healthcare settings. We excluded publications such as 
conference abstracts, editorials, reviews, research letters, 
letters to the editor, and opinion letters. Articles in the 
pharmacy and dentistry fields were excluded from the 
screening process. A comprehensive list of inclusion and 
exclusion criteria can be found in the appendix.

Extracting and analyzing the data
We summarized information regarding the evaluation 
method, type of LLMs, and medical specialty for the 
studies included in the review.

For test-based evaluation, we analyzed the number of 
questions and repeated measurements, use of prompt 
engineering (e.g., few-shot learning, role-based prompt-
ing), additional analysis, whether the questions were 
analyzed for difficulty, and the primary outcomes. The 
number of repeated measurements refers to adminis-
tering the same prompt more than once to evaluate the 
consistency of the responses generated by the LLMs. In 

prompt engineering, few-shot learning refers to a meth-
odology where a small number of examples are provided 
within a prompt to guide the model in learning pat-
terns and generating correct answers, while role-based 
prompting means designing prompts so that the model 
adopts a specific role when answering. Additional analy-
sis refers to whether further assessments were conducted 
beyond accuracy, including the overall adequacy of logi-
cal reasoning and evidence provided, the frequency of 
hallucinations, and the error types made in incorrect 
responses. For the LLM evaluation by medical profes-
sionals, we analyzed the number of queries, number of 
repeated measurements, number of evaluators, use of 
prompt engineering, evaluation tools and sources, evalu-
ation items, and scales.

In contrast to studies that conducted both test-based 
evaluations and assessments by healthcare professionals, 
some studies removed the selection of test questions and 
had medical professionals evaluate the LLM responses 
directly, a method referred to as a hybrid approach. 
Research that used both methods or a hybrid approach 

Fig. 1 Analysis of evaluation by medical professionals
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was analyzed by including them in test-based evaluations 
and evaluations by medical professionals.

Statistical analysis
We conducted a Kruskal-Wallis test to compare the 
performance differences among the four LLMs (GPT-
3.5, GPT-4, Bing Chat, and Bard). This nonparamet-
ric method was chosen due to the small sample size for 
each model evaluation. Following this, post hoc pairwise 
comparisons were conducted using the Mann-Whitney 
U test with Bonferroni correction applied to account for 
multiple comparisons, identifying which specific pairs 
of models show significant differences. For all statistical 
tests, a significance level of 0.05 was used. The analysis 
was performed using STATA 16 (StataCorp LLC, College 
Station, TX, USA).

Results
Overview
Following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) flowchart (Fig. 1), 
four review steps were performed: identification, screen-
ing, eligibility assessment, and final consensus. The initial 
search retrieved 1,718 unique articles. Automatic dedu-
plication using ENDNOTE removed 894 articles, 38 of 
which were identified as manual duplicates. After review-
ing all the abstracts, 598 (34.8%) were excluded based 
on the exclusion criteria. A total of 188 (10.9%) articles 
underwent a full-text review, of which 46 (2.7%) did not 
meet the inclusion criteria, leaving 142 (8.3%) for final 
inclusion and analysis. The Appendix Tables 8 and 9 pro-
vide data excerpts from the papers.

Characteristics of published literature
The effectiveness of the LLMs was assessed in two ways: 
evaluation based on test examination (n = 53, 37.3%) 

[22–74] and evaluation by medical professionals (n = 80, 
56.3%) [75–154]. Others used a combination of both 
(n = 4, 2.8%) [155–158] or a hybrid approach to evaluate 
the LLMs’ responses to the test examination (n = 5, 3.5%) 
[159–163] (Table 1).

Articles evaluating LLM often used several models 
instead of only one (n = 88, 54%). A total of 218 LLMs 
were used in 142 studies, including this study (Table 2). 
The most common LLM used was the Open AI’s GPT-
3.5 (n = 114, 52.3%), followed by GPT-4 (n = 65, 29.8%). 
Google’s Bard (n = 15, 6.9%) and Microsoft’s Bing Chat 
(n = 12, 5.5%) were the third and fourth most common. 
A few models were developed by fine-tuning the models 
(n = 3, 1.4%).

In terms of medical specialties, internal medicine 
(n = 23, 16.2%) was the most common medical specialty 
to which the LLMs were applied (Table  3), followed by 
radiology (n = 16, 11.3%) and ophthalmology (n = 15, 
10.6%). Regarding Internal Medicine, Cardiovascular 
Disease and Gastroenterology had the highest number 

Table 1 LLMs evaluation methods
Methods (n = 142)

N (%)
Test questions 53 (37.3)
Expert evaluation 80 (56.3)
Hybrid approach 5 (3.5)
Both 4 (2.8)

Table 2 LLMs used in the evaluation
Language Model Expert evaluation Test questions Hybrid approach Both Total
GPT-3.5 61 45 4 4 114 (52.1)
GPT-4 30 34 1 1 66 (30.1)
Bard 8 6 - 1 15 (6.8)
Bing Chat 7 4 - 1 12 (5.5)
ETC (GPT-3, GPT-2) 2 7 - - 9 (4.1)
Fine tuning 3 - - - 3 (1.4)
Total 111 96 5 7 219 (100.0)

Table 3 LLMs used in medical specialties
Medical Specialty (n = 142)

N (%)
Anesthesiology 1 (0.7)
Dermatology 4 (2.8)
Emergency Medicine 3 (2.1)
Family Medicine 1 (0.7)
Internal Medicine 23 (16.2)
Neurological Surgery 5 (3.5)
Obstetrics and Gynecology 6 (4.2)
Ophthalmology 15 (10.6)
Orthopaedic Surgery 9 (6.3)
Otolaryngology – Head and Neck Surgery 7 (4.9)
Pathology 4 (2.8)
Pediatrics 1 (0.7)
Plastic Surgery 4 (2.8)
Psychiatry and Neurology 6 (4.2)
Radiology 16 (11.3)
Surgery 4 (2.8)
Thoracic Surgery 3 (2.1)
Urology 8 (5.6)
General Practice 19 (13.4)
ETC (clinical informatics, nursing) 3 (2.1)
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of LLM evaluation papers (six each). In addition, some 
general practices did not belong to a specific medical 
department (n = 19, 13.4%) and were mainly validated by 
examination. We derived suggestions for systematically 
designing studies evaluating LLMs in healthcare based 
on our findings.

Evaluation based on test examination
Regarding the number of questions used for evaluation, 
less than 100 were the most common (n = 18, 29.0%), fol-
lowed by 200–300 (n = 14, 22.6%), then 100–200 (n = 11, 
17.7%), and 500 or more (n = 11, 17.7%) (Table 4). Regard-
ing repeated measures, about three-quarters of the 
studies did not perform any repeated measures (n = 47, 
75.8%). Five papers (8.1%) did this twice, six papers did 
it three times (9.7%), and four papers did it four or more 
times (6.5%). Eight (12.9%) studies applied prompt engi-
neering to improve the LLM performance. Seven studies 
employed role-based prompting, while one used the few-
shot learning method with examples. Eighteen papers 
(29.0%) conducted additional analyses beyond simply 
measuring correct responses to the questions, and four-
teen papers (14%) conducted analyses based on question 
difficulty.

The performance of LLMs is illustrated in Fig.  2. 
Among the models evaluated, GPT-4 exhibited the high-
est accuracy (mean: 76.47, median: 79.65, SD: 12.57, IQR: 
12.30), while GPT-3.5 (mean: 57.62, median: 57.00, SD: 
13.26, IQR: 16.25) and Bing Chat (mean: 57.61, median: 
68.33, SD: 21.10, IQR: 18.95) demonstrated lower accu-
racy scores. Bard had the lowest accuracy (mean: 49.63, 
median: 46.67, SD: 14.94, IQR: 21.82. We conducted 
a Kruskal-Wallis test to assess the differences in per-
formance across the models statistically. The analy-
sis revealed significant model differences (H = 35.51, 
p < 0.001). Post-hoc analysis using the Mann-Whitney U 
test indicated significant differences between GPT-4 and 
GPT-3.5 (z = -5.50, p < 0.001), GPT-4 and Bard (z = -3.52, 
p < 0.001), and GPT-4 and Bing Chat (z = -2.00, p = 0.045). 
However, no significant differences were found between 

GPT-3.5 and Bard, GPT-3.5 and Bing Chat, or Bard and 
Bing Chat (p > 0.05). It is important to note that the num-
ber of studies involving Bard and Bing Chat is limited, 
and results should be interpreted cautiously.

Evaluation by medical professionals
Regarding the number of queries, 50 or fewer was the 
most common (n = 54, 64.3%), followed by 50–100 (n = 14, 
16.7%), then 151–200 (n = 7, 8.3%), 101–150 (n = 6, 7.1%), 
and 150–200 (n = 7, 8.3%) (Table  5). Regarding repeated 
measures, about 70% of the studies did not perform any 
repeated measures (n = 63, 70.8%). Eleven papers (12.4%) 
did it twice, ten papers did it three times (11.2%), and five 
papers did it five times (5.6%). Among the experts who 
evaluated the LLMs, two were the most common (n = 43, 

Table 4 Analysis of evaluation based on test examinations
(n=62)
N (%)

Number of questions
1–100 18 (29.0)
101–200 11 (17.7)
201–300 14 (22.6)
301–400 5 (8.1)
401–500 3 (4.8)
501- 11 (17.7)
Number of repeated measurements
0 47 (75.8)
2 5 (8.1)
3 6 (9.7)
above 4 4 (6.5)
Prompt engineering
Yes 8 (12.9)
No 54 (87.1)
Additional analysis
Yes 18 (29.0)
No 44 (71.0)
Difficulty
Yes 14 (22.6)
No 48 (77.4)

Fig. 2 Performance of GPT-3.5, GPT-4, Bing Chat and Bard
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48.3%), followed by 3 (n = 13, 14.6) and by 1 (n = 5).  Thir-
teen  (14.7%) studies applied prompt engineering to 
improve the LLM performance.

In addition to accuracy, we identified several met-
rics used for LLM evaluation (Table  6). The papers we 
reviewed evaluated whether the LLM’s responses were 
in concord with guidelines or expert opinions (n = 12) 
or whether the responses were appropriate (n = 9), com-
plete (n = 8), or of high quality (n = 8). A few studies also 
assessed the safety (n = 5) or readability (n = 3) of the 
responses, as well as their clarity (n = 3).

Discussion
This study aimed to analyze methods for evaluating 
LLMs in medicine. For LLM performance evaluation, 
two main methods were used: evaluation based on test 
examinations and evaluation by medical professionals. 
In addition, there is a method that uses both methods 
together and a hybrid method. Evaluation based on a 
test examination was used to evaluate LLM performance 
according to the medical specialty, and evaluation by 
medical professionals was mainly used when LLMs were 
utilized for particular purposes, such as clinical decision 
support or answering questions. Based on our findings, 
we derived suggestions for systematically designing stud-
ies evaluating LLMs in healthcare (Fig. 3).

Better evaluations based on test examination
For evaluations based on a test examination, beyond 
simply presenting the percentage of correct responses, 
studies should also be reviewed to ensure the evidence is 
presented. Some studies have performed additional eval-
uations, such as checking for concordance with the pro-
posed correct answer or reviewing responses to ensure 
that they are well-founded with an appropriate ratio-
nale; however, the number of such studies remains rela-
tively limited [25, 26, 34, 37, 39, 41, 46]. Given the high 
number of reports on hallucinations in the LLMs, addi-
tional reviews are needed to ensure that hallucinations, 
poorly supported answers, and reasoning are accurately 
reported [164–166].

In a test examination-based evaluation, the difficulty 
of the questions is a critical factor to consider. Approxi-
mately a quarter of the papers included in this study have 
evaluated performance based on question difficulty. By 
analyzing performance about difficulty, researchers can 
determine the level of complexity at which the LLMs per-
form optimally or begin to degrade. It is also essential to 
assess how the LLMs respond to varying difficulty lev-
els, as clinical settings often present questions of differ-
ing complexities. Finally, such analysis can guide future 
research to improve model performance through prompt 

Table 5 Analysis of evaluation by medical professionals
(n = 89)

Number of queries N (%)
1–50 54 (64.3)
51–100 14 (16.7)
101–150 6 (7.1)
151–200 7 (8.3)
201 above 3 (3.6)
Number of repeat measurements N (%)
0 63 (70.8)
2 11 (12.4)
3 10 (11.2)
5 5 (5.6)
Number of evaluators N (%)
1 5 (5.6)
2 43 (48.3)
3 13 (14.6)
4 3 (3.4)
5 above 17 (19.1)
(not indicated) 8 (9.0)
Prompt Tuning N (%)
None 76 (85.4)
Role-based prompting 6 (6.7)
Few shots learning 2 (2.3)
Explain context 2 (2.3)
Template 3 (3.4)

Table 6 Metrics used for LLMs evaluation (except accuracy)
Metric No.
Concordance / Agreement with guidelines or experts 12
Appropriateness 9
Completeness 8
Quality 8
Reproducibility 7
Safety, Extent of harm 6
Readability 5
Relevance 5
Clarity 3
Acceptability 2
Comprehensiveness 2
Currency of information 2
Efficacy 2
Empathetic 2
Helpfulness 2
Reliability 2
Understandability 2
Usefulness 2
Preference 1
Satisfaction 1
Specificity 1
Validity of references 1
Over-conclusiveness 1
Supplemental information 1
Objectivity 1
Bias 1
Adaptiveness 1
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engineering or fine-tuning approaches. Developing an 
evaluation framework to verify the reasoning behind 
LLMs is required. Some studies analyzed incorrect 
answers by categorizing them as logical, informational, or 
statistical errors, and one study proposed a CVSA (Con-
cordance, Validity, Safety, and Accuracy) model [49].

Better evaluations by medical professionals
Most studies on LLMs have measured the accuracy. 
However, it is also necessary to measure various other 
metrics. In addition to accuracy, the reviewed studies 
measured concordance with guidelines or expert opinion 
and the responses’ appropriateness, completeness, qual-
ity, safety, readability, and clarity. Although it may vary 
from one medical field to another or depending on the 
purpose of the study, an evaluation frame or guideline for 
the evaluation of LLMs is also needed. Because different 
people may have different ideas about a term, researchers 
must precisely describe what they measure and present 
the scale.

In addition, most studies used two people to evaluate 
the LLM responses, but two people should not be con-
sidered an appropriate number for evaluating the LLM 
performance. When future guidelines for LLM evalua-
tion are developed, an appropriate number of evaluators 
should be considered to ensure representativeness.

Need for considering reproducibility
A study design that considers reproducibility is required. 
Some studies have performed two or three repeated 

measurements to ensure reproducibility. Because the 
LLMs do not always provide the same response, we 
believe it is better to draw results and analyze them for 
multiple responses rather than just one. Studies that have 
validated reproducibility have reported reproducibility 
rates of 90–100% [88, 89, 113, 142]. While 5–10% may not 
seem like a lot, given the specificity of the medical field, 
we believe that reproducibility should be considered.

Need for accurate prompt descriptions
Lastly, an accurate description of the prompts is nec-
essary. The LLMs can produce very different results 
depending on how the prompts are written. Various 
engineering methods have been proposed to improve 
the LLM performance. Therefore, researchers must be 
precise regarding prompting. For example, it is neces-
sary to be precise about the number of examples for few-
shot learning, whether roles-based prompting is given, 
and the use of frameworks. Some studies did not provide 
supplementary materials or figures for the prompts, so 
checking how the prompts were written was impossible. 
Therefore, it would be helpful for follow-up studies to 
provide supplementary materials about the writing of the 
prompts. Additionally, it would be helpful for researchers 
to maintain a version of the prompts when recording or 
revising a study.

Fig. 3 Improving the evaluation of LLMs
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Limitations
The limitations of this study were as follows. First, 
some of the LLM evaluation studies may not have been 
included due to the scope of our search strategy. Spe-
cifically, we did not include open-source models such as 
LLAMA or ALPACA, which may have led to the omis-
sion of relevant studies. Additionally, while we utilized 
representative databases for our search, similar research 
may exist in other databases not included in our review. 
However, we believe the large number of reviewed papers 
(142) mitigates this limitation. In future research, includ-
ing more databases and expanding the search strategy to 
cover additional models could help address these limita-
tions. Additionally, the scoping review required a qualita-
tive evaluation of the studies, but this was not performed 
because there is no established evaluation methodology 
for LLMs. We hope this study will contribute to devel-
oping criteria for the qualitative evaluation of LLM 
research.

Conclusion
LLMs are being applied in various ways, and we expect 
them to become more advanced. They have several 
potential applications in medicine. However, according 
to the medical field’s characteristics, accuracy is criti-
cal, and incorrect information should not be provided 
to patients. It is necessary to increase reliability through 
various evaluations before LLMs can be used in the 
medical field. Future studies should conduct additional 
analyses to examine factors such as reasoning ability, hal-
lucinations, and the difficulty of test questions. Moreover, 
these studies should consider applying metrics beyond 
accuracy and ensure reproducibility.
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