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Abstract 

Background  Social and behavioral determinants of health (SBDH) are associated with a variety of health and utiliza-
tion outcomes, yet these factors are not routinely documented in the structured fields of electronic health records 
(EHR). The objective of this study was to evaluate different machine learning approaches for detection of SBDH 
from the unstructured clinical notes in the EHR.

Methods  Latent Semantic Indexing (LSI) was applied to 2,083,180 clinical notes corresponding to 46,146 patients 
in the MIMIC-III dataset. Using LSI, patients were ranked based on conceptual relevance to a set of keywords (lexicons) 
pertaining to 15 different SBDH categories. For Generative Pretrained Transformer (GPT) models, API requests were 
made with a Python script to connect to the OpenAI services in Azure, using gpt-3.5-turbo-1106 and gpt-
4-1106-preview models. Prediction of SBDH categories were performed using a logistic regression model 
that included age, gender, race and SBDH ICD-9 codes.

Results  LSI retrieved patients according to 15 SBDH domains, with an overall average PPV ≥ 83%. Using manually 
curated gold standard (GS) sets for nine SBDH categories, the macro-F1 score of LSI (0.74) was better than ICD-9 (0.71) 
and GPT-3.5 (0.54), but lower than GPT-4 (0.80). Due to document size limitations, only a subset of the GS cases could 
be processed by GPT-3.5 (55.8%) and GPT-4 (94.2%), compared to LSI (100%). Using common GS subsets for nine 
different SBDH categories, the macro-F1 of ICD-9 combined with either LSI (mean 0.88, 95% CI 0.82-0.93), GPT-3.5 
(0.86, 0.82-0.91) or GPT-4 (0.88, 0.83-0.94) was not significantly different. After including age, gender, race and ICD-9 
in a logistic regression model, the AUC for prediction of six out of the nine SBDH categories was higher for LSI com-
pared to GPT-4.0.

Conclusions  These results demonstrate that the LSI approach performs comparable to more recent large language 
models, such as GPT-3.5 and GPT-4.0, when using the same set of documents. Importantly, LSI is robust, deterministic, 
and does not have document-size limitations or cost implications, which make it more amenable to real-world appli-
cations in health systems.

*Correspondence:
Ramin Homayouni
rhomayouni@oakland.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-024-02705-x&domain=pdf


Page 2 of 12Roy et al. BMC Medical Informatics and Decision Making          (2024) 24:296 

Keywords  Social determinants of health, Electronic health records, Machine learning, Natural language processing, 
Clinical notes

Background
There is growing evidence that Social and Behavio-
ral Determinants of Health (SBDH), such as housing 
insecurity, financial insecurity, drug abuse, depression 
and others, are associated with a wide variety of health 
outcomes and that including SBDH data can improve 
prediction of health risks [1, 2]. While many studies 
focus on using neighborhood level SBDH indicators, 
evidence suggests that using individual-level SBDH 
significantly improves prediction of outcomes such 
as medication adherence, risk of hospitalization, HIV 
risk, suicide attempts, or the need for social work [1]. 
In contrast, most studies that used external neighbor-
hood-level data showed minimal contribution to indi-
vidual risk prediction [1]. Currently, documentation 
of individual-level SBDH is sparse and incomplete in 
the structured fields within the EHR [3], but there are 
increasing efforts to implement screening tools in clini-
cal workflow to document patient-level SBDH factors 
[4]. However, screening tools add a significant burden 
on the healthcare staff at a time when provider burnout 
is a major concern [5].

SBDH topics may arise during informal communica-
tions between the patient and healthcare provider, which 
are often documented in the clinical notes rather than 
the structured fields in the EHR [5]. As an alternative 
strategy to screening questionnaires and diagnosis codes, 
several groups have evaluated SBDH documented in the 
clinical notes in the EHR. Navathe et al. reported that the 
highest rates of social characteristics were found in phy-
sician notes and that the frequency of six out of the seven 
social characteristics increased when comparing data 
from physician notes with billing codes [6]. Similarly, in 
a larger study, Hatef et  al. reported that the prevalence 
of SBDH in notes was vastly higher compared to billing 
codes for social isolation (2.59% vs 0.58%), housing issues 
(2.99% vs 0.19%), and financial strain (0.99% vs 0.06%) [7].

Recent work has focused on developing natu-
ral language processing (NLP) and machine learn-
ing approaches to extract or infer SBDH from clinical 
narratives [8, 9]. NLP approaches are rule-based and 
identify SBDH lexicons (keywords and/or phrases) 
using keyword matching or regular expressions. Identi-
fication of SBDH lexicons and NLP rules require con-
siderable manual refinement [10, 11]. More recently, 
supervised machine learning approaches have been 
explored for identification of SBDH from notes, by com-
bining a variety of text transformation methods, such 

as bag-of-words, n-grams, Word2Vec or Bi-directional 
Encoder Representation from Transformers (BERT), 
with supervised classification methods such as sup-
port vector machines, random forests, logistic regres-
sion, convolutional neural network and feed-forward 
neural network methods [8]. More recent methods that 
combine transformer-based embeddings learned from 
large volumes of documents (Large Language Models, 
LLM) and deep learning classifiers have demonstrated 
superior performance in extracting SBDH from clinical 
notes [12–15]. However, these models require training 
large amount of external data sources and fine-tuning 
using positive and negative gold standard cases. Thus, 
these approaches still require a considerable amount of 
manual effort for fine-tuning and may not be applicable 
to SBDH factors with low prevalence [9]. Recent studies 
explored augmentation of low prevalence SBDH using 
simulated synthetic data and showed that fine-tuned 
Flan-T5 models outperformed zero-shot Generative 
Pretrained Transformer (GPT) models [16]. In another 
study, the performance of various LLM models were 
evaluated for extraction of 10 different SDOH event 
types and arguments from clinical notes for a small cor-
pus of pediatric patients [17].

In this study, using the publicly available MIMIC-III 
dataset [18], we analyzed all clinical notes for over 46,000 
patients to predict 15 different SBDH categories using 
a well-known mathematical approach, called Latent 
Semantic Indexing (LSI). Here, we describe the steps in 
selection of SBDH categories, LSI model development, 
and the lexicon selection for ranking all patients in the 
cohort with respect to each SBDH category. The perfor-
mance of LSI was manually evaluated by chart review. 
Finally, using a subset of gold standard patients, we com-
pared the performance of LSI with more recent GPT 
models in predicting SBDH.

Methods
Latent Semantic Indexing
The overview of our approach is shown in Fig.  1. Out 
of a total of 46,520 patients in the MIMIC-III data-
set, 46,146 patients had clinical notes. The number of 
notes associated with these patients ranged from 1 to 
1420, with the median being 21 notes. For each patient, 
a patient-document was created by concatenating the 
individual notes sequentially in the same order as pre-
sent in the database. Terms (keywords) were extracted 
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from patient-documents using Text-to-Matrix Genera-
tor (TMG) package [19]. Punctuation (excluding hyphens 
and underscores) and capitalization were ignored. Addi-
tionally, articles and other common, non-distinguish-
ing words were filtered out using the SMART stop list 
[20]. After processing, the resulting dictionary included 
>300,000 terms. To reduce the dictionary size and to 
focus on terms that are relevant to SBDH, the dictionary 
was filtered to include only terms that were present in the 
social history sections of the clinical notes. This resulted 
in a final dictionary size of 26,237 terms. Each term in the 
26,237 terms-by- 46,146 patients matrix was weighted 
using tf-idf, and the matrix was then factorized using 
Latent Semantic Indexing (Singular Value Decomposi-
tion) into three sub-matrices: 26,237 terms-by- 26,237 
factors sub-matrix; 46,146 patients-by- 26,237 factors 
sub-matrix; and 26,237 singular values (scaling factors) 
diagonal sub-matrix. The optimal number of factors 
(dimensions) was calculated to be 12,723. Subsequently, 
each term and patient were represented as numeric row-
vectors in reduced (12,723) dimensions.

The relationship between patients and a term can be 
calculated using the cosine between their vectors. A term 
query will produce an ordering of all patients based on 
the cosine associations between their respective vectors. 
By using lower dimensional sub-matrices, the terms/
patients can be grouped together more conceptually, 
whereas by using higher dimensions, terms/patients can 
be grouped more literally. The details of this process (and 
various applications) have been previously described by 
our group [21–29] and are documented in Additional 
file 1.

SBDH categories
To develop a comprehensive set of SBDH categories 
for benchmarking the text-based approaches, we com-
bined Social Determinants of Health (SDoH) categories 

defined by Torres et al. [30], and chronic behavior cate-
gories defined by the Center for Medicaid and Medicare 
Services (CMS) [31]. The number of patients coded for 
SDoH ICD-9 codes are shown in Supplementary Figure 
S1 in Additional file 1. Only five SDoH categories had 
more than six patients: V600 housing insecurity (202), 
V1541 physical & sexual abuse (37), V620 financial 
insecurity (15), V625 legal circumstances (13), and V602 
financial circumstances (6). In addition, we included 
four behavioral chronic conditions defined by CMS and 
several other SBDH categories such as suicidal idea-
tion and compliance, which are represented in ICD-10 
but not in ICD-9. Altogether, this study focused on 15 
SBDH categories (Table 1), although only nine catego-
ries were documented by ICD-9 billing codes in this 
data set (Supplementary Table S1 in Additional file 1).

Fig. 1  Workflow diagram of extracting and assigning SBDH factors to each patient in MIMIC-III dataset

Table 1  Number of patients within the cohort who were ICD-9 
coded with the following SBDH categories

SBDH Category Patients (n)

Tobacco use 3005

Alcohol abuse 2988

Opiate abuse 672

Cocaine abuse 545

Housing insecurity 202

Physical & sexual abuse 37

Financial insecurity 15

Legal Circumstances 13

Financial circumstances 6

Compliance 0

Mobility issues 0

Lack of English proficiency 0

Caregiver dependency 0

Suicidal ideation 0

Lack of transportation 0
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Lexicon development and patient ranking
To determine the best lexicons to represent various 
SBDH categories, we manually constructed a set of 134 
terms (including variants and plurals) corresponding 
to the SBDH categories (Supplementary Table  S2 in 
Additional file 1). The lexicons were iteratively refined 
manually according to the following steps: 1) The pair-
wise Pearson correlations between terms (treating each 
term as a vector of term-patient cosine similarities for 
all patients in the collection) were used to filter out 
synonyms and closely associated or redundant terms; 
2) When applicable, the recall of ICD-9 coded patients 
at a defined cosine threshold (described below) was 
used to choose the most representative SBDH category 
keyword; 3) The precision of the top ranked patients 
for each keyword query was used to select the best key-
word that represented each category. Table  2 lists the 
categories and their representative keywords and Sup-
plementary Table S1 in Additional file 1 lists the avail-
able ICD-9 codes for 9 of the 15 categories.

For each of the 15 SBDH representative keywords, all 
46,146 patients were ranked in descending order of the 
cosine similarity between their vectors. Patients with 
a cosine value above a cutoff threshold ( τ ), defined by 
τ > Q3+ (3.0 ∗ IQR) , were assigned to the respective 
SBDH category. The IQR (interquartile range) was calcu-
lated as Q3 ( 75th percentile) - Q1 ( 25th percentile). The 
patients with a cosine value above τ for each SBDH term 
query were evaluated manually by chart review to deter-
mine the positive predictive value (PPV) of the top 10, 
median 10 and last 10 ranked patients.

Generative Pretrained Transformers (GPT)
All GPT API requests were made using a Python script 
which uses the openai library to connect to the Ope-
nAI services in Azure, using gpt-3.5-turbo-1106 
and gpt-4-1106-preview models. The Azure Ope-
nAI Service is a secure enterprise utility that is fully 
controlled by Microsoft and does not interact with any 
services operated by OpenAI (e.g. ChatGPT, or the 
OpenAI API) [32]. Using this platform mitigated any 
potential risks to data sharing agreements or to patient 
privacy. Each API call included two components: 1) A 
function definition for the SBDH category, and 2) The 
contents of a patient-document. GPT identifies the 
presence of the SBDH category in a document based on 
the name of the function and parameter names, with no 
other domain-specific information provided to the API. 
Each SBDH domain had its own function definition in 
the format of a JSON object (Additional file 1). Below is 
an example function definition for ‘Housing insecurity’:

Table 2  Performance of LSI predictions of SDBH categories

The terms in parentheses indicate the query word used to rank all patients in the dataset

PPV of LSI Predictions

SBDH Category (Keyword query) Predicted N Top 10 Median 10 Bottom 10 Average

Tobacco use (Smokes) 2195 100% 90% 80% 90%

Alcohol abuse (EtOH) 1080 100% 100% 100% 100%

Opiate abuse (Opiate) 444 100% 60% 50% 70%

Cocaine abuse (Cocaine) 1852 100% 70% 40% 70%

Housing insecurity (Homeless) 470 100% 80% 70% 83%

Physical & sexual abuse (Abused) 121 80% 50% 30% 53%

Financial insecurity (Unemployed) 809 100% 90% 100% 97%

Legal circumstances (Legal) 1052 80% 50% 20% 50%

Financial circumstances (Financial) 402 100% 60% 90% 83%

Compliance (Noncompliant) 402 100% 100% 90% 97%

Mobility issues (Walker) 3235 90% 100% 90% 93%

Lack of English proficiency (Interpreter) 1621 100% 90% 80% 90%

Caregiver dependency (Caretaker) 443 100% 90% 60% 83%

Suicidal ideation (Suicide) 1090 100% 60% 40% 67%

Lack of transportation (Transportation) 452 60% 70% 70% 67%
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Sending a function ensures that the response from the 
API will be a predictable, well-formed JSON object with 
a binary answer of “Yes” or “No” to indicate the presence 
of the SBDH category in the patient-document. The GPT 
engine does not actually call the function but instead 
treats the function like a callback, where the response 
from GPT includes the “Yes” or “No” value of the func-
tion parameter. The Python script calls the API as fol-
lows, including the patient-document and the domain 
function as arguments:

The “temperature” argument controls the determinism 
of the GPT model, accepting a value between 0 (more 
deterministic) and 2 (less deterministic). The API call and 
SBDH function definitions are identical for GPT-3.5 and 
GPT-4. All prompts were zero-shot, with no fine-tuning 
examples provided in the prompt. Due to inconsistent 
responses by GPT-3.5, each prompt was submitted five 
independent times and the final answer was determined 
by simple majority. Only one prompt was submitted for 
GPT-4 because its unresponsiveness was infrequent.

Analysis and evaluation
The classification performance of LSI was compared to 
ICD-9 coding, GPT-3.5 and GPT-4 using a separate set 
of 621 gold standard (GS) patient-documents that were 
randomly chosen from the entire collection of 46,146 
patients and then manually labeled. To generate the GS 
set for each SBDH, a random sample of up to 20 ICD-9 
coded (when applicable) and up to 20 LSI predicted 
patients were balanced with an equal number of non-
coded or non-LSI-predicted patients from the rest of the 
collection. The GS set included only nine of the 15 pos-
sible SBDH categories that had at least six ICD-9 coded 
patients (Table 1). This resulted in random samples rang-
ing from 46 (financial circumstances) to a maximum of 
80 (housing insecurity, tobacco use, alcohol abuse, cocaine 
abuse and opiate abuse). All cases were manually evalu-
ated by chart review to determine actual positive (P) and 
negative (N) cases for each SBDH category.

During manual chart review, we found that some 
patients who were ICD-9 coded with specific SBDH did 
not have any statements in the clinical notes that sup-
ported the assignment of the ICD-9 code. We treated 

these cases as actual positives to represent the real-world 
situation where diagnosis codes are assigned to patients 
by healthcare providers based on their professional 
judgement using other data sources (e.g. labs, imaging, 
or external questionnaires or self-reported information 
in the case of SBDH). Supplementary Table S3 in Addi-
tional file 1 includes the summary characteristics of the 
GS samples for each SBDH category. The performance 
of the text-based approaches (LSI, GPT-3.5, GPT-4) was 
evaluated by calculating Precision, Recall and F1 score.

To compare the overall performance of the text-based 
predictions using either LSI or GPT-4 compared to 
ICD-9 coding alone, we used a logistic regression model 
to predict each of the nine SBDH categories in the GS 
subset represented as binary dependent variables (posi-
tive or negative). The base regression model included age 
(numeric), gender (binary), race (categorical) and ICD-9 
(binary) as independent variables. The second model 
included the base model plus LSI-identified cases as an 
additional binary independent variable, whereas the third 
model included the base model plus GPT-4-identified 
cases as the additional binary independent variable. In all 
three models, age was fitted using a cubic spline with 2 
degrees of freedom. The performance of each model was 
evaluated by 10-fold cross-validation and the Area Under 
the Receiver Operating Curve (AUROC).

Results
Analysis of the MIMIC-III dataset showed that out of 44 
potential Social Determinants of Health (SDoH) ICD-9 
codes [30], only 17 were used in MIMIC-III and only five 
SDoH categories were assigned to six or more patients 
(Supplementary Figure S1 in Additional file 1).

Evaluation of LSI‑derived SBDH predictions
Figure  2a shows a heatmap of the Pearson correlations 
between 134 SBDH query terms based on each term’s 
corresponding list of patient cosine values. A magnified 
view of the heatmap for each SBDH category is provided 
in Additional file  2. Clustering the term correlations 
revealed groups of highly synonymous terms deduced 
from the word usage patterns in the patient-documents. 
This demonstrates the utility of matrix factorization as an 
unsupervised machine learning approach which learns 
conceptually related terms based on the word usage pat-
terns in the clinical notes. For example, factorization 
revealed that words such as intoxicated/intoxication, 
crack/cocaine, or manic/mania are synonymously used 
in the clinical notes (Fig. 2b). In addition, this approach 
identified short phrases in a rudimentary way, such as 
legal/guardian (Fig. 2b). Lastly, some of the larger clusters 
included broader contextual information, such as sui-
cide/overdose/psych/suicidal/psychiatrist (Fig. 2c).
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A patient was predicted to have a specific SBDH if the 
cosine value between the query term and the patient 
was above the cutoff cosine threshold ( τ ) as defined in 
the Methods. For all but three SBDH categories (tobacco 
use, alcohol abuse, and opiate abuse), the number of 
patients in the collection with an LSI-predicted SBDH 
was substantially higher than the ICD-9 coded patients 
(Table  2). To evaluate the classification performance of 
the LSI-derived SBDH predictions, we determined the 
PPV by manual evaluation of the top 10, median 10, and 
bottom 10 patients above τ . In all but four SBDH catego-
ries, the PPV of the top 10 ranked patients was 100%. As 
expected, the PPV decreased with lower rankings, which 
signifies lower relevancy to the query term. The average 
PPV for all 15 SBDH categories ranged from 50% (legal 
circumstances) to 100% (alcohol abuse), with nine of the 
SBDH categories having a PPV ≥ 83% (Table 2).

Next, we compared the performance of ICD-9 cod-
ing to LSI, as well as GPT-3.5 and GPT-4 large language 
models using different sets of gold standard (GS) patients 
that were randomly selected for each SBDH category 
and manually labeled by chart review. Importantly, only 
LSI was able to process all of the patient-documents. In 
contrast, due to context window size restrictions, GPT-
3.5 processed 55.6% of the gold standard documents and 

GPT-4 processed 94.2% (Fig. 3). Due to these limitations, 
the average recall of GPT-3.5 across all of the documents 
in all nine SBDH categories was low (0.41), compared to 
LSI (0.70) and GPT-4 (0.77) (Table 3). Overall, the aver-
age macro-F1 was highest for GPT-4 (0.8), followed by 
LSI (0.74), ICD-9 (0.71) and GPT-3.5 (0.54) despite the 
fact that GPT-4 was unable to process 5.8% of the docu-
ments due to context window size limitations.

To be able to directly compare the performance of LSI, 
GPT-3.5 and GPT-4, the following analyses was per-
formed using a subset of 352 GS patient-documents (out 
of 621) whose sizes were within the 16K context window 
limit of GPT-3.5, for each of the nine SBDH categories. 
Earlier versions of GPT were highly irreproducible such 
that the same prompt could produce different responses 
or no response at all. Therefore, for GPT-3.5, the same 
set of documents were submitted using the same prompt 
five independent times. GPT-3.5 was unresponsive for 
2% (cocaine abuse) to 30% (financial insecurity) of the 
patient-documents across the SBDH categories (Table 4). 
In addition, in all but one SBDH category, GPT-3.5 pro-
vided conflicting responses between the five independ-
ent prompts. For example, although GPT3.5 provided 
responses for all 27 patient-documents related to legal 
circumstances, it provided conflicting responses for 

Fig. 2  Relationship between SBDH terms in reduced-dimensional (12,723) vector space model. a Heatmap of correlations between terms, 
where red represent high correlation and blue represents low correlation. b List of clusters with the highest intra-cluster correlations, depicting 
terms that are explicitly or conceptually synonymous as well as terms that share stems. c List of terms in clusters that account for 20% 
of the variability in the entire patient population
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six (22%) of the patient-documents (Table  4). In con-
trast, GPT-4 was unresponsive for only two documents 
(3.8%) in only one SBDH category (tobacco use). Averag-
ing across all nine SBDH categories for the subset of GS 
cases, we found that LSI, GPT-3.5 and GPT-4 performed 
similarly with respect to precision, recall and F1 when 
the result of each method was combined with the ICD-9 
coded patients (Fig. 4). This demonstrates that the three 
approaches perform comparably if the document sizes 
are within the token size limits of GPT models.

Lastly, to evaluate the overall predictive performance 
of LSI and GPT-4, we compared the prediction AUC of 

three different logistic regression models on the afore-
mentioned subset of 352 GS cases. The base regression 
model included gender, age, race and SBDH ICD-9 codes 
as independent variables. The second model included the 
base variables plus LSI identified SBDH. The third model 
included the base model plus GPT-4 identified SBDH 
(Fig. 5). Using only ICD-9 coding (base model), the AUCs 
for the nine SBDH categories ranged between 0.69 (hous-
ing insecurity and financial circumstances) to 0.85 (physi-
cal & sexual abuse). In all nine categories, inclusion of 
LSI or GPT-4 improved the AUCs compared to ICD-9. 
Importantly, LSI outperformed GPT-4 in six of the nine 

Table 3  Retrieval performance of each method alone using a set of sampled Gold Standard cases

The bold text indicate the highest precision, recall, or F1 for each SBDH category (row)

Precision Recall F1

SBDH Category Sampled N (P) ICD-9 LSI GPT-3.5 GPT-4 ICD-9 LSI GPT-3.5 GPT-4 ICD-9 LSI GPT-3.5 GPT-4

Housing insecurity 80 (53) 0.85 0.95 0.78 0.92 0.64 0.72 0.47 0.62 0.73 0.82 0.59 0.74

Tobacco use 80 (56) 0.95 0.93 0.89 0.88 0.68 0.66 0.43 0.93 0.79 0.77 0.58 0.90
Opiate abuse 80 (36) 0.75 0.63 0.75 0.67 0.83 0.69 0.42 0.83 0.79 0.66 0.54 0.74

Alcohol abuse 80 (52) 0.85 0.95 0.84 0.82 0.65 0.73 0.40 0.90 0.74 0.83 0.55 0.86
Cocaine abuse 80 (43) 0.78 0.80 0.90 0.95 0.72 0.74 0.42 0.81 0.75 0.77 0.57 0.88
Physical & sexual abuse 67 (37) 0.96 0.67 0.88 1.00 0.70 0.49 0.38 0.73 0.81 0.56 0.53 0.84
Unemployed 54 (36) 1.00 1.00 0.85 0.91 0.42 0.81 0.31 0.89 0.59 0.89 0.45 0.90
Legal circumstances 53 (26) 1.00 0.72 0.67 0.78 0.50 0.69 0.38 0.69 0.67 0.71 0.49 0.73
Financial circumstances 46 (18) 1.00 0.61 1.00 0.75 0.33 0.78 0.44 0.50 0.50 0.68 0.62 0.60

Fig. 3  Proportion of gold standard patient-documents for each SBDH category that yielded results by LSI, GPT-3.5 or GPT-4.0
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SBDH categories (housing insecurity, financial insecu-
rity, opiate abuse, alcohol abuse, legal circumstances, and 
financial circumstances).

Discussion
In this study, we demonstrated the utility of LSI as a 
robust unsupervised approach for comprehensively pro-
cessing all clinical notes in the EHR to identify SBDH 

and to supplement the SBDH documented by ICD-9 
diagnosis codes. Importantly, we show that although LSI 
is a bag-of-words approach, it performed similarly and 
sometimes better than GPT models. This work highlights 
several advantages for using LSI in real-world healthcare 
applications.

One major advantage of LSI is its ability to process all of 
the notes for a given patient without the imposed context 

Table 4  Unresponsiveness of GPT-3.5 and GPT-4

On a set of shared patient-documents (N), GPT-3.5 was prompted five independent times, whereas GPT-4 was prompted only once. The % of documents where GPT-
3.5 or GPT-4 did not provide a response is indicated for each SBDH category. The % disagreement corresponds to the number of documents where GPT-3.5 provided 
conflicting binary responses

GPT-3.5 GPT-4

SBDH Category N % Disagreement % No Response % No Response

Housing insecurity 48 6.3% 0.0% 0.0%

Tobacco use 52 3.8% 15.4% 3.8%

Opiate abuse 42 7.1% 0.0% 0.0%

Alcohol abuse 41 2.4% 0.0% 0.0%

Cocaine abuse 51 0.0% 2.0% 0.0%

Physical & sexual abuse 39 2.6% 5.1% 0.0%

Financial insecurity 30 6.7% 30.0% 0.0%

Legal circumstances 27 22.2% 0.0% 0.0%

Financial circumstances 22 13.6% 4.5% 0.0%

Fig. 4  Retrieval performance of LSI, GPT-3.5 or GPT-4 when combined with ICD-9 coding. Precision (upper panel), recall (middle panel) and F1 
(lower panel) of ICD-9 combined with either LSI (orange lines), GPT-3.5 (cyan lines) and GPT-4 (blue lines). Values represent the mean (filled circle) 
and 95% confidence intervals (error bars) across the nine SBDH gold standard sets
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window token size limitations of GPT. As pointed out in 
Fig. 3, only 55.6% and 94.2% of the GS cases could be pro-
cessed by GPT-3.5 and GPT-4, respectively. At the time 
of our analysis, the input context window size limits for 
GPT-3.5 and GPT-4 were 16K and 128K tokens, respec-
tively. However, other LLMs may have larger context 
windows. Even with the context window limits, it is pos-
sible to process larger documents by ‘chunking’, a method 
where a large document is split into smaller overlap-
ping documents that are smaller than the token limits. 
In our analysis, we did not attempt to process all of the 
GS documents, instead we directly compared the perfor-
mance of LSI with GPT-3.5 and GPT-4 using the same 
set of documents (Table  4 and Figs.  4 and 5). Another 
reason for limiting the analysis to a subset of GS docu-
ments was cost. At the time of the analysis, the cost for 
GPT-3.5 and GPT-4 using the Microsoft Azure OpenAI 
[32] services per query was USD $0.001 and $0.01 per 1K 
input tokens, respectively. Thus, it would have been more 
costly to chunk the larger GS documents. Another way 
to reduce the number of GPT queries would have been 
to perform multi-class labeling. In our analysis, we per-
formed single class labeling, where each document was 
processed individually to identify a single SBDH category 
at a time. Although multi-class labeling would be useful, 

it may require considerable fine-tuning and may not be 
feasible for identifying all 15 SBDH categories at once.

Another major advantage of LSI is that it does not 
require external training on a large dataset and fine-
tuning for domain specific applications. For this study, 
the LSI model was built using all of the clinical notes for 
all of the > 46, 000 patients at once. In contrast, GPT 
and other LLM require extensive training using large 
amounts of external data sources. For example, GPT 3.5 
was trained on 175 billion parameters using training data 
up to September 2021. Although the models perform 
well for general text analysis, they may not perform well 
on specialized clinical tasks. For example, Lybarger et al. 
developed an event based deep-learning extractor for 
SBDH that determines chronicity, duration, frequency 
and type of event [12]. However, their models apply only 
to a subset of SBDH categories, including employment, 
living status, as well as alcohol, tobacco and drug use. 
They point out that training these models required sig-
nificant manual effort by human experts to develop both 
positive and negative gold standard datasets for fine-tun-
ing [12]. In addition, since these methods require large 
amounts of training data for fine-tuning, they can have 
limited usefulness for SBDH categories that are rare (low 
prevalence).

Fig. 5  Comparison of classification performance of ICD-9 and/or text-predicted SBDH categories using multivariable analysis. The AUC is shown 
for three different models: 1) Base model including age, gender and ICD-9 codes (black lines), 2) Base model plus LSI identified SBDH (red lines), 
and 3) Base model plus GPT-4 identified SBDH (blue lines)
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Yet another major advantage of LSI is that, unlike GPT, 
it is deterministic (reproducible) and 100% responsive to 
all queries. For a given number of factors (post-factoriza-
tion), LSI produces the same exact ranking of the patients 
based on the same query. On the other hand, we showed 
(Table 3) that GPT-3.5 produces conflicting responses to 
the same prompt on the same set of documents. Moreo-
ver, we demonstrated that both GPT-3.5 and GPT-4 may 
not respond, a phenomenon commonly referred to as 
‘laziness’. Although the GPT-4 model has been improved 
to reduce laziness, we found that it can be unresponsive 
as the document size reaches its maximum context win-
dow size limits.

A key takeaway from our study is that clinical notes 
provide a valuable source of SBDH information. How-
ever, relying solely on clinical notes is not adequate in 
real-world settings. We show that by combining ICD-9 
codes along with SBDH detected from clinical notes 
allows for better prediction of patient-level SBDH needs 
than either method alone. During chart review for devel-
oping the GS sets, we found some ICD-9 coded individu-
als who had no supporting documentation in the clinical 
notes. For example, some patients had few encounters 
with the health system and had no social history notes, 
yet were coded for homelessness or alcohol abuse. This is 
typical in real-world settings where diagnosis codes are 
assigned by healthcare providers who may use a variety 
of other sources (e.g. labs, imaging, etc.) to support the 
diagnosis, but not document them explicitly in the notes. 
Similarly, SBDH codes may be assigned to a patient based 
on answers to screening questionnaires. Our findings are 
consistent with other studies showing the importance of 
combining the information provided by ICD-9 codes and 
other structured data (e.g., questionnaires) with unstruc-
tured data in the EHR to obtain a more representative 
assessment of the SBDH prevalence in a population [7, 
10–12, 33]. Implementing SDoH questionnaires across 
a large health system is impractical. Studies have shown 
that SDoH screening forms are primarily implemented 
in inpatient and primary care settings. However, it is 
thought that socioeconomically disadvantaged individu-
als are less likely to go to primary care, instead use the 
emergency department (ED) for their healthcare needs 
[34]. Moreover, a recent study demonstrated that only 
3.7% of the patients in a large health care system in South 
Carolina had answered all 11 questions on the SDoH 
screening forms [35]. Therefore, for better assessment 
of SBDH burden in a population, information must be 
aggregated from a variety of sources in the EHR, includ-
ing the clinical notes.

It is worth highlighting that the costs associated with 
OpenAI services make it currently unrealistic to imple-
ment in health systems to assess SBDH burden in large 

populations of patients. To address this issue, future 
research will focus on using LSI to narrow large popula-
tions of patients into smaller groups that are conceptually 
predicted to have SBDH and then process those docu-
ments using GPT to contextualize and validate the LSI 
predictions. Factorization provides value beyond key-
word searching alone because it contextualizes keywords 
as vectors in reduced-dimensional space, thereby group-
ing words that are frequently used together in the con-
text of SBDH keywords. This approach provides a general 
advantage by automatically grouping synonyms, mis-
spellings, and conceptually related terms that are often 
used together in narratives (Fig. 2). For example, a home-
less individual is often unemployed and has drug/alcohol 
abuse problems. Also, factorization is able to infer that 
‘shelter’ and ‘homelessness’ are synonymously used in 
the narratives. By reducing the (number of ) factors of the 
factorized matrix, one can identify a subset of patients 
who are conceptually related to the SBDH, achieving 
higher recall than precision. By subsequently processing 
these patient-documents with GPT-4, the specific evi-
dence in support of the SBDH can be readily deduced 
while keeping the overall processing cost low.

While LSI was highly sensitive (high PPV) for most 
SBDH categories, its performance was limited for a few 
SBDH categories such as legal circumstances. We found 
that legal circumstances covered a broad range of areas 
ranging from power of attorney, guardianship issues, 
hospital liability to encounters with law enforcement for 
illegal activities. More refinement would be necessary 
to evaluate the performance of our approach on spe-
cific areas pertaining to specific legal circumstances. For 
example, guardianship issues for clinical decision making 
could be better identified with a ‘guardian’ query rather 
than a general term such as ‘legal’. In three cases (alco-
hol abuse, tobacco use, and opiate abuse), our approach 
identified fewer cases than ICD coded individuals. This 
may be due to the fact that drug, alcohol and tobacco use 
are routinely captured within structured fields in current 
clinical practice. However, other SBDH categories are not 
routinely captured. One approach to increase the number 
of cases identified by our approach would be to relax the 
thresholding parameter or to combine multiple lexicons 
representing alcohol abuse in an additive way.

Feller et al. were among the first groups to apply NLP 
methods to infer SBDH from clinical notes [36]. After 
feature selection, they included 2-4,000 individual words 
as independent variables in various machine learning 
classifiers to identify sexual history, sexual orientation, 
alcohol use, substance use and housing status. They 
found that combining clinical notes and structured data 
enabled reasonably accurate inference of these SBDH 
categories [37]. Bejan et  al., using a vector embedding 
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approach to expand SDoH lexicons, demonstrated bet-
ter performance of identification of homelessness and 
adverse childhood experiences (ACEs) from clinical 
notes [38]. Our process, which combines the bag-of-
words approach with factorization, allows an automated 
method to identify a broad set of SBDH categories.

This study has several limitations. First, LSI is a bag-
of-words technique, which does not account for word 
context (phrases) and negated terms. Second, the per-
formance of LSI was affected by the presence of forms 
and templated text in the clinical notes, such as ‘Fam-
ily information’ or social history forms, where there are 
many negations and repeated text. The performance 
would improve if certain note types, forms and tem-
plates were removed during pre-processing. Third, 
our approach does not provide temporal relations and 
event-types. Lastly, the performance of the GPT models 
could be further improved by fine-tuning or providing 
examples in the prompt, which were not explored in this 
study. In future work, many of these limitations could 
be addressed by combining the advantages of LSI (e.g., 
robustness, determinism, and no cost) with the advan-
tages of LLM (i.e., contextualization, removal of negation, 
and multi-label classification).

Conclusions
In this study, we demonstrated that using an unsuper-
vised machine learning factorization approach on clini-
cal notes is a robust way to enhance SBDH identification 
from the EHR. In addition, the results demonstrate the 
importance of combining SBDH data from both struc-
tured and unstructured fields in the EHR to more com-
prehensively estimate the prevalence of SBDH in patient 
populations. By providing better estimates of SBDH bur-
den in populations, this work sets the stage for develop-
ing patient-level health risk and utilization prediction 
models that incorporate SBDH factors in addition to 
standard clinical and structured data from the EHR.
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