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Abstract
Background In clinical practice, the incidence of hypofibrinogenemia (HF) after tigecycline (TGC) treatment 
significantly exceeds the probability claimed by drug manufacturers.

Objective We aimed to identify the risk factors for TGC-associated HF and develop prediction and survival models for 
TGC-associated HF and the timing of TGC-associated HF.

Methods This single-center retrospective cohort study included 222 patients who were prescribed TGC. First, we 
used binary logistic regression to screen the independent factors influencing TGC-associated HF, which were used 
as predictors to train the extreme gradient boosting (XGBoost) model. Receiver operating characteristic curve (ROC), 
calibration curve, decision curve analysis (DCA), and clinical impact curve analysis (CICA) were used to evaluate the 
performance of the model in the verification cohort. Subsequently, we conducted survival analysis using the random 
survival forest (RSF) algorithm. A consistency index (C-index) was used to evaluate the accuracy of the RSF model in 
the verification cohort.

Results Binary logistic regression identified nine independent factors influencing TGC-associated HF, and the 
XGBoost model was constructed using these nine predictors. The ROC and calibration curves showed that the model 
had good discrimination (areas under the ROC curves (AUC) = 0.792 [95% confidence interval (CI), 0.668–0.915]) and 
calibration ability. In addition, DCA and CICA demonstrated good clinical practicability of this model. Notably, the RSF 
model showed good accuracy (C-index = 0.746 [95%CI, 0.652–0.820]) in the verification cohort. Stratifying patients 
treated with TGC based on the RSF model revealed a statistically significant difference in the mean survival time 
between the low- and high-risk groups.

Conclusions The XGBoost model effectively predicts the risk of TGC-associated HF, whereas the RSF model has 
advantages in risk stratification. These two models have significant clinical practical value, with the potential to reduce 
the risk of TGC therapy.
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Introduction
Infections caused by multidrug-resistant (MDR) and 
extensively drug-resistant (XDR) pathogens, which lead 
to elevated morbidity, increased mortality rates, and pro-
longed hospital stays, have become increasingly preva-
lent among patients, posing a significant global threat [1, 
2]. Consequently, the quest for efficacious antimicrobial 
agents that target MDR and XDR strains has emerged as 
a paramount focus in clinical practice. Tigecycline (TGC) 
is a broad-spectrum parenteral glycylcycline antibiotic 
widely used in clinical practice. TGC is structurally simi-
lar to tetracyclines but has a 5-fold higher binding affin-
ity due to the addition of an N-alkyl-glycinamide side 
chain on C9 to the main chain of minocycline, which has 
further broadened the antimicrobial spectrum of TGC, 
especially for MDR and XDR bacteria (e.g. vancomycin-
resistant enterococci, carbapenem-resistant Enterobacte-
riaceae, and methicillin-resistant Staphylococcus aureus) 
[3]. TGC binds reversibly to the helical region (H30) on 
the 34 S subunit of the bacterial ribosome, preventing the 
addition of small amino acids to the peptide chain and 
protein translation, thereby inhibiting bacterial growth 
and reproduction [4]. For some patients with complex 
abdominal infections, lung infections, and those in the 
ICU, the broad-spectrum antibiotic TGC tends to show 
good results because these patients are immunocom-
promised, have more underlying diseases, and are more 
frequently subjected to invasive procedures [5]. Not-
withstanding the disconcerting alert raised by the Food 
and Drug Administration (FDA) linking TGC to overall 
mortality, the extensive utilization of TGC in the man-
agement of infections stemming from MDR/XDR origins 
persists due to the lack of alternative efficacious antibiot-
ics [6].

Assessment of drug-related adverse reactions is a 
pivotal criterion in the appraisal of drug safety. TGC, 
characterized by its limited drug interactions and patient-
friendly tolerability, often manifests as common adverse 
events such as nausea, vomiting, diarrhea, and elevated 
transaminase and bilirubin levels in biochemical mark-
ers [7, 8]. However, recent reports showing that TGC 
appears to be associated with coagulation dysfunction 
have caught the attention of researchers. Prolongation 
of TGC treatment has been reported to be a major risk 
factor for HF, inducing a significant decrease in fibrino-
gen (Fib) and an increase in prothrombin time [9, 10]. In 
a cohort study, the incidence of HF was reported to be 
50.5%, with 10.1% of patients experiencing bleeding after 
TGC treatment [11]. Fib, a crucial plasma glycoprotein 
synthesized and secreted by hepatic parenchymal cells, 
is a pivotal coagulation factor. Thrombin-mediated con-
version of Fib into insoluble fibrin precipitates blood clot 
formation and plays an indispensable role in the hemo-
static process [8]. The normal plasma Fib concentration 

is between 2 and 4 g/L. When the Fib level exceeds this 
range, it precipitates severe clotting abnormalities, mark-
edly elevating the risk of conditions such as cerebral 
hemorrhage, gastrointestinal hemorrhage, atherosclero-
sis, thrombosis, and other related ailments. This perilous 
scenario poses a significant threat to the overall well-
being and safety of patients [12, 13]. Although some stud-
ies have described the risk factors for TGC-associated 
HF, including treatment dose and duration, baseline Fib 
levels, and patient sex, conclusions are often controver-
sial due to limitations such as small sample sizes or inad-
equate descriptions [11, 14–16].

Therefore, a well-performing model to predict the 
occurrence of TGC-associated HF in patients receiving 
TGC treatment is urgently needed. In this context, we 
conducted a single-center retrospective cohort study on 
the use of TGC in 222 infected patients. We developed 
and validated two models to predict the risk and timing 
of TGC-associated HF to improve the safety of TGC clin-
ical medication.

Methods
Patients
This single-center retrospective cohort study was con-
ducted at Sir Run Run Shaw Hospital, affiliated with 
the Zhejiang University School of Medicine, which is 
renowned as a comprehensive third -level 1st class hos-
pital. We included patients who were hospitalized and 
received TGC treatment, with fibrinogen levels mea-
sured before and after treatment, from January 1, 2021, 
to December 31, 2021 (n = 390). Patients with the follow-
ing characteristics were excluded from the study: (1) Fib 
level < 2.0 g/L before administration; (2) TGC treatment 
duration < 3 days; (3) patients monitored for < 2 days 
after TGC; (4) patients who experienced recent bleeding 
complications; and (5) patients with data missing > 30%. 
Finally, 222 patients were included in the final analysis.

Data collection and definition
Using an electronic medical record system, we collected 
data on 222 eligible patients, encompassing basic patient 
information, clinical characteristics, and laboratory data. 
Routine monitoring of Fib levels was conducted during 
hospitalization (48 h after TGC administration). Within 
this monitoring timeframe, the nadir Fib levels were 
recorded, categorizing patients with Fib levels below 
2.0 g/L as exhibiting HF and those above 2 g/L as non-
HF. For survival analysis, the outcome variable was the 
time interval from the start of TGC treatment to HF (sur-
vival time) in patients with HF. However, the interval was 
censored as the TGC treatment time for patients without 
TGC-associated HF.
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Model construction and verification
The samples (n = 222) were initially assessed for multi-
collinearity to ensure the stability of subsequent models. 
Based on the Spearman’s correlation analysis, two highly 
correlated features were identified and removed to miti-
gate multicollinearity. Following this preprocessing step, 
the samples were divided into two groups: the training 
cohort (n = 166) and the verification cohort (n = 56), at a 
3:1 ratio, using R software (version 4.3.0, https://www.R-
project.org/).

For the extreme gradient boosting (XGBoost) predic-
tion model, univariate binary logistic regression was 
first conducted to identify potential influencing fac-
tors for TGC-associated HF in the training cohort. The 
strength and direction of the associations between these 
factors and outcome were quantified using odds ratios 
(OR) and 95% confidence intervals (CI). Factors identi-
fied with p-values less than 0.1 in the univariate analysis 
were subsequently included in a stepwise logistic regres-
sion, employing a forward selection method to determine 
the most significant predictors. Then, the predictors 
with p-values less than 0.05 in the stepwise regression 
were deemed as significant and employed for construct-
ing the XGBoost prediction model. Prior to training the 
XGBoost model, we employed a Bayesian optimization 
technique for hyperparameter tuning [17–19]. Bayesian 
optimization is a global optimization method grounded 
in probabilistic models, wherein the optimal hyperpa-
rameter combination is sought through the establishment 
of a Gaussian process regression model of the objective 
function. In this study, we set a predefined search range 
for each hyperparameter and executed multiple iterations 
using the Bayesian optimization method to identify the 
optimal hyperparameter combination within the search 
space. The optimal hyperparameters for the XGB model 
are detailed in Supplementary material. Ultimately, we 
achieved an optimized XGBoost model that demon-
strated an enhanced performance in the training cohort. 
The receiver-operating characteristic (ROC) curve, cali-
bration curve, decision curve analysis (DCA), and clini-
cal impact curve analysis (CICA) were used to evaluate 
the discrimination, calibration, and clinical practicability 
of the model. The model was internally validated using a 
five-fold cross-validation.

For the random survival forest (RSF) model, the parti-
tioning of the training and verification cohorts was con-
sistent with that of the XGBoost model. Prior to RSF 
modeling, we made specific adjustments to our data to 
meet the survival analysis prerequisites. For patients who 
developed HF, we designated the observation period as 
the time from the start of TGC treatment to the onset of 
HF. For patients without HF, the treatment time for TGC 
was considered as the observation period. This approach 
ensured an accurate representation of the time-to-event 

nature of HF in relation to the TGC treatment. To 
develop the RSF model, we utilized all the available fea-
tures in the training dataset. Once the model is trained, it 
yields importance scores for every feature, allowing us to 
discern the most influential predictors. Subsequently, we 
conducted fivefold cross-validation for all features in the 
training cohort ten times to obtain stable feature selec-
tion results. Finally, the trained model was deployed on 
the verification cohort to predict the survival outcomes. 
The RSF model was constructed using 1,000 trees.

Statistical analysis
R software was used to support the grouping and statisti-
cal analysis of the data. Covariates featuring missing val-
ues exceeding 10% were eliminated, whereas those with 
values less than 10% were filled out by multiple imputa-
tion. Continuous data were expressed as mean ± standard 
deviation (mean ± SD) or median, interquartile range 
(IQR), and categorical data were expressed as numerical 
values and percentages (n, %); P < 0.05, considered statis-
tically significant. The t-test or Mann-Whitney U test was 
used to compare the two groups. The figures presented in 
this study were generated using R software and Graph-
Pad Prism software (version 9.5.1, https://www.graph-
pad.com/).

Results
Study design
The patients (n = 222) were randomly divided into train-
ing (n = 166) and validation (n = 56) cohorts. The training 
cohort was used to identify the independent influenc-
ing factors of TGC-associated HF and construct the 
XGBoost model. We conducted five-fold cross-validation 
for all features in the training cohort to obtain stable fea-
ture selection results to construct the RSF model. The 
validation cohort was then employed for internal vali-
dation of our models. Figure  1 presents a comprehen-
sive summary of the patient selection process and study 
design, providing clear insights into the total registry 
population, excluded patients, reasons for exclusion, final 
study population, and group allocation.

Demographics, clinical characteristics, and laboratory 
examination of the study population
In this study, a comprehensive analysis was performed 
involving 222 patients satisfying predefined criteria. The 
mean age of all patients was 62.49 ± 16.93, comprising 
149 (67.11%) males and 73 (32.98%) females. 99 (44.6%) 
developed HF after TGC treatment. The level of Fib, a 
crucial coagulation marker, significantly decreased after 
TGC treatment (P < 0.0001) (Fig. 2A), suggesting a poten-
tial propensity for HF occurrence subsequent to TGC 
administration and an increased likelihood of bleeding 
complications. Before TGC prescription treatment, the 

https://www.R-project.org/
https://www.R-project.org/
https://www.graphpad.com/
https://www.graphpad.com/
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Fig. 1 Flowchart of study design. (A) Flowchart of patients selection process, development and verification of the XGBoost predictive model. (B) Flow-
chart of development and verification of the RSF survival analysis model
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mean Fib level was 4.55 g/L, while the mean level of the 
lowest Fib we monitored decreased to 2.32 g/L after TGC 
treatment. Distinct disparities between the HF and non-
HF groups were noted across 12 parameters, including 
factors such as age, SOFA score, duration of hospitaliza-
tion, baseline fibrinogen levels, and PCT levels (P < 0.05). 
Detailed demographic and clinical characteristics and 
laboratory examination results of the study population 
are shown in Tables 1 and 2. In the HF group, HF devel-
oped 1 to 31 days after TGC treatment, with a median 
(25-75%) of 6 (4–8) days (Fig. 2B). Table 3 presented the 
departmental distribution of patients subjected to TGC 
treatment and those who developed HF following treat-
ment. The patients included in the present study were 
mainly distributed in the departments of Hematology, 
General surgery, and Respiratory medicine, and the inci-
dence of TGC-associated HF was 40.00%, 50.82%, and 
38.46%, respectively. Irrespective of the department, the 
likelihood of TGC-associated HF was consistently higher 
than that provided by drug manufacturers.

Univariate and multivariate binary logistic regression 
analysis for influencing factors of TGC-associated HF
We analyzed the demographic and clinical characteristics 
and laboratory data of the training cohort using univari-
ate and multivariate binary logistic regression analyses. 
Table 4 displayed the results of univariate and multivari-
ate binary logistic regression analyses. In the univariate 
analysis, 14 influencing factors were screened (P < 0.1), 
including age, SOFA score, ICU, baseline fibrinogen level, 
treatment duration, TBIL, ALB, PCT, cardiovascular 
disease, anticoagulant drugs/antiplatelet drugs or non-
steroidal anti-inflammatory drugs, no combination with 

anticoagulant/procoagulant, combined with β-lactam 
antibiotics, abdominal infection, and sepsis. All the above 
factors were included in the multivariate analysis. In mul-
tivariate analysis, nine factors were identified as indepen-
dent influencing factors of TGC-associated HF, including 
age, SOFA score, baseline fibrinogen level, treatment 
duration, PCT, combined with anticoagulant drugs, anti-
platelet drugs, or nonsteroidal anti-inflammatory drugs, 
combined with β-lactam antibiotics, abdominal infec-
tion, and sepsis. Of these, age, SOFA score, treatment 
duration, and PCT level were the risk factors (adjusted 
OR > 1).

Correlation analysis of influencing factors
To further examine the independence of the nine factors 
screened and ensure the stability of subsequent models, 
we performed a correlation analysis using the Spear-
man method. The p-values and correlation coefficients 
(rs) between all the parameters are visually represented 
in the heatmap. Spearman’s rank correlation coefficient 
was used to determine the correlation between the paired 
variables, thus forming a heat map composed of all cor-
relation coefficients. As shown in Fig. 3, the maximum rs 
value was only 0.28, observed between age and treatment 
duration, implying the absence of substantial correlations 
between the diverse factors. In other words, there was no 
multicollinearity between the nine influencing factors.

Prediction outcomes of the XGBoost model for TGC-
associated HF
To determine whether the nine factors could predict 
TGC-associated HF, we built a prediction model using 
the XGBoost machine learning algorithm in the training 

Fig. 2 The variation of Fib levels and distribution of HF occurrence time. (A) The variation of Fib before and after TGC prescription treatment. ****P < 0.0001. 
(B) The patients developed HF from 1 to 31 days after after TGC treatment, with a median (25-75%) of 6 (4–8) days
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cohort. We then applied the model to predict TGC-asso-
ciated HF in the verification cohort to evaluate its per-
formance (Fig. 4A). We evaluated the performance of our 
model in terms of its discrimination, calibration, and clin-
ical practicability. The ROC curves demonstrated good 
discrimination of our model. The areas under the ROC 
curves (AUC) were 0.812 (95%CI, 0.746–0.878) and 0.792 
(95%CI, 0.668–0.915) in the training and verification 

cohorts, respectively (Fig.  4B and C). The calibration 
curve of the model was close to the ideal diagonal for 
both the training and verification cohorts, confirming the 
good degree of discrimination of the model (Fig. 4D and 
E). Furthermore, the XGBoost model showed a superior 
overall net benefit based on DCA and CICA results, sub-
stantiating its clinical practicability (Fig. 4F-I). Thus, we 
identified a set of predictors for TGC-associated HF and 
developed a well-performing prediction model.

Prediction outcomes of the RSF model for the timing of 
TGC-associated HF
To further predict the timing of TGC-associated HF, 
we developed an RSF model in the training cohort and 
applied the model to predict the timing of TGC-associ-
ated HF in the verification cohort to measure the per-
formance of our model (Fig.  5A). The evaluation of the 
feature importance revealed features that significantly 
contributed to the accuracy of the model. The features 
ranked in the top 10 in terms of importance for the RSF 
model are shown in Fig.  5B, including PCT, baseline 

Table 1 Characteristics of the study population
Characteristics Total 

(n = 222)
Non-HF 
(n = 123)

HF (n = 99) P

HF 99 (44.59%)
Male 149 (67.11%) 78 (63.41%) 71 (71.72%) 0.191
Age (Year) 62.49 ± 16.93 59.76 ± 18.44 65.89 ± 14.12 0.006
BMI 22.0 (20.2, 

24.8)
22.0 (22.7, 
25.1)

21.7 (19.6, 
24.5)

0.141

Infection type
Septic shock 3 (1.4%) 1 (0.81%) 2 (2.02%) 0.587
Sepsis 6 (2.7%) 4 (3.25%) 2 (2.02%) 0.694
Pulmonary 
infection

69 (31.08%) 43 (34.96%) 26 (26.26%) 0.164

Urinary tract 
infection

1 (0.45%) 0 1 (1.01%) 0.446

Skin and soft tis-
sue infection

3 (1.4%) 2 (1.63%) 1 (1.01%) 1.000

Neutropenia with 
infection

4 (1.8%) 1 (0.81%) 3 (3.03%) 0.326

Abdominal 
infection

34 (15.32%) 24 (19.51%) 10 (10.10%) 0.053

Two or more 
infection types

102 (45.95%) 48 (39.02%) 54 (84.85%) <0.001

SOFA score 4 (2, 7) 4 (2, 6) 4 (3, 8) 0.016
Hospitalization 
time

30 (20, 48) 30(20, 47) 32 (19, 48) 0.491

ICU(Yes) 146 (65.77%) 73 (59.35%) 73 (73.74%) 0.025
Shock (Yes) 54 (24.32) 23 (18.70%) 31 (31.31%) 0.029
Concomitant 
drugs
Anticoagulant 
drugs/anti-
platelet drugs/ 
nonsteroidal anti-
inflammatory 
drugs

86 (38.74%) 53 (43.09%) 33 (33.33%) 0.138

Hormone 11 (4.95%) 4 (3.25%) 7 (7.07%) 0.192
Combination 
with two types

110 (49.55%) 53 (43.09%) 57 (57.58%) 0.008

No combination 15 (6.76%) 13 (10.57%) 2 (2.02%) 0.012
Combined with 
other antimicro-
bials (Yes)

180 (%) 101 (82.11%) 79 (79.80%) 0.215

Treatment dura-
tion (Day)

11 (8, 17) 10 (7, 16) 12 (8, 19) 0.028

Surgery a month 
ago (Yes)

60 31 29 0.495

Notes: Continuous data are presented as mean ± SD or mean (IQR); categorical 
data are presented as n (%), and P < 0.05, which was considered to be statistically 
significant between the HF and non-HF groups

Table 2 The results of laboratory examination of the study 
population
Characteristics Total 

(n = 222)
Non-HF 
(n = 123)

HF (n = 99) P

Baseline Fib level 
(g/L)

4.55 ± 1.56 4.90 ± 1.59 4.10 ± 1.40 <0.001

Lowest Fib level 
during treatment 
(g/L)

2.32 ± 1.08 3.05 ± 0.88 1.41 ± 0.38 <0.001

TBIL (g/L) 14.3 (10.1, 
23.1)

13.9 (10.0, 
19.4)

15.3 (10.4, 
27.9)

0.062

ALT (U/L) 22.5 (13.8, 
44.3)

22.0 (14.0, 
43.0)

23.0 (13.0, 
46.0)

0.899

AST (U/L) 26.0 (17.8, 
43.0)

25.0 (18.0, 
41.0)

27.0 (17.0, 
52.0)

0.577

Crea (µmol/L) 61.5 (46.0, 
92.3)

61.0 (46.0, 
88.0)

62.0 (46.0, 
106.0)

0.750

WBC (10^9/L) 7.3 (3.5, 12.5) 7.5 (2.3, 11.9) 7.2 (4.5, 13.3) 0.416
NE% 83.0 (70.9, 

88.9)
83.0 (71.1, 
86.8)

83.0 (70.5, 
90.2)

0.297

ALB (g/L) 28.9 (26.4, 
31.6)

29.3 (26.7, 
32.3)

28.2 (25.7, 
31.2)

0.047

CRP (mg/L) 99.3 (49.05, 
160.75)

97.0 (45.6, 
177.7)

101.6 (52.6, 
157.6)

0.985

PCT (ng/mL) 0.40 (0.16, 
1.11)

0.30 (0.13, 
0.61)

0.61 (0.29, 
1.69)

<0.001

Type of infected 
bacteria
Acinetobacter 
baumannii

67 (30.18%) 32 (26.01%) 35 (35.35%) 0.132

Klebsiella 
pneumoniae

53 (23.87%) 32 (26.02%) 21 (21.21%) 0.404

Others 102 (45.95%) 59 (47.97%) 43 (43.43%) 0.523
Notes: Continuous data were presented as mean ± SD or mean (IQR), categorical 
data were presented as n (%), P < 0.05 was considered to be statistically 
significant between HF group and non-HF group
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fibrinogen level, TBIL, ALB, cardiovascular disease, 
SOFA score, AST, ALT, age, and BMI index. Finally, we 
selected the top four features in terms of importance 
(PCT, baseline fibrinogen level, TBIL, ALB) by fivefold 
cross-validation, which showed good predictive power 
(concordance index (C-index) = 0.746 [95%CI, 0.652–
0.820]) for predicting the timing of TGC-associated HF 
(Fig. 5C). The estimated survival function of the patients 
in the verification cohort is shown in Fig. 5D. Therefore, 
we identified a potential predictive panel for the timing of 
TGC-associated HF.

The RSF risk stratification of patients
Patient stratification is of great significance for effective 
patient management. We utilized a RSF model to pre-
dict risk scores for each sample. For each calculated risk 
score, we iterated through them, treating each score as 
a potential threshold for dividing patients into high-risk 
and low-risk groups. Through this iterative process, we 
computed the log-rank test statistic for each attempt, 
seeking the threshold that yielded the maximum statis-
tic. This threshold was considered the optimal risk score 
threshold (13.668), at which point the samples were cat-
egorized into high-risk and low-risk groups. As shown 
in Fig.  6, the mean survival time of the high-risk group 

was significantly shorter than that of the low-risk group 
in both cohorts. The mean survival time and occurrence 
of TGC-associated HF in different RSF stratifications are 
shown in Table 5.

Discussion
The current study first introduced machine learning algo-
rithms, the XGBoost and RSF models, for the monitor-
ing of patients following TGC combination therapy. The 
findings of this study are as follows: First, we identified 9 

Table 3 The distribution of departments of patients
Department Number 

of parents 
treated with 
TGC

Patients devel-
oped HF after 
TGC treatment

Inci-
dence 
of HF 
(%)

Hematology 65 26 40.00
General surgery 61 31 50.82
Respiratory medicine 26 10 38.46
Emergency 12 7 58.33
Infectious liver diseases 10 4 40.00
Orthopaedics 9 3 33.33
Critical care medicine 6 2 30.00
Anorectal surgery 6 4 66.67
Neurosurgery 5 3 60.00
Cardiology 3 1
Gastroenterology 3 2
Neurology 2 1
Cardiac surgery 2 0
Nephrology 2 1
Thoracic 2 1
Urology surgery 2 1
Oncology radiotherapy 2 1
Medical oncologists 1 0
Plastic surgery 1 1
Endocrinolog 1 0
Rehabilitation 1 0
Total 222 99
Notes: Departments with a small number of cases did not calculate the 
incidence

Table 4 Univariate and multivariate binary logistic regression 
analysis for the influencing factors of TGC-Associated HF in the 
training cohort
Variables Univariate Multivariate

Crude OR 
(95%CI)

P-value Adjust-
ed OR 
(95%CI)

P-
value

Age (Year) 1.026 
(1.006–1.048)

0.010 1.048 
(1.020–
1.081)

0.001

SOFA score 1.087 
(1.004–1.004)

0.044 1.140 
(1.028–
1.273)

0.016

Icu (Yes) 1.977 
(1.019–3.936)

0.048

Baseline Fib level (g/L) 0.750 
(0.594–0.932)

0.010 0.502 
(0.347–
0.692)

<0.001

Treatment time (Day) 1.026 
(0.997–1.059)

0.088 1.099 
(1.055–
1.150)

<0.001

TBIL 1.014 
(1.000-1.031)

0.070

ALB 0.934 
(0.869–0.999)

0.056

PCT 1.024 
(0.998–1.057)

0.094 1.045 
(1.005–
1.091)

0.040

Cardiovascular disease 2.685 
(1.269–5.844)

0.010

Combined with 
anticoagulant drugs/
antiplatelet drugs/
nonsteroidal anti-
inflammatory drugs

0.528 
(0.272–1.005)

0.053 0.325 
(0.133–
0.747)

0.010

No combination 
with anticoagulant/
procoagulant

0.253 
(0.038-1.000)

0.083

Combined with 
β-lactam antibiotics

0.577 
(0.289–1.124)

0.098 0.400 
(0.161–
0.957)

0.043

Abdominal infection 0.523 
(0.204–1.237)

0.099 0.154 
(0.037–
0.541)

0.006

Sepsis 0.676 
(0.092–3.569)

0.100 0.078 
(0.007–
0.661)

0.025

Notes: P < 0.05 was considered statistically significant
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independent factors of TGC-associated HF, which were 
not completely consistent with those of previous studies. 
Second, these two models demonstrate superior perfor-
mance in terms of discrimination, calibration, and clini-
cal applicability. Third, the RSF model exhibited excellent 
performance in risk stratification of patients.

TGC, the first glycyl-tetracycline drug, is widely used 
for complex abdominal infections, complex skin and 
soft tissue infections, and community-acquired pneu-
monia [20]. TGC was approved by the FDA in June 2005 
and entered the Chinese market in November 2011. 
The antibacterial spectrum of TGC covers both gram-
negative and gram-positive bacteria, and it also exhibits 
strong antibacterial activity against MDR and XDR bac-
teria, leading to the continual expansion of its applica-
tion domain [21]. With the widespread use of TGC, more 
attention has been paid to their adverse reactions.

Gastrointestinal symptoms, such as nausea and vom-
iting, are common adverse effects for drug manufactur-
ers. Hemolymphatic symptoms, such as a decrease in 
fibrinogen level, prolonged prothrombin time (PT), and 
prolonged activated partial thromboplastin time (aPTT), 

are categorized as uncommon reactions [16]. However, 
since the first report of TGC-associated HF in 2010 [22], 
it has been increasingly reported more and more fre-
quently [9, 23–25]. Previous studies have shown a prob-
ability of HF of 14–60% during TGC treatment, clearly 
highlighting that this adverse reaction is far from uncom-
mon [13]. In many coagulopathic events, Fib is one of 
the pivotal factors that tends to precipitate a decline in 
the blood. Bleeding may occur when the fibrinogen level 
is below 1 g/L [26]. Zhu et al. suggested that prior TGC 
therapy within 1 month was an independent risk factor 
for hemorrhagic pneumonia [27]. In our study, 44.59% 
of patients developed HF after receiving TGC treat-
ment, mirroring the results of Zhang et al., with a simi-
larity rate of 50.50% [11]. HF developed at a median of 6 
(4–10) days in our study, similar to the timing identified 
by Hu et al., although their study reported a higher HF 
incidence of 55.12% [14]. Based on the above studies, it 
can be concluded that the impact of TGC on coagulopa-
thy is common in clinical applications and potentially 
leads to serious harm. Thus, identification of patients 
with an increased risk of TGC-associated HF and early 

Fig. 3 The correlation coefficient heatmap of influencing factors. Concomitant1 means the patients received treatment of TGC combined with antico-
agulant drugs/antiplatelet drugs/nonsteroidal anti-inflammatory drugs
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Fig. 4 Prediction outcomes of the XGBoost model for TGC-associated HF. (A) Schematic diagram of the dataset creation and analysis strategy for the 
prediction of TGC-associated HF. (B and C) The ROC curves of the XGBoost model in the training cohort and verification cohort. (D and E) The calibration 
curves of the XGBoost model in the training cohort and verification cohort. (F and G) The DCA of the XGBoost model in the training cohort and verifica-
tion cohort. (H and I) The CICA of the XGBoost model in the training cohort and verification cohort
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Fig. 6 Survival curves for patients after TGC treatment with different risks stratified using the RSF model. (A) Patients with low-risk vs. high-risk in the 
training cohort. (B) Patients with low-risk vs. high-risk in the verification cohort

 

Fig. 5 Prediction outcomes of the RSF model for the timing of TGC-associated HF. (A) Schematic diagram of the dataset creation and analysis strategy for 
the prediction of the timing of TGC-associated HF. (B) The top 10 features in importance to the RSF model. (C) Overall C-index values of RSF model in the 
verification cohort. Error bars represent 95% confidence intervals. (D) The estimated survival function of patients in verification cohort
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intervention and treatment is necessary in clinical 
practice.

At present, most studies on TGC-associated HF pri-
marily focus on analyzing clinical characteristics and 
influencing factors, and the use of models for prediction 
is rarely reported. Therefore, it is imperative to acquire a 
more comprehensive understanding of the factors influ-
encing TGC-associated HF and to construct a predic-
tion model based on these factors to accurately forecast 
the likelihood of TGC-associated HF. In our study, we 
screened nine independent factors influencing TGC-
associated HF using binary logistic regression analysis. 
Notably, our findings are not completely consistent with 
those of previous research. We found that age, SOFA 
score, treatment time, and PCT level were independent 
risk factors for TGC-associated HF. To our knowledge, 
there have been no reports that SOFA score and PCT 
are risk factors for TGC-associated HF, which is the first 
identified risk factor in this study. SOFA score is a simple 
method for evaluating and monitoring organ dysfunction 
in patients. A retrospective study conducted by Kato and 
Matsuura found that the SOFA score did not decrease 
in patients with mild coagulopathy but was significantly 
decreased in patients with severe coagulopathy [28]. The 
higher the score, the more severe the organ dysfunction 
is. Thus, the SOFA index is a risk factor for TGC-asso-
ciated HF that is easily understood. PCT level is a com-
monly used indicator of infection in clinical practice. 
Under normal physiological conditions, the serum PCT 
levels are extremely low. However, elevated PCT levels 
indicate severe infection [29]. We speculate that severe 
infection may cause microvascular damage, subsequently 
triggering the release of inflammatory neurotransmitters 
and cytokines, thereby exacerbating coagulation system 
perturbations.

Among the five protective factors we found, the base-
line fibrinogen level was consistent with numerous pre-
vious studies [13, 30]. Fib is an acute-phase protein and 
a marker of inflammation, which increases significantly 
when the body is inflamed [31], therefore it has a pro-
tective effect on TGC-associated HF. The main infection 
sites were the lung and abdominal cavity; however, intra-
abdominal infection was an independent risk factor for 
TGC-associated HF [14]. However, our results were con-
trary; although infection also occurs mainly in the lungs 
and abdomen, abdominal infection is a protective factor. 

Liu et al. (2021) found that TGC-associated HF was not 
related to the site of infection [13]. We also found that 
combinations of anticoagulant drugs, antiplatelet drugs, 
nonsteroidal anti-inflammatory drugs, β-lactam antibiot-
ics, and sepsis were protective factors. These inconsisten-
cies may be due to differences in patient characteristics, 
operator self-awareness, and the lack of statistical sam-
ples. It is essential to acknowledge that our study sheds 
light on novel risk factors while also highlighting incon-
sistencies that warrant further investigation.

Independent influencing factors were used to develop 
a predictive model for TGC-associated HF. We tried 
several ways to build the model and finally chose the 
XGBoost machine-learning algorithm. The ROC and 
calibration curves proved that the model had good dis-
crimination and calibration to identify individuals with a 
high risk of TGC-associated HF. Furthermore, DCA and 
CICA underscored the superiority of our model through 
net clinical benefit, which is a crucial asset for personal-
ized evaluation. Our model represents a pioneering effort 
to predict TGC-associated HF. In the present study, both 
continuous and categorical variables were used to build 
a prediction model. However, the reliability of categori-
cal variables may decrease because of the operator’s self-
awareness, potentially impacting the model’s integrity. 
Therefore, we will consider adopting continuous vari-
ables and expanding the sample size to optimize the 
model further.

For the first time, we constructed an RSF model to 
analyze the timing of TGC-associated HF. Our results 
showed that baseline fibrinogen level and PCT not only 
served as influencing factors of TGC-associated HF but 
also played pivotal roles in predicting the timing of TGC-
associated HF, as indicated by the high importance scores 
in the RSF model. In contrast, TBIL and ALB levels were 
not identified as risk factors for TGC-associated HF. 
However, they exhibited potential relevance in the timing 
of TGC-associated HF. When the concentration of TBIL, 
a crucial indicator of hepatic function, increases signifi-
cantly, it may indicate a decline in liver transformation 
function [32]. ALB synthesized by the liver has a nor-
mal range of 40–55  g/L. Clinically, high ALB levels are 
mainly associated with increased blood concentrations, 
while low ALB levels are more commonly observed in 
malnutrition and liver function damage [33]. Among the 
222 patients included in this study, the ALB level of 215 

Table 5 The mean survival time (days) of different risk stratifications in the training and verification cohort
Cohort RSF Risk Stratification Number Events Mean 95%LCI 95%UCI
Training Low-risk 101 28 12.852 10.950 14.723

High-risk 65 42 5.923 9.524 7.000
Verification Low-risk 37 15 11.351 9.378 13.893

High-risk 19 14 10.684 4.947 20.684
Notes: LCI means Low confidence interval, UCI means Up confidence interval
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patients was < 40 g/L, which may be due to poor liver syn-
thesis. Both TBIL and ALB levels suggest that there may 
be a relationship between the timing of TGC-associated 
HF and liver function. However, we did not find an asso-
ciation between TGC-associated HF and liver function. 
Previous studies have also debated whether liver func-
tion affects TGC-associated HF [13, 34]. We speculate 
that this may be due to the clinical application of TGC 
in accordance with the drug manufacturers’ instruc-
tions to reduce the dose of severe liver function dam-
age. Moreover, because Fib is synthesized by the liver, we 
recommend vigilan monitoring of Fib levels in patients 
with low liver function, although conclusive evidence of 
the connection between the liver and TGC-associated 
HF remains elusive. In addition, the RSF model showed 
excellent performance in patient stratification. Physicians 
guided by the RSF risk stratification can evaluate TGC-
associated HF timing and pay more attention to high-risk 
individuals. Based on the above results, our models have 
the potential to help clinicians make better clinical deci-
sions regarding TGC treatment.

This study has several limitations that should be men-
tioned objectively. First, this was a single-center ret-
rospective cohort study, the sample size was not large 
enough, and the factors influencing screening may not be 
accurate and comprehensive. Second, potential selection 
and measurement biases were inevitable. In addition, 
it is pertinent to note that our dataset features certain 
instances of missing values. While we mitigated this con-
cern by excluding factors with more than 10% missing 
values and applying multiple imputations for those with 
less than 10%, the possibility of residual impact remains. 
Finally, the model was not validated using external data. 
These inherent limitations collectively contribute to the 
potential attenuation of the accuracy of the prediction 
models.

Conclusion
In our study, as machine learning algorithms, the 
XGBoost and RSF models provided accurate predic-
tions for TGC-associated HF and the timing of TGC-
associated HF as well as remarkable risk stratification of 
patients. This study introduced the XGBoost and RSF 
models for the monitoring of patients following TGC 
combination therapy for the first time. These two mod-
els have clinical practical value and are worthy of further 
study, as they will contribute to reducing the risk of TGC 
therapy.
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