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Abstract 

Background Segmentation of skin lesions remains essential in histological diagnosis and skin cancer surveillance. 
Recent advances in deep learning have paved the way for greater improvements in medical imaging. The Hybrid 
Residual Networks (ResUNet) model, supplemented with Ant Colony Optimization (ACO), represents the synergy 
of these improvements aimed at improving the efficiency and effectiveness of skin lesion diagnosis.

Objective This paper seeks to evaluate the effectiveness of the Hybrid ResUNet model for skin lesion classification 
and assess its impact on optimizing ACO performance to bridge the gap between computational efficiency and clini-
cal utility.

Methods The study used a deep learning design on a complex dataset that included a variety of skin lesions. The 
method includes training a Hybrid ResUNet model with standard parameters and fine-tuning using ACO for hyperpa-
rameter optimization. Performance was evaluated using traditional metrics such as accuracy, dice coefficient, and Jac-
card index compared with existing models such as residual network (ResNet) and U-Net.

Results The proposed hybrid ResUNet model exhibited excellent classification accuracy, reflected in the noticeable 
improvement in all evaluated metrics. His ability to describe complex lesions was particularly outstanding, improving 
diagnostic accuracy. Our experimental results demonstrate that the proposed Hybrid ResUNet model outperforms 
existing state-of-the-art methods, achieving an accuracy of 95.8%, a Dice coefficient of 93.1%, and a Jaccard index 
of 87.5.

Conclusion The addition of ResUNet to ACO in the proposed Hybrid ResUNet model significantly improves the clas-
sification of skin lesions. This integration goes beyond traditional paradigms and demonstrates a viable strategy 
for deploying AI-powered tools in clinical settings.

Future work Future investigations will focus on increasing the version’s abilities by using multi-modal imaging 
information, experimenting with alternative optimization algorithms, and comparing real-world medical applicability. 
There is also a promising scope for enhancing computational performance and exploring the model’s interpretability 
for more clinical adoption.
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Introduction
Skin cancer is one of the most prevalent forms of can-
cer globally, impacting millions of individuals each year. 
It encompasses various subtypes, including melanoma, 
basal cell carcinoma (BCC), and squamous cell carci-
noma (SCC), each with distinct levels of malignancy and 
public health implications [1]. Among these, melanoma is 
the most lethal if not detected early, leading to the major-
ity of skin cancer-related deaths despite accounting for a 
smaller proportion of cases compared to BCC and SCC 
[2]. The incidence of melanoma continues to rise world-
wide, with estimates indicating over 150,000 new cases 
annually, resulting in approximately 48,000 deaths each 
year [3].

The economic burden of skin cancer extends beyond 
its direct impact on health, significantly straining health-
care systems. Costs associated with preventive meas-
ures, diagnosis, treatment, and long-term care contribute 
to substantial financial challenges. For example, in the 
United States alone, the annual cost of treating skin can-
cers exceeds $8.1 billion, underscoring the economic 
impact of this disease [4].

Geographically, the rates of skin cancer are different; 
the highest rates are in countries with more exposure to 
Ultraviolet (UV) radiation. The highest rates of skin can-
cer worldwide are in Australia and New Zealand [5]. The 
variations are mostly the result of different skin types, 
daily lifestyles, and sun protection measures used by the 
community.

Prevention and early detection are important strategies 
to address global skin cancer problems. Programs to reduce 
UV exposure are urgent and should include sunscreen and 
protective clothing. Moreover, public awareness campaigns 
geared towards early detection through routine skin exami-
nations and expert dermatology have effectively reduced 
the mortality rate due to skin cancer [6].

The global impact of skin cancer has profound impli-
cations for public health policy and healthcare systems. 
Continued efforts in disease prevention, early detection, 
and the development of alternative treatments are criti-
cal for mitigating the widespread effects of this common 
condition. Early detection remains paramount, as it sig-
nificantly improves survival rates while reducing the 
need for aggressive treatments. Research emphasizes 
the importance of early diagnosis, which typically leads 
to favorable outcomes with less invasive interventions 
[7], the extent of skin cancer on the global level is stag-
gering and leads to the making of public health policies 
and a new approach to healthcare systems.  Completing 
preventative, screening, and advanced research in treat-
ment are the most important things to be taken into 
account for reducing the consequences of this common 
condition. Skin cancer must be detected at an early stage 

because it is the best way to improve survival rates and 
reduce the severity of the treatments that are required. In 
most cases, dermatologists usually detect skin can-
cer very early by applying minimally invasive treatment 
methods. Such types of treatment are, without question, 
highly efficient and highly successful [8].

Furthermore, AI-based diagnostics has already proven 
to be helpful in many cases.  These models and algo-
rithms are the result of machine learning and deep 
learning techniques that are capable of examining der-
matological images with great accuracy.  These models 
can differentiate between benign and malignant lesions 
with accuracy at par with dermatologists with extensive 
experience in this area [9]. This attribute can assist der-
matologists in making more precise diagnoses and has 
a prospect of screening widely in primary care settings, 
where a lack of specialized dermatological expertise 
might be a problem.  Digital dermoscopy tools and AI-
supported imaginal analysis are breakthroughs in medi-
cine.  These devices can store and compare images over 
time, enabling the discovery of even the smallest changes 
in a patient’s skin lesions that could be malignant. These 
technologies improve the precision of diagnostics and 
make the patient care process much more efficient in the 
long term. Telemedicine has also increased accessibility 
to dermatological expertise, especially at the fringes of a 
country and in rural or underserved areas. Teledermatol-
ogy is a form of telemedicine that provides remote diag-
nosis and management of skin lesions through sharing 
digital images between primary care providers and der-
matologists, helping to speed up the diagnosis and make 
it possible for early intervention [10].

One of the crucial points is the role of early diagnosis 
in treating skin cancer.  This helps improve the progno-
sis, lowering healthcare costs and lightening the need for 
extensive treatments. Incorporating new diagnostic tech-
nological approaches and methodologies, especially AI 
and telemedicine, is essential to these processes, which 
may finally turn around skin cancer management glob-
ally. The progress made in multispectral and hyperspec-
tral imaging technologies has been the key to getting the 
detailed analysis of skin lesions, which takes place by cap-
turing information from diverse wavelengths [11]. These 
imaging modalities can detect slight variations in skin 
coloration and blood flow at a rate that cannot be seen 
by the naked eye, which may also be a sign of melanoma 
onset. Hyperspectral imaging is a remarkable technique 
that is capable of picking out cancerous tissue-specific 
spectral signatures, a tool that could be used as a non-
invasive way of diagnosing skin cancer [12].

Artificial intelligence (AI) has turned the world of 
dermatological imaging on its head by creating tech-
nology that can analyze complex image datasets 
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straightforwardly.  The deep learning models used by AI 
algorithms have now reached the same level of accuracy 
as dermatologists, thanks to their vast training data. These 
algorithms analyze high-resolution ultrasound (HRUS), 
optical coherence tomography (OCT), and other imaging 
modalities to identify malignancies and recommend diag-
noses that substantially facilitate the diagnostic process 
and decrease the rate of human error [13].

Research puts forward the hybrid model of ResUNet 
architecture with ant colony optimization (ACO).  Inte-
gration, however, takes advantage of the deep learning 
capabilities in spatial data processing and the ACO’s 
optimization of the training parameters. When these 
two algorithms are combined, they result in a robust 
algorithm that is specifically designed for skin lesion seg-
mentation.  The study performs better than other meth-
ods regarding image segmentation accuracy thanks to 
the hybrid model used.  This model can precisely define 
the lesion peripheries in different contexts, which greatly 
improves the accuracy and applicability of the automated 
skin lesion analysis. This is critical for the early detec-
tion and treatment planning of skin cancer.  The devel-
opment of ACO for hyperparameter optimization is one 
of the major improvements compared to conventional 
training algorithms.  This method automatically changes 
parameters like learning rate and batch size while train-
ing the model. Therefore, the model can improve its per-
formance without human intervention. Furthermore, this 
method might help us to reduce the time and computer 
resources needed for the model training process.

This study aims to design, implement, and evaluate 
a novel hybrid ResUNet model that incorporates the 
structural benefits of ResNet and U-Net architectures 
to improve the accuracy and efficiency of skin lesion 
segmentation. This includes the integration of ACO for 
hyperparameter tuning, aiming to optimize model per-
formance. The study also assesses the model’s robustness 
across various lesion types and potential for practical 
deployment in clinical settings. The overarching goal is to 
advance the field of medical image analysis and provide a 
tool that can aid in the early detection and treatment of 
skin cancer.

"Related work" section offers a literature review analyz-
ing the gaps in current methods and existing technolo-
gies. "Proposed hybrid ResUNet model" section provides 
information regarding the hybrid deep learning model 
employed in the study, which includes ResUNet and 
ACO and experimental setup design. The outcomes and 
the discussion section exhibit the model in action and the 
visual results to showcase how effective the model has 
been. It summarizes the study’s results and how they fit in 
with other research findings, showing how the study can 
contribute to clinical practice. The paper concludes with 

a "Conclusion and future work" section that shows the 
study results and offers directions for further research.

Related work
The increasing complexity and variety of the skin, with 
its many pigmentations and textures, still challenge the 
current models. The problem of obtaining accurate lesion 
contours and the issues with generalizing models across 
diverse datasets remain unsolved. This signifies the vital-
ity of revolutionary methods that can increase the pre-
cision of segmentation and encompass adaptability and 
efficiency.

Existing techniques in skin lesion segmentation
The medical field of skin lesion segmentation has been 
subjected to great revolutions thanks to using different 
images and computational techniques. These innovations 
have contributed to the better diagnostic outcome of skin 
cancer by making it more accurate and efficient. This part 
of the review discusses the current advanced techniques 
for skin lesion segmentation.

Dermoscopy has dramatically revolutionized skin 
cancer diagnosis by allowing a view of the surface of 
the skin that is better resolved than could be seen non-
invasively. The mode of action involves the reduction of 
skin gloss and allows the intricate assessment of colors 
or micro-structures in the lesion that cannot be noted 
normally.  The latest innovations entail automated sys-
tems that analyze these images for boundaries, color 
variation, and diameter, employing microcalcifications 
as the main feature of malignancy (asymmetrical, bor-
der, color, diameter (ABCD) rule) [14]. Among the deep 
learning approaches, the Convolutional Neural Networks 
(CNNs) have become the most frequently implemented 
for the automated analysis of dermoscopic images.  The 
deep learning technique known as CNNs can learn com-
plex patterns in the data without manual feature extrac-
tion. Such as U-Net, which is a very popular architecture 
that was designed specifically for medical image segmen-
tation and can process effectively and segment images 
at different scales [15]. An AI-based model effectively 
diagnoses benign and malignant skin lesions, making it 
a useful tool for dermatologists. Researchers are further 
improving the reliability and precision of skin lesion 
analyses by developing ensemble approaches that utilize 
the predictions of several machine learning models. This 
approach of multimodal classifiers, based on the capac-
ity of different algorithms, is less likely to give false nega-
tives and has a higher overall reliability [16]. AI is still on 
its way to improving the segmentation techniques fur-
ther using the imaging technique.  Smart AI algorithms 
have now developed the capacity for automatic lesion 
boundary identification tasks, which are indispensable 
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for accurate lesion excision and management. AI can also 
integrate the patient’s clinical data into the segmentation 
process so that it can make the process more informed 
and patient-tailored, such as the risk factors and previous 
health history [17].

Using multi-modal imaging data, which includes der-
moscopy, ultrasound, and magnetic resonance imaging 
(MRI) helps AI models get a deeper understanding. This 
method of examination makes it possible to study the 
superficial characteristics, depth, and spread of the 
lesion, which, in turn, aids the doctors in making a clear 
diagnosis and planning the treatment [18]. The existing 
approaches used for skin lesion segmentation are vari-
ous and powerful, from advanced imaging methods to 
complex mathematical models.  These techniques have 
contributed to the development of highly accurate and 
efficient technology that can be used in the early detec-
tion of skin cancer, and that shows the importance of 
technology in the medical field Table  1. The researcher 
commonly used the international skin imaging collabora-
tion (ISIC) dataset.

Deep learning in medical images
Deep learning has changed the way doctors see and 
treat patients. It uses powerful instruments to lead to 
more accurate and quick diagnosis and treatment pro-
cesses.  This portion of the text delves into the notable 
role of deep learning in medical image analysis, encom-
passing its application across radiology services, MRI, 
computed tomography (CT), and dermatologic imaging.

Deep learning in medical imaging is particularly use-
ful since it can extract features from complicated data-
sets without manual intervention.  Conventional image 

processing approaches frequently entail manually cho-
sen feature extractions and engineering, which may be 
laborious and not capture all the information. In general, 
CNNs and deep learning models are trained to learn 
their characteristics from data automatically and don’t 
need human intervention, resulting in a more reliable 
and comprehensive analysis [19]. Deep learning models 
have been proven to perform the same or more effec-
tively as human beings in some diagnostic tasks.  Take 
dermatology as an example; CNNs have been applied 
to the classification of skin lesions, and their accuracy 
is comparable to that of dermatologists.  These algo-
rithms work on dermoscopic images that mark malig-
nant signs, giving a high diagnosis rate for skin cancer 
[20]. The same is true for radiology, where deep learning 
algorithms have greatly helped identify and character-
ize abnormalities in MRIs and CT scans, e.g., determin-
ing whether a tumor is malign or benign and how it 
increases in size over time [21]. Neural networks can 
process huge volumes of medical imaging data in a frac-
tion of a second, allowing physicians to make on-time 
decisions.  This attribute is critical in emergency medi-
cine and surgery, where the decision-making process is 
as sensitive as a thread and can affect the patient’s out-
come. For example, deep learning is used to improve the 
image reconstruction time in MRI, which decreases the 
scan times; moreover, patients like it as the image qual-
ity is not compromised [22]. These techniques are also 
vital in creating personalized medicine, where the doc-
tors can analyze the medical images with the patient’s 
genetic, demographic, and clinical data. Such an inte-
grative method leads to the development of contin-
gency treatment plans that include the individualized 

Table 1 Summary of existing techniques in skin lesion segmentation

Reference Study focus Methods used Dataset(s) Key findings

Lallas, et al. [14] Automated skin lesion segmenta-
tion

U-Net architecture with data aug-
mentation

ISIC 2018 Achieved a Dice coefficient of 85% 
and demonstrated the effectiveness 
of U-Net for segmentation tasks.

Ronneberger, et al. [15] Multi-class skin lesion classification Deep learning (ResNet, DenseNet) ISIC 2018 Enhanced classification accuracy 
by incorporating a multi-class 
approach, achieving an accuracy 
of 89%.

Cordes, et al. [16] Skin lesion segmentation 
with ensemble models

Ensemble of CNNs ISIC 2018 Improved segmentation accuracy 
by combining multiple CNN models, 
leading to a Dice coefficient of 87%.

Winkler, et al. [17] Transfer learning for skin lesion 
detection

Transfer learning (VGG19, 
ResNet-50)

ISIC 2018 Demonstrated the effectiveness 
of transfer learning, achieving 
an accuracy of 90% in lesion detec-
tion.

Kuo, et al. [18] Comparative analysis of segmenta-
tion methods

Comparison of CNN, U-Net, 
and SegNet

ISIC 2018 Compared different segmentation 
methods, with U-Net performing 
the best with a Dice coefficient 
of 86%.
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characteristics of a particular person. For instance, deep 
learning models that process image data in conjunction 
with patient histories and genetics profiles could be used 
to tailor cancer care plans, predict patient outcomes, 
and find the best treatment options [23]. Although deep 
learning provides extensive benefits, some challenges are 
associated with its application in medical image analy-
sis.  The recurring issues like data privacy, the neces-
sity for sizable annotated datasets in training, and the 
’black box’ nature of deep learning models continue to 
be the major concerns.  In addition, transitioning these 
technologies into practice calls for a thorough valida-
tion and regulatory approval procedure, which is neces-
sary to certify the safety and efficacy [24]. Deep learning 
has completely changed the way medical image pro-
cessing is processed; the results that have been experi-
enced include higher accuracy, speed, and personalized 
care.  With technological advancement, the focus will 
also shift to improving patient outcomes and providing 
healthcare services more efficiently [25–29].

Table  2 synthesizes crucial information about each 
study, providing an at-a-glance understanding of how 
deep learning has been applied across different areas of 
medical imaging. The references are provided for further 
reading and validation of the information. This struc-
tured approach helps quickly compare and analyze deep 
learning advancements in medical imaging.

The authors detail several specific instances, rang-
ing from broader imaging applications to more par-
ticular subfields such as dermatology and radiology, 
showing how deep learning is evolving to improve diag-
nostic accuracy and efficiency in virtually every medical 
field.

Proposed hybrid ResUNet model
This study’s hybrid ResUNet model, meant for skin lesion 
analysis, can be considered a breakthrough in medical 
image segmentation.  This part elaborates on the model 
design, combining the classical U-Net and ResNet con-
cepts to improve segmentation precision and computa-
tional efficacy.

The hybrid ResUNet model combines the U-Net 
model’s effective feature extraction and location deter-
mination features with ResNet’s residual learning 
approach. This union results in deeper networks without 
the vanishing gradient problem typical of standard con-
volutional architectures.

Hybrid ResUNet model
ResNet is designed to address the degradation prob-
lem encountered in deep neural networks, where add-
ing more layers leads to higher training errors [31]. The 
key innovation of ResNet is the introduction of resid-
ual learning through shortcut connections that allow 

Table 2 Summary of key studies in medical imaging utilizing deep learning techniques

Ref Focus area Methodology Key outcomes Specific contributions

Rana and Bhushan [19] General Medical Imaging Survey/Review Overview of deep learning 
applications

Comprehensive survey 
of deep learning applica-
tions across various imaging 
modalities.

Iqbal [20] Dermatological Imaging Deep Neural Networks High accuracy in skin cancer 
classification

Achieved dermatologist-level 
accuracy in classifying skin 
cancer using deep learning.

Jones, et al. [21] General Medical Imaging Deep Learning Review Discussed deep learning 
in medical analysis

Highlighted the role of deep 
learning in improving medical 
image analysis and its chal-
lenges.

Du, et al. [22] MRI Imaging Deep Learning Algorithms Improved speed and effi-
ciency

Significantly reduced MRI scan 
times without compromising 
image quality.

De Matos, et al. [23] Histopathological Imaging Deep Learning Models Enhanced histopathological 
image analysis

Provided detailed methods 
for applying machine learning 
to histopathology.

Strzelecki, et al. [24] Radiology AI in Radiology Review Assessed AI applications 
in radiology

Discussed AI’s impact, poten-
tial, and limitations in enhanc-
ing radiological diagnostics.

Abunadi and Senan [30] Automated skin lesion clas-
sification

Deep learning (ResNet, 
CNNs)

ISIC 2018, PH2 Demonstrated high accuracy 
in classifying melanoma 
using deep learning models, 
with ResNet achieving 90% 
accuracy.
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gradients to flow directly through the network, enabling 
the training of very deep networks. ResNet features iden-
tity mappings that bypass one or more layers, effectively 
creating shortcuts or skipping connections. This archi-
tecture enables the network to learn residual functions, 
which are easier to optimize. ResNet’s variants, such as 
ResNet-50, ResNet-101, and ResNet-152, are widely used 
for image classification, object detection, and other com-
puter vision tasks. ResNet has been successfully applied 
in various tasks, including image classification, object 
detection, and semantic segmentation. Its ability to main-
tain performance with increasing depth has made it a 
standard in deep learning architectures. The model starts 
with the Input Layer, designed to accept 128 × 128 pixels 
images, which are mostly used in dermatoscopic data-
sets.  Afterward, the Encoder contains multiple convo-
lutional layers with growing filter sizes from 64 to 1024, 
aiming to capture the complex features at different scales 
and levels of detail. A residual block accompanies each 
convolutional layer to propagate features and gradients 
efficiently, and max pooling layers are interspersed to 
reduce spatial dimensions and expand the receptive field. 
At the Bridge, a central bottleneck composed of dense 
convolutional layers processes the most profound com-
pressed features, linking the encoder to the decoder. The 
Decoder pathway includes transposed convolutional lay-
ers for upsampling feature maps, concatenates these with 
outputs from the encoder to preserve high-resolution 
details, and applies additional convolutional layers post-
upsampling to refine the maps. Finally, the Output Layer 

employs a 1 × 1 convolution to transform the deep feature 
representations into the desired output classes, distin-
guishing lesion from non-lesion areas. Figure  1 depicts 
the architecture of Hybrid ResUnet.

The function of a residual block can be mathematically 
represented as in Eq. (1):

where x is the input to the residual block, F(x) is the 
output from the last convolutional layer within the 
block, and H(x) is the final output of the residual block. 
This formulation helps in training deeper networks by 
addressing the degradation problem.

Integration of ant colony optimization
Hybrid ResUNet employs ACO to fine-tune the net-
work’s hyperparameters, optimizing its performance. The 
algorithms section describes how ACO is implemented 
in the model and how the operations are performed on 
the input data.

ACO is a probabilistic method that can efficiently solve 
computational problems, expressed as finding good paths 
through graphs.  An ACO algorithm imitates the forag-
ing behavior of the ants by optimizing the graph on the 
pheromone trail on the edges. In the area related to neu-
ral networks, ACO is used to choose the most prefer-
able hyperparameters like learning rate, batch size, and 
number of epochs, which are often considered critical 
for the quality of the model. The fitness function in ACO 
measures the quality or suitability of a particular solution 

(1)H(x) = F(x)+ x

Fig. 1 Architecture diagram of hybrid ResUNet
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in optimizing the performance of the Hybrid ResUNet 
model. The fitness function evaluates each solution based 
on how well it improves the model’s performance, guid-
ing the search process toward the most effective hyperpa-
rameter configurations.

The fitness function is a weighted sum of these metrics, 
with the Dice Coefficient and Jaccard Index being prior-
itized due to their relevance to segmentation quality. The 
function is defined as in Eq. (2):

where w1 , w2  , and w3   are the weights assigned to each 
metric reflect their importance in the optimization pro-
cess. These weights are selected based on the model’s 
specific goals (e.g., maximizing segmentation accuracy).

Algorithm  1 employs ACO to fine-tune hyperparam-
eters for a given model. The algorithm begins with initial 
hyperparameters and pheromone levels, deploying sev-
eral artificial ants to explore the hyperparameter space. 
Each ant selects hyperparameters based on the probabil-
istic influence of pheromone trails, evaluates the selected 
hyperparameters’ performance to obtain a fitness score, 
and updates a fitness record accordingly. Pheromones are 
then updated to reflect successful hyperparameter paths, 
with evaporation to discourage convergence on local 
optima and reinforcement to encourage exploration of 
promising regions.

The notation used in Algorithm  1 is summarized in 
Table 3.

The pheromone update rule is crucial for guiding the 
search of the ants toward promising areas of the solution 
space. It is given in Eq. (3):

(2)
Fitness = w1 × Dice Coefficient + w2 × Jaccard Index + w3 × Accuracy

(3)τij(t + 1) = (1− ρ) · τij(t)+�τ ij(t)

where:
τij is the pheromone concentration on the edge ij at 

time t,
ρ is the pheromone evaporation coefficient,
�τ ij(t) is the amount of pheromone deposited, which 

is typically related to the inverse of the model’s error or 
loss.

To adapt the ACO algorithm for optimizing hyperpa-
rameters such as learning rate (LR), batch size (BS), and 
the number of layers (NL), we made several key adjust-
ments. First, each ant in the ACO algorithm was con-
figured to represent a potential set of hyperparameters, 
with options like LR = {0.001, 0.01, 0.1}, BS = {16, 32, 64}, 
and NL = {3, 5, 7}. The pheromone levels were initialized 
uniformly across these values to encourage exploration. 
During solution construction, ants would probabilis-
tically select LR, BS, and NL values based on current 
pheromone levels and historical performance. Each set 
of hyperparameters was then evaluated using a fitness 
function, which involved training the model and measur-
ing performance metrics such as accuracy and the Dice 
coefficient. Based on these results, the pheromone lev-
els were updated, with better-performing combinations 
receiving more pheromone, increasing their likelihood of 
selection in subsequent iterations. This iterative process 
continued until the algorithm converged on optimal LR, 
BS, and NL values, thereby enhancing the model’s overall 
performance.

Figure 2 depicting the iterative process of selecting ini-
tial hyperparameters, evaluating model fitness, updating 
hyperparameters based on fitness, and modifying phero-
mone trails until the optimization criteria are met, lead-
ing to the finalization of the model training.

By incorporating the ACO, the model achieves the 
dynamicity of the training process, which may improve 

Table 3  Algorithm 1 Notation

Notation Description

H0 Initial set of hyperparameters

P0 Initial pheromone levels

N Number of ants in the colony

Imax Maximum number of iterations 
allowed

ρ Pheromone evaporation rate

�P Change in pheromone level is pro-
portional to the fitness of solutions

F Fitness values corresponding 
to each ant’s hyperparameters

ǫ A small threshold value for conver-
gence check

H∗ The best set of hyperparameters 
found

 Algorithm 1. ACO for hyperparameter optimization
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generalization and, consequently, better segmentation of 
unseen data. The ACO optimization enhances the model 
and allows us to understand better what role each hyper-
parameter plays in the model’s performance, which helps 
to create more robust models.

Data preparation and image processing
Well-prepared and processed imaging data is critical 
to ensure that the model based on the hybrid ResUNet 
works properly.  This part of the Methodology out-
lines the data preprocessing and image preprocessing 
that ensure the data is well formatted and improved 
for accurate training and analysis.  The image prepa-
ration process in medical imaging comprises several 
vital actions to standardize and prepare the images 
for model input.  These steps include image cap-
turing, labeling, preprocessing, augmentation, and 
normalization.

Algorithm  2 presents the sequence of steps to pro-
cess the raw image data and prepare it for training a 
machine learning model. The steps include resizing, 
grayscale conversion, normalization, augmentation, 
and dataset splitting, standard procedures in machine-
learning pipelines for image data.

The notations used in Algorithm 2 are summarized in 
Table 4.

Normalization is crucial for deep learning models 
as it ensures that the input features have similar data 
scales, which helps the model learn more effectively. 
The Eq. (4) for normalization is:

where:

• I is the original pixel value,
• Inorm   is the normalized pixel value.

In image preparation for network training, all images 
are first resized to a consistent dimension, for example, 
128 × 128 pixels, to enable batches of pictures for the train-
ing as shown in the Fig. 3. When dealing with color images, 
they are usually processed in grayscale to minimize input 

(4)Inorm = Sir da I/255 kol de
Fig. 2 ACO Hyperparameter Optimization Process

Table 4  Algorithm 2 Notation

Notation Description

Draw Collection of raw images.

Dprocessed Collection of processed images ready for training.

I Individual images in the dataset.

L Labels indicate each pixel’s class (e.g., lesion or non-
lesion).

Dtrain ,Dval ,Dtest Partitioned datasets for training, validation, and testing.

Algorithm 2. Data preparation and image processing
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data complexity by reducing its dimension, i.e., it becomes 
2D.  Moreover, manual or semi-automatic annotation is 
done to get the assigned tags to each pixel, showing the 
association of lesion or non-lesion areas.  Normalizing is 
done to normalize the pixel values across images, which 
helps to train the model quickly and better.

An important augmentation technique is rotation, scal-
ing, and horizontal flipping. These are used to improve 
the model’s ability to be applied to new data; the data is 
expanded, and realistic variations are introduced. Lastly, 
the dataset is split into training, validation, and testing. 
The separation is usually 70% for training, 15% for valida-
tion, and 15% for testing. These preprocessing steps are 
the core for the good quality and diverse data set, which 
is crucial for achieving high accuracy and robustness in 
segmentation medical imaging tasks by the hybrid ResU-
Net model. Sufficient and accurate data preparation helps 
improve the model’s performance and generalization 
across diverse imaging conditions and patient groups.

Model training and parameter tuning
Training a hybrid ResUNet model and fine-tuning its 
parameters are key to achieving a model that performs 
well for skin lesion segmentation. Here, the approach to 
model training is presented, with the optimization pro-
cess, parameter tuning techniques, and performance 
metrics that help to lead the training.

Like training any other deep learning model, training 
a hybrid ResUNet model involves feeding it with pre-
processed images and their corresponding labels and 
then iteratively adjusting its weights to the loss func-
tion.  Therefore, this procedure must be meticulous to 
check its correctness and generalizability.

Algorithm  3 includes the process of backpropagation 
for weight updates, validation set performance evaluation, 
hyperparameter adjustment with potential decay over 
epochs, and early stopping based on performance criteria.

 The notation used in Algorithm 3 are summarized in 
Table 5.

Dice coefficient loss is typically used as a loss func-
tion for segmentation tasks, which is very efficient, 

Fig. 3 Data preparation workflow

Algorithm 3.  Model training and parameter tuning
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especially for imbalanced classes. The binary Dice loss 
for classification is defined as in Eq. (5):

where:

• X is the predicted set of pixels,
• ∩ is the intersection of two sets.
• Y  is the ground truth,
• ǫ is a small constant to prevent division by zero.

Figure 4 provides a visual guide through the sequential 
steps of a machine learning training cycle, from model 
initialization and hyperparameter setting to the itera-
tive process of training, weight updating, and valida-
tion. It highlights decision points for hyperparameter 

(5)Dice Loss = 1−
2× | X ∩ Y | +ǫ

| X | + | Y | +ǫ

adjustments and the criteria for saving model check-
points based on performance improvements.

Dataset description and preparation
The realization and assessment of the hybrid ResUNet 
model involve establishing a thorough experimental 
setup. This will begin with a clear explanation and prepa-
ration of the dataset used in the study. This portion illu-
minates the features of the dataset, the preprocessing 
steps that were used to make the data trainable, and the 
reasons for selecting these steps.

Dataset description
The ISIC 2018 dataset is a large and diverse collection of 
dermoscopic images compiled by the International Skin 
Imaging Collaboration (ISIC). It is widely recognized as 
a benchmark dataset for developing and evaluating algo-
rithms for skin lesion analysis, particularly for tasks such 
as lesion segmentation, classification, and detection.

The ISIC 2018 dataset comprises over 10,000 high-
resolution images of skin lesions, including com-
mon types such as melanoma, nevus, and seborrheic 
keratosis. Each image is accompanied by expert-
annotated masks delineating the lesion bounda-
ries, providing ground truth for segmentation tasks. 
The dataset includes images from a diverse range of 
patients, encompassing various skin types, lesion sizes, 
and appearances, which is essential for training robust 

Table 5  Algorithm 3 notation

Notation Description

Daug Pre-processed and augmented dataset ready for training.

M Machine learning model architecture, specifically 
a hybrid ResUNet, in this context.

MAX_EPOCHS Predefined maximum number of training cycles.

Dval and Dtest Validation and test subsets of Daug.

L The loss function is used to evaluate model performance.

Fig. 4 Training process flowchart
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models that generalize well to real-world scenarios. The 
images are captured under standardized conditions to 
ensure consistent quality and are reviewed by derma-
tology experts, ensuring the accuracy and reliability of 
the annotations. The ISIC 2018 dataset is particularly 
relevant to our study as it provides a comprehensive 
and challenging benchmark for evaluating the perfor-
mance of the proposed Hybrid ResUNet model in skin 
lesion segmentation. Its large size and diversity allow 
rigorous testing of the model’s ability to generalize 
across different lesion types and patient demograph-
ics. We trained and tested the hybrid ResUNet model 
using the ISIC 2018 dataset [32]. The most common 
dataset in dermatology image analysis is often used for 
diagnosing and segmenting skin lesions. The ISIC 2018 
dataset comprises 10,015 dermoscopic images, strategi-
cally divided into three subsets for training, validation, 
and testing. Specifically, 70% of the images are allocated 
to the training set, providing a robust and diverse data-
set for the model to learn from. An additional 15% of 
the images are designated for the validation set, allow-
ing for the fine-tuning of hyperparameters and assess-
ing model performance during training. The remaining 
15% of the images are reserved for the test set, ensuring 
an unbiased evaluation of the model’s ability to general-
ize to new, unseen data.  The dataset consists of high-
resolution RGB images (an image that offers extensive 
textural and color information), essential for accurate 
lesion segmentation.

Data preparation
The preparation of the dataset involves several key steps 
to ensure that the images are suitable for processing by 
the deep learning model. Table 6 outlines these steps:

Figure 5 detailing the steps for processing image data, 
from initial loading to saving the preprocessed dataset. 
This includes resizing, grayscale conversion, normaliza-
tion, data augmentation, and dataset splitting into train-
ing, validation, and test sets.

To use the neural network for batch processing, resiz-
ing the original images with different dimensions to a 
common one is required.  Contrary to this, though, the 
grayscale information is still very important. The gray-
scale conversion simplifies the model without significant 
performance loss, especially if the texture and shape are 
more important.  These steps are conventional practices 
aimed at improving model performance and robustness, 
particularly in medical images, which are known to be 
affected by factors such as lighting and camera setup.

This elaborate tuning guarantees that the dataset is cor-
rectly cleaned and arranged to predict the hybrid ResU-
Net model with high precision and accuracy.

Training environment and tools
An optimized training infrastructure is key to effectively 
training the ResUNet model.  This part concerns the 
hardware and software applications involved in the train-
ing processes, which are chosen to maximize efficiency 
and model performance.

In the study, the hardware and software configurations 
are tailored to meet the demands of deep learning tasks, 
focusing on efficient data processing and model develop-
ment. The chosen hardware includes NVIDIA Tesla V100 
GPUs, renowned for their formidable computing perfor-
mance, which is crucial for the intensive computations 
required to train deep learning models. Complementing 
the GPUs, Intel Xeon processors handle the preprocess-
ing and other tasks that are less intensive on the GPU, 
such as memory management. Additionally, the systems 
have at least 64  GB of RAM to facilitate smooth data 
manipulation and accommodate large datasets without 
constant data transfer to and from disk storage.

On the software side, TensorFlow, augmented by its 
high-level API, Keras, is the primary framework used 
due to its comprehensive library, user-friendly interface, 
and flexibility for designing sophisticated models like 
the hybrid ResUNet. The study employs popular Python 
libraries for data preparation and augmentation, with 
NumPy being used for numerical data manipulation and 
OpenCV for advanced image processing tasks. Tensor-
Flow’s ImageData Generator is utilized explicitly for real-
time data augmentation, which is key to enhancing the 
model’s robustness by simulating various imaging con-
ditions. Version control is managed through Git, which 
is instrumental in tracking code changes and facilitating 
collaborative model development, ensuring the entire 
development process is well-documented and the experi-
ments are reproducible.

Evaluation metrics
Several evaluation metrics are used to assess the effec-
tiveness of the hybrid ResUNet model in segmenting 
skin lesions. These metrics provide insights into different 
aspects of model performance, including accuracy, preci-
sion, and the ability to handle class imbalances.

Accuracy
Accuracy measures the overall correctness of the model 
in classifying pixels. It is calculated as the ratio of cor-
rectly predicted pixels to the total pixels.

(6)Accuracy =
TP + TN

TP+ TN+ FP+ FN
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Sensitivity (Recall)
Sensitivity indicates the model’s ability to identify posi-
tive samples (lesion pixels) correctly.

Specificity
Specificity measures the model’s ability to correctly iden-
tify negatives (non-lesion pixels).

(7)Sensitivity =
TP

TN + FN

Dice Coefficient (Dice Similarity Coefficient—DSC)
The Dice Coefficient is a statistical tool that measures the 
similarity between the predicted segmentation and the 
ground truth. It is beneficial for data with imbalanced 
classes.

where X is the predicted set of pixels and Y  is the actual 
set of pixels for the lesion.

Jaccard Index (Intersection over Union—IoU)
The Jaccard Index measures the overlap between the 
predicted segmentation and the actual data. Like the 
Dice coefficient, it shows how well the segmented area 
matches the ground truth. ∪ represents the union of two 
sets.

These metrics collectively provide a comprehensive 
understanding of the model’s performance, highlighting 
its strengths and areas for improvement in accurately 
segmenting skin lesions. Using multiple metrics ensures 
a balanced evaluation, considering both the model’s pre-
cision in identifying lesions and its ability to generalize 
across various types of skin images.

(8)Specificity =
TN

TN + FP

(9)Dice Coefficient =
2× | X ∩ Y |

| X | + | Y |

(10)Jaccard Index =
| X ∩ Y |

| X ∪ Y |

Table 6 Key steps in data preparation

Step Description Purpose Rate/Percentage

Resizing All images are resized to a uniform size 
of 128 × 128 pixels.

To standardize input size for the neural 
network, ensuring consistency across all 
training and test samples.

100%

Grayscale conversion Images are converted from RGB to gray-
scale.

Reduce computational complexity 
and focus the model on textural rather 
than color information.

100%

Normalization Pixel values are normalized to a range 
of [0, 1].

To facilitate faster convergence dur-
ing model training by scaling input 
values.

100%

Augmentation Techniques such as rotation, zoom, 
and horizontal flipping are applied.

To increase the diversity of the training 
data, helping the model generalize better 
to new, unseen images.

Rotation: 25%, Zoom: 25%, Flip: 50%

Splitting Data is split into training (70%), validation 
(15%), and testing (15%) sets.

To ensure robust evaluation, with sepa-
rate data for training, tuning, and testing 
the model’s performance.

Training: 70%, Validation: 15%, Testing: 
15%

Fig. 5 Data preparation
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Table 7 Comprehensive performance comparison of various models

Model Accuracy (%) Sensitivity (%) Specificity (%) Dice coefficient 
(%)

Jaccard 
Index 
(%)

ResNet 93.0 90.0 92.7 90.0 82.0

U-Net 92.5 89.5 91.9 89.5 81.5

DeepLabV3 + 94.2 93.1 95.8 91.5 84.0

SegNet-Based Model 92.5 89.8 94.6 89.4 80.9

VGG19 with Transfer Learning 94.0 92.3 96.2 91.0 83.5

ResNet-50 with Attention Mechanism 94.5 93.7 95.9 92.3 85.1

Hybrid ResUNet (Proposed) 95.8 94.2 96.7 93.1 87.5

Fig. 6 Receiver Operating Characteristic (ROC) curve

Fig. 7 Model learning progress training and validation accuracy and loss over epochs
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Polygon area metric
The Polygon Area Metric (PAM) is computed by plot-
ting key evaluation metrics on a radar chart and calcu-
lating the area of the polygon formed [33]. The metrics 
might include sensitivity, specificity, accuracy, precision, 
F1-score, etc. The formula for calculating the area of the 
polygon (PAM) is:

where:

(11)PAM =
1

2

n

i=1
(Mi ×Mi+1 × sin(

2π

n
))

• n is the number of metrics used.
• Mi and Mi+1 are the values of the consecutive met-

rics plotted on the radar chart.
• The angle between consecutive metrics is assumed to 

be 2πn .

Results and discussion
This section delves into the outcomes of applying the 
hybrid ResUNet model to skin lesion segmentation. 
We unravel the model’s performance here, highlight-
ing its success in accurately delineating lesion bounda-
ries against the benchmark of current state-of-the-art 
methods.

Performance of the proposed model
The hybrid ResUNet model was evaluated on the ISIC 
2018 dataset, focusing on key metrics to assess its efficacy 
in skin lesion segmentation. Below, we detail the model’s 
performance across various metrics and scenarios.

Table 8 Sensitivity and specificity by lesion type

Lesion type Sensitivity (%) Specificity (%)

Melanoma 92.3 95.7

Nevus 95.0 97.2

Seborrheic 93.5 96.0

Fig. 8 Confusion matrices for hybrid ResUNet performance on skin lesion classification
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Table  7 provides a comprehensive overview of the 
model’s performance across different statistical metrics, 
demonstrating its high accuracy and effectiveness in seg-
mentation tasks.

Figure  6 illustrates the ROC curve, highlighting the 
model’s discrimination capability between the lesion and 
non-lesion classes.

Figure 7 display a deep learning model’s training, vali-
dation accuracy, and loss across 20 epochs. The accu-
racy shows convergence between training and validation 
performance over time. The model’s error rate decreases 
with subsequent epochs, a key indicator of learning effi-
cacy and model fitting.

The trajectory of training and validation loss over 20 
epochs for a Hybrid ResUNet model. The training loss 
shows a steep decline from 0.42 to 0.01, indicating effec-
tive learning, while the validation loss demonstrates a 
consistent decrease from 0.35 to 0.12, reflecting good 
generalization without overfitting.

Table 8 breaks down the model’s sensitivity and speci-
ficity by lesion type, showcasing its robustness across 
various skin lesions.

Figure 8 illustrates three confusion matrices represent-
ing the Hybrid ResUNet model’s performance in classify-
ing skin lesions: Melanoma, Nevus, and Seborrheic. Each 

matrix provides the counts of true positives, true nega-
tives, false positives, and false negatives, reflecting the 
model’s sensitivity and specificity in detecting each lesion 
type.

Figure 9 provides visual examples of the segmentation 
results, comparing model predictions with the ground 
truth annotations.

Table  9 shows the model’s performance at different 
image resolutions, illustrating the impact of resolution on 
accuracy and the Dice coefficient.

Figure  10 presents heatmaps of feature importance, 
providing insights into which regions of the images are 
most critical for the model’s predictions.

Table  10 evaluates the impact of different data aug-
mentation techniques on the model’s accuracy and Dice 

Fig. 9 Examples of skin lesion segmentation

Table 9 Model performance by image resolution

Image resolution Accuracy (%) Dice 
coefficient 
(%)

64 × 64 93.7 91.2

128 × 128 95.8 93.1

256 × 256 96.4 94.3

Fig. 10 Heatmaps of Feature Importance
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coefficient, highlighting how each method improves 
model robustness.

Table  11 details the computational aspects of model 
training and inference, including training time, inference 
speed, and memory usage, demonstrating the model’s 
efficiency and feasibility for practical applications.

These results collectively validate the effectiveness of 
the hybrid ResUNet model in skin lesion segmentation, 
with the figures and tables providing clear, cross-refer-
enced evidence of its superior performance and opera-
tional efficiency.

We conducted formal statistical significance tests to 
validate the robustness of the observed improvements in 
the proposed Hybrid ResUNet model. Specifically, paired 
t-tests were applied to compare our model’s performance 
against baseline and state-of-the-art models across key 
metrics, including accuracy, Dice coefficient, and Jaccard 
index. Additionally, we computed 95% confidence inter-
vals (CIs) for these metrics to assess the precision and 
reliability of our results.

Table  12 statistical significance test results comparing 
the proposed Hybrid ResUNet model with the baseline 
model. The table reports mean values of key perfor-
mance metrics, 95% confidence intervals (CIs), and 
p-values from paired t-tests. A p-value of less than 0.05 
indicates that the results are statistically significant. The 
p-values obtained for all metrics are less than 0.01, indi-
cating that the differences in performance between the 
Hybrid ResUNet and the baseline model are statistically 
significant. The 95% confidence intervals for the Hybrid 
ResUNet consistently show higher performance metrics, 
further confirming the robustness and reliability of the 
improvements.

Comparison with existing state‑of‑the‑art methods
This section compares the hybrid ResUNet model’s per-
formance with other state-of-the-art (SOTA) methods in 
skin lesion segmentation. This comparative analysis high-
lights the proposed model’s advancements and efficiency 
over existing techniques.

Table  13 provides a detailed comparison of the pro-
posed hybrid ResUNet model with various SOTA meth-
ods utilized in skin lesion segmentation. Each method is 
evaluated based on five critical metrics: accuracy, sensi-
tivity, specificity, Dice coefficient, and Jaccard index.

The hybrid ResUNet model shows the highest accu-
racy (95.8%) compared to the other models. This dem-
onstrates its ability to identify lesion areas in various 
complex images accurately. Sensitivity and Specificity 
metrics are particularly useful in medical imaging appli-
cations, where missing a positive case (low sensitivity) 
or falsely identifying a case (low specificity) can have 
negative consequences. The hybrid ResUNet achieves 
balanced performance on both metrics, allowing reli-
able lesion detection with low false positives. Dice Coef-
ficient and Jaccard Index metrics measure the difference 
between the predicted distribution and the ground truth, 
with higher numbers indicating better distribution qual-
ity. The ResUNet hybrid scores higher than the other 
models, indicating that it is better at capturing the true 
wound boundaries, even in extreme cases.

Comparative analysis shows that hybrid ResUNet out-
performs traditional architectures such as U-Net and 
SegNet and has advantages over recent developments 
such as DeepLabV3 + and models with transfer learning 
from pre-trained networks such as VGG19 and ResNet 
-5 Remaining ResNet connections combined in U-Net 
architecture for increased hybrid ResUNet capability to 
detect spatial hierarchies in image data, resulting in more 
accurate segmentation results This balance of depth (via 
ResNet) and spatial resolution (via U-Net) is a decisive 
factor in high performance.

This comparison highlights the potential of the hybrid 
ResUNet as an improved tool for medical imaging work, 
especially for accurate and reliable classification of skin 

Table 10 Impact of data augmentation on model performance

Augmentation Type Description Accuracy (%) Dice coefficient 
(%)

Rate/
Percentage 
Applied

None No augmentation applied 92.1 88.9 0%

Rotation Random rotation of the image (0 to 360 degrees) 94.8 92.3 25%

Flip Horizontal and vertical flipping 94.5 91.7 50%

Color Shift Random change in color intensity 93.9 91.0 20%

Zoom Random zoom-in or zoom-out of the image 94.2 91.5 30%

Table 11 Computational performance metrics

Metric Value

Training time 12 Hours

Inference time 0.05 Seconds Per Image

Memory usage 8 GB (GPU)
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lesions, which is important for early its therapeutic pat-
tern seen in dermatitis.

Conclusion and future work
This study presents a novel application of the Hybrid 
ResUNet model for skin lesion classification, incorpo-
rating the sophisticated ACO method for hyperparam-
eter tuning. Results show that the model performs better 
than traditional ResNet and U-Net architectures. Deep 
learning algorithms and intelligent optimization meth-
ods demonstrate potential, providing promising direc-
tions for medical applications’ automated image analysis. 
Future research directions will focus on more key areas to 
further enhance the performance and application of the 
Hybrid ResUNet model. Efforts will be made to integrate 
more imaging data, which may improve the detection of 
skin lesions and the accuracy of examination. Further-
more, exploring other optimization algorithms alongside 
ACO, such as genetic algorithms or particle swarm opti-
mization, can further improve hyperparameter selection 
and model robustness. Another approach to explore is 
to provide practical benefits to healthcare professionals, 
user-friendliness The model would be used and tested 
in a real-world clinical setting for research purposes and 
moreover, if the application of the model is extended to 
other medical imaging tasks, e.g. fragmentation of images 

of cancer or pathology can expand its impact. Continued 
improvement of the model’s computational efficiency will 
also be crucial, particularly for enabling its use in mobile 
devices and regions with limited computing resources. 
Finally, investigating the interpretability of the model’s 
decision-making process could enhance the trust and 
transparency of the AI system among its end users, pav-
ing the way for its adoption in sensitive medical fields.
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