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factors like toxic materials such as pesticides and heavy 
metals [1]. Further involvement of heritable and non-
heritable causes in its pathogenesis has been implicated 
with genetic mutations associated with PD, includ-
ing those affecting genes like leucine-rich repeat kinase 
2 (LRRK2) and Synuclein Alpha (SNCA). To date, it is 
estimated that more than 10  million people worldwide 
are afflicted with PD; thus, it is one of the most com-
mon neurodegenerative conditions. Most diagnoses of 
PD are based on its clinical symptoms, especially motor 
symptoms. Main manifestations of PD include the fol-
lowing: Tremors-either generally beginning in the hands, 

Introduction
Parkinson’s Disease (PD) is taken to be a neurodegenera-
tive disorder. Most of the changes occur within the motor 
system of the brain, which leads to progressive deterio-
ration of the nerve cells. Causes of PD are most likely 
genetic inheritance combined with certain environmental 
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Abstract
Parkinson’s disease (PD) is classified as a neurological, progressive illness brought on by cell death in the posterior 
midbrain. Early PD detection will assist doctors in reducing the disease’s consequences. A collection of skilled 
models that may be applied to regression as well as classification is known as artificial intelligence (AI). PD can 
be detected using a variety of dataset formats, including text, speech, and picture datasets. For the purpose of 
classifying Parkinson’s disease, this study suggests merging deep with machine learning recognition approaches. 
The three primary components of the suggested approach are designed to enhance the accuracy of Parkinson’s 
disease early diagnosis. These sections cover the topics of categorising, combining, and separating. Convolutional 
Neural Networks (CNN) as well as attention procedures are used to create feature extractors. The related motion 
signals are fed to a combination of convolutional neural network and long-short-memory model for feature 
extraction. Besides, for the classification of patients from non-suffers of Parkinson’s disease, Random Forest, Logistic 
Regression, Support Vector Machine, Extreme Boot Classifier, and voting classifier were used. Our result shows 
that for the PD handwriting and related motion datasets, using the proposed CNN with an attention and voting 
classifier yields 99.95% accuracy, 99.99% precision, 99.98% sensitivity, and 99.95% F1-score. Based on these results, 
it is warranted to conclude that the proposed methodology of feature extraction from photos of handwriting and 
relating motor symptoms, fusing of those features, and following it with a voting classifier yields excellent results 
for PD classification.
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arms, jaw or legs or sometimes worsening over time [2]. 
In addition to tremors, many other signs can also show 
up when a person has PD. These include difficulties with 
eating, wherein chewing problems may lead to weight 
loss and nutritional deficiencies. Other manifestations 
include slowness of movement that makes daily activi-
ties increasingly difficult. Muscle rigidity can also be 
constant, impeding mobility and adding to discomfort. 
Besides this, sudden jerking or spasm movements with-
out voluntary control occur very frequently in PD, com-
plicating motor control and increasing the risk of falls. 
Aggregated, these symptoms grossly affect the quality of 
life and call for comprehensive medical intervention and 
support.

The most important complications of PD disease are 
thinking difficulties, depression, emotional changes, con-
stipation, bladder problems, sleep disorder problems, etc 
[3]. Due to this problem, constant care for Parkinson’s 
patients is necessary. In the past two years, COVID-19 
has affected the social life of all people. The social life of 
these patients and the need for constant care won’t per-
mit them to follow the restrictions of quarantine roles 
imposed by healthcare systems. Thus, PD patients are 
a risk group for COVID-19 patients besides the regular 
complications. Physicians usually track PD symptoms 
to detect them in patients. One of the standard criteria 
that can be used for detecting PD is the differences in the 
dynamic disorder of hand movement while sketching cir-
cular shapes. The severity of PD can be specified using H 
and Y rating scales [4–6]. The physical characteristics of 
handwriting sketches can also be exploited as biomark-
ers for PD detection. This approach depend on the time 
series data typifying handwriting such as the number of 
strokes and speed of sketching the spiral and wave shapes 
that have been recorded using digitizing tablets provided 
with electronic pens [7–10].

Numerous biomedical biomarkers have been employed 
in the identification of PD, such as protein biomarkers, 
dopamine metabolites, as well as microRNAs. The mod-
ern developments in artificial intelligence, especially in 
machine learning (ML) as well as deep learning (DL), 
have led to a notable increase in the use of these algo-
rithms in the healthcare industry. An instance of this is 
the detection of neurodegenerative disorders such as 
Parkinson’s disease (PD) through picture and electronic 
healthcare data analysis. This paper tackles the problem 
of PD identification by utilising a hybrid strategy that 
combines DL and ML [11–15]. Instead of using only pic-
tures or electronic healthcare datasets for classification, 
in this research, we fused extracted features from images 
and healthcare records of healthy and PD subjects—the 
proposed methods comprised three main steps. The first 
step belongs to feature extraction. In this step, two dif-
ferent combinations of DL neural networks are used to 

extract features from the pictures and corresponding 
electronic healthcare records. Convolutional Neural 
Networks (CNNs) have garnered a lot of interest from 
investigators in recent years because of its proven abil-
ity to extract features from text, pictures, and videos. In 
this research, we present a tactic to extract characteris-
tics from both healthy individuals and PD participants by 
integrating CNNs with attention mechanisms. Relevant 
features are extracted from electronic health records 
using a memory-dependent unit and convolutional layer 
combination [16–20]. The next stage after feature extrac-
tion is Fusion. The process of fusing extracted features 
is done via inner product multiplication. Finally, ML 
models are used to distinguish between PD and healthy 
subjects. The newly fused sets of features from pictures 
and physical characteristics of pen movement propose a 
new set of discriminator features for PD classification. To 
evaluate the proposed methods, the Parkinson’s Disease 
Handwriting Database (PaHaw) and spiral-wave pictures 
are used [7]. The experimental result indicates a state-of-
the-art result of 99.95% accuracy for PD versus healthy 
subjects’ classification. The contributions of the proposed 
model are listed as follows:

  • Presenting two novel DL models based on 
convolutional and attention architectures for 
extracting features from pictures and electronic 
healthcare datasets.

  • Proposing a new fusion technique based on person 
correlation to extract distinguishable.

  • features from each feature extraction model.
  • Explaining the process of extracting features from 

the individual handwriting pictures for final PD 
detection.

  • Providing a new assistant method for discriminating 
between PD and healthy subjects to the physicians.

A detailed explanation of the proposed methods and 
their comparison with simi- lar research is presented in 
the following.

This study is divided into seven major sections. Sec-
tion Related works summarizes the historical approaches 
and current developments regarding distinguish-
ing between individuals with PD and healthy controls. 
The dataset used in this study is fully described in Sec-
tion  Dataset, along with some statistics about it. The 
proposed model and the approach for feature extraction 
and fusion from both signals and images are presented in 
Section Model. The results on the capability of the pro-
posed model to distinguish between patients with Par-
kinson’s disease and healthy people, and its comparison 
with other machine learning models, are shown in Sec-
tion  Experimental result. The outcome of each model 
is also considered. Section  Discussion discusses the 
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experimental results where it is crystal clear how much 
better the suggested model is compared to the rest of the 
models under investigation. Finally, Section  Conclusion 
concludes by summarizing research contributions and 
limitations and suggests directions for future work.

Related works
Parkinson’s disease is a neurodegenerative disorder that 
predominantly affects older adults. Around 1 or 2 cases 
per 1,000 older adults in the general population have 
the disease and face its challenges. The conventional 
grounds for diagnosis are symptoms and complications 
arising from PD. In recent times, machine learning algo-
rithms have been deployed to analyze medical datasets 
related to PD. Several machine learning and deep learn-
ing approaches were already applied for different data 
types, including handwriting samples, speech recordings, 
cerebrospinal fluid analysis, and electronic health records 
of PD patients. Of these, the analysis of handwriting pat-
terns is the most frequent method for differentiating PD 
patients.

Diaz et al. [21] have proposed a deep convolutional 
neural network and a voting classifier integrated model 
to classify PD. They test their model using the PaHaw 
dataset and present the performance evaluation with 
other machine learning models such as Support Vec-
tor Machines (SVM) and Random Forest (RF). The test 
results showed that their model yielded an accuracy of 
86.67%, with an AUC of 83.33%, a sensitivity of 89.17%, 
and a specificity of 80.83% in the detection of PD. In con-
trast, only the following accuracies for the classification 
of PD were achieved by the models SVM and RF: 75.41% 
and 71.67%, respectively.

Ali et al. [22] used Naive Bayesian (NB) [23] for PD 
versus healthy subjects dis- crimination using a hand-
written pattern. They proposed a novel cross-validation 
technique to refer to the issue of overlapping between 
training and test sets. Also, they converted the imbalance 
distributions of the target to balance distributions using 
sampling methods. They reported 71.21% using the PD 
handwriting database.

Many researchers claim they have proposed new deep 
learning (DL) methods for identifying Parkinson’s disease 
(PD) in healthy subjects. Loh et al. [24] reviewed these 
DL techniques for PD classification, exploring models 
such as Convolutional Neural Networks (CNN) [25], 
Long Short-Term Memory (LSTM) [26], and hybrid DL 
models. They reported that the highest accuracy achieved 
on the PaHaw dataset using CNN was 99.2%. Addition-
ally, they claimed that the best accuracy achieved on a 
dataset with 19 features (electronic healthcare data) was 
98.0% using a CNN-LSTM model.

Deharab et al. [27] developed two novel feature repre-
sentations from handwriting signatures by fusing analytic 

signal representation with the area of the second-order 
difference plot for PD identification. They used a Sup-
port Vector Machine (SVM) as the classifier and evalu-
ated their approach using the PaHaw dataset, reporting 
an accuracy of 86.26% in identifying PD subjects. The 
primary contribution of their work was the introduction 
of new feature sets for PD detection.

Basnin et al. [28] applied transfer learning methods to 
a private handwritten dataset for distinguishing between 
PD and healthy subjects. They collected 136 handwrit-
ten images from PD cases and 36 from healthy patients 
for evaluation, using VGG 16 [29] as a pre-trained model 
and adding only two dense layers to the end of the pro-
posed model, achieving an accuracy of 91.36%.

Lamba et al. [30] focused on kinematic features derived 
from patients’ handwriting signatures. They extracted 
features such as ‘Velocity, acceleration, jerk in the hori-
zontal direction’ and ‘Number of changes in accelera-
tion.’ Additionally, they calculated mutual information 
between the extracted features as a complementary mea-
sure. Their evaluation of machine learning models, 
including SVM, AdaBoost [31], Random Forest (RF), 
and XGBoost [32], employed sampling methods to bal-
ance the distribution of PD and non-PD patients. They 
reported the following performance metrics using Ada-
Boost: 96.02% accuracy, 91.93% sensitivity, 100.00% spec-
ificity, 100.00% precision, and 95.79% F-measure. They 
concluded that AdaBoost outperformed RF, XGBoost, 
and SVM.

In another article by Yousif et al. [33], The authors 
evaluated the performance of extracting features from 
speech and handwriting datasets for PD detection. The 
authors used 8 different pre-trained CNN models, and 
finally, SVM and K Nearest Neighbors (KNN) [34] were 
used for classification. The authors concluded that com-
bining VGG16 with SVM can achieve 99.75% accuracy 
on the NewHandPD dataset. Abdullah et al. [5] proposed 
the combinations of transfer learning and genetic algo-
rithms for feature selection and Ml models for final clas-
sification. The cost function for the genetic algorithm was 
to improve the accuracy of the final classifier by choos-
ing the best set of features. The author evaluated the 
proposed method using the NewHandPD dataset. The 
authors concluded that combinations of ResNet or VGG- 
16 with KNN with 95.29% accuracy for PD detection.

Zham et al. [35] collected spiral shape drawings from 
PD and healthy subject candi- dates to check the possi-
bility of distinguishing between healthy and PD subjects. 
In total, 28 healthy and 27 PD patients participated and 
were assessed by the Unified Parkinson’s Disease Rating 
Scale (UPDRS). The authors concluded that the speed 
and pressure of drawing pens can be used to disseminate 
information about healthy versus PD subjects.
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A pattern can be seen from the reviewed research-
ers. Initially, all the reviewed articles extracted features 
from participants’ handwriting pictures or the dynamic 
character- istics of the handwriting. Then, the authors 
used DL or ML models as classifiers for discriminating 
between healthy and PD subjects  [36, 37]. By reviewing 
similar research, a gap in using complementary informa-
tion as a new set of features for PD versus healthy sub- 
jects discrimination is depicted. Instead of using only 
pictures, voice, or handwriting physical characteristics 
in this research, we propose a multimedia approach to 
use both pictures and related static or dynamic features 
for discriminating between PD and healthy subjects. 
The proposed method uses the features from the picture 
and extracts them using a combination of CNN and the 
attention layer. Simultaneously, the pro- posed model 
combines CNN and memory units to extract features 
from the related dynamic or static features. Combin-
ing the Pearson correlation and inner product is used 
to merge extracted features. This combination is a new 
set of fused information that can be used for PD versus 
healthy subjects’ discrimination. Finally, a voting classi-
fier was employed to distinguish between PD and healthy 
patients. Finally, the voting classifier is used to identify 
the difference between PD and healthy patients. The 
experimental result indicates 99.85% accuracy, 99.84% 

precision, 99.86% sensitivity, and 99.85% F1-score using 
the proposed fusion technique and voting classifier.

Dataset
PaHaW
The PD dataset PaHaW [38] includes handwriting data 
recorded from 37 PD patients and 38 healthy controls, 
all right-handed. Data collection was performed with an 
Intuos 4 M digitizing tablet, at a sampling rate of 200 Hz. 
This digitizer measured several variables including the 
xand y-coordinates of the pen position, with correspond-
ing timestamps. All PD subjects were examined during 
their ON state, and a clinical neurologist evaluated their 
conditions. Furthermore, healthy subjects were checked 
for any sign of injuries or movement disorders that could 
jeopardize their handwriting. The average age of par-
ticipants is 65.8 years, from 36 to 90 years old. 36 of the 
contributors were female, and 39 of them were male. The 
average diagnosis time for positive cases is 8.37 years. 
Participants’ information is shown in Fig.  1 As shown 
in Fig. 1, the severity of PD is indicated using 6 different 
stages. Stages 1 to 2.5 can be categorized as early to mild 
samples. Stages 3 to 5 can be categorized as moderate to 
severe stages. This research aims to distinguish between 
healthy and PD subjects. Thus, all stages of PD are con-
sidered PD subjects. The dataset contains static features 

Fig. 1 Severity of diseases based on the disease duration in each subject
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like the button state of the pen for creating spiral shapes. 
We added dynamic features, like speed on the X and Y 
axes, to augment the dataset. A sample of these drawings 
and their related features are shown in Fig. 2.

Spiral-wave pictures
The image dataset [37] includes recordings taken from 
28 healthy participants and 27 individuals diagnosed 
with PD. In this dataset, there are a total of 204 images; 
102 images were related to spiral drawing and the other 
102 images were concerned with wave drawing. Images 
were obtained from the participants who drew spiral 
and wave continuous patterns. In this regard, the study 

obtained ethical clearance from the RMIT University 
Human Research Ethics Committee, and the work is part 
of research conducted in compliance with the Declara-
tion of Helsinki guidelines [38]. The recorded handwrit-
ing signatures include both static spiral elements and 
Dynamic Spiral Test (DST) components. The severity rat-
ing of PD for the participants is given below in Table 1.

Each patient’s severity level in this dataset ranges from 
1 to 5, consistent with the previous dataset. Motor assess-
ment severity was evaluated using a modified Hoehn 
and Yahr (HY) Scale [37]. This dataset assesses motor 
performance, measures tremors, and aids in diagnosing 

Fig. 2 Samples of the PaHaW drawings. Spiral shapes and speed versus time step
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Parkinson’s disease. A sample of these drawings is illus-
trated in Fig. 3.

As shown in Fig.  3, the difference between the spiral 
drawing of the healthy participant is more obvious than 
the wave drawing. This research combines Pictures and 
dynamic, and kinematic characteristics of subjects’ hand-
writing signatures to differentiate among PD as well as 
healthy subjects. In total 27 subjects from both datas-
ets with the same level of severity have been chosen for 
the final dataset. The quantity of healthy subjects in the 
combined dataset is 28. Two pictures (waves and spiral 
shapes) per sample are available for training and test-
ing thus, the number of samples from PaHaW is cho-
sen accordingly. The dataset utilized in this research is 
freely accessible from the Kaggle website and is available 
at https://www.kaggle.com/datasets/vikasukani/par-
kinsons-disease-data- set and https://www.kaggle.com/
datasets/kmader/parkinsons-drawings/code.

Model
In this section, an explanation of the proposed model 
is discussed. The proposed model comprises three sec-
tions. The first section relates to extracting features from 
input pictures and speech features. The second section 
describes the process of merging extracted features. 
The last section relates to the classification of extracted 
features.

Feature extractor
Picture
different biological biomarkers can be used to discrimi-
nate between healthy and PD subjects. However, gather-
ing biological biomarkers and using them to distinguish 
between healthy and PD subjects consumes money and 
time, and it might be considered an invasive process. 
However, in this research, we proposed a new fused set 
of features that are extracted using DL models and can 
be used as a marker for distinguishing between PD and 
healthy subjects.

As mentioned, we have two sets of information as 
the input dataset. The first dataset is the handwriting’s 
physical characteristics and the second is the handwrit-
ing pictures. The availability of a faster and more power-
ful Graphical Processor Unit (GPU), solving the gradient 
vanishing and overfitting problems led to a bright future 
for the application of DL models especially CNN in the 
fields of computer vision. In this research, CNN is used 

to extract feature sets from pictures, static and dynamic 
related features to the handwriting picture. This develop-
ment opens up new possibilities for the application of DL 
models in the diagnosis of Parkinson’s disease, potentially 
leading to more accurate and efficient diagnosis meth-
ods. We develop a new model using the combination of 
attention mechanism, convolutional layer, and transpose 
convolutions.

To extract suitable features from the picture, a com-
bination of the encoder decoder and attention layer has 
been developed. The proposed model is comprised of 4 
convolutional blocks in the decoder and 4 transpose con-
volutional blocks with an attention layer on the decoder 
side. This meticulous approach ensures that all relevant 
features are extracted and considered in the classifica-
tion process. Finally, three dense layers are added to the 
network for final classification. The convolutional block 
itself breaks down into two convolutional layers with 
dropout as well as batch normalization layers in between 
them. After every convolutional block, a max-pooling 
layer is placed to decrease the width and height of the 
extracted feature. In the decoder section, trans- pose 
convolution with the concatenation of the attention layer 
is used to increase the size of extracted feature maps. The 
attention mechanism emphasizes the importance of the 
extracted feature set by calculating the alignment factor 
to emphasize how much the extracted features should 
be considered for calculating the output. Concatenating 
the transpose convolution result with the attention layer, 
only useful features are extracted from the input dataset.

Figure 4 demonstrates the architecture of the proposed 
attention layer. As depicted, the attention layer utilizes 
the feature map extracted from the convolutional trans-
pose along with the feature map from the encoder to 
compute the attention factors. The context vector for the 
attention layer is derived using the inner product. The 
output of the attention layer represents the most signifi-
cant features extracted from the corresponding encoder 
layer. Finally, as the classifier, four dense layers are added. 
Between each layer, a dropout layer is used to mitigate 
the effect of overfitting. The complete architecture of the 
proposed model is shown in Fig.  5. As is presented in 
Fig. 5, the proposed model can be used directly for classi-
fication. However, in this research, we extract the feature 
from each dense layer for concatenation with the next 
layer.

PaHaW
The original PaHaW comprised only six features. We cal-
culated two extra features (speed in the X and Y direc-
tions) and added them to the original dataset. The reason 
behind adding the kinematic features is the ability of 
the time series model to extract proper features on PD 
detection [39]. All of the features including speeds are 

Table 1 The severity group is based on the Unified Parkinson’s 
Disease Rating Scale (UPRDS)
Number of patients Stage UPRDS (average) UPRDS (Std)
12 1-1.5 10.75 2.18
8 2- 2.5 18.38 2.83
7 3–5 28.43 2.63

https://www.kaggle.com/datasets/vikasukani/parkinsons-disease-data-
https://www.kaggle.com/datasets/vikasukani/parkinsons-disease-data-
https://www.kaggle.com/datasets/kmader/parkinsons-drawings/code
https://www.kaggle.com/datasets/kmader/parkinsons-drawings/code
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Fig. 3 Samples of the drawings in spiral and wave structures
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fed into the feature extraction model and individual clas-
sifiers. The features in the PaHaW are dependent on the 
time. Memory-type cells are the best options for extract-
ing proper information from time series information. 
However, in total, only eight features are available in the 
dataset. To increase the number of features, we used a 
convolution layer. One-dimension Convolution (Conv 
1D) is used in this research. Due to the small feature set 
of the dataset, we developed a shallow model using only 
two convolution layers followed by an average pooling 
layer. After the Conv 1D for feature extraction, two Long-
Short-Term-Memory (LSTM) [40] are used. Similar to 
the first model, four dense layers are used as a classifier. 
The model’s specification is shown in Fig. 6. As shown in 
Fig. 6, the hybrid CNN-LSTM is used for discriminating 
between PD and healthy subjects. The number of neu-
rons in each layer of the fully connected layer is 128, 64, 
32, and 2. Between each of the fully connected layers, a 

dropout layer with a 0.2 drop factor is placed. like the 
previous model, the output of the layer with 32 neurons 
is extracted for merging.

Merger
Merging extracted features from both the picture set and 
the handwriting picture’s physical tremors will provide a 
new set of information that can be used for final classifi-
cation. In the previous sections, the model is first trained 
to discriminate between PD and healthy instances. How-
ever, the result of the last section is not used for the final 
classification. Give the FP , Fd  as the extracted feature 
sets from the pictures and electronic health care data 
[41]. The inner product is used to merge the extracted 
feature. The process of merging extracted features is 
shown in Eq. 1.

 Merged = Fp.Fd  (1)

Fig. 4 Architecture of the novel proposed attention layer
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Each extracted feature map from the fully connected 
layer could enter the merging process Since the num-
ber layer and feature vector have been extracted by the 
same number of neurons. Thus, to choose the best pos-
sible outcome of the inner product for merging, first, we 
calculate the Pearson correlation coefficient to check the 
linear dependency between each extracted feature vector 
[42]. The formula for Pearson correlation calculation is 
shown in Eq. 2.

 

Pr =

∑
n
i=1

(
Fp1 −

−
Fp1

)
∗

(
Fd1 −

−
Fp1

)

√
∑

n
i=1

(
Fp1 −

−
Fp1

)2

∗

√
∑

n
i=1

(
Fd1 −

−
Fp1

)2  (2)

The least correlated feature vectors are used for the 
merging process. The whole process of merging tries to 
investigate similarities between the feature vectors that 
have shown the least linear relationship to each other. 
Using the feature representing the various aspects of 
extracted features from pictures and the electronic health 
care dataset improves the classifier’s performance. Fused 
features from original pictures, dynamic, and kinematic 
present a new set of features to identify the difference 
between PD and healthy subjects. This newly gener-
ated feature set can be used more effectively than indi-
vidual pictures and correspondent handwriting physical 
features.

Fig. 6 The proposed shallow combination of CNN (2 convolutional layers) and LSTM (2 LSTM layers) layer

 

Fig. 5 The architecture of the proposed CNN + attention
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Discrimination
The number of instances in both datasets is low; thus, 
we used the ML models for classification. Motivated by 
reviewed researchers, we compared the proposed model 
with already available models such as Logistic Regression 
(LR), RF, SVM [43], and XGB. Any of these classifiers 
utilize the features set by different perspectives. LR dis-
criminates between instances by assigning an estimated 
probability to each instance [16].

RF expands the search area by bootstrap aggregating 
decision tree estimators [44]. SVM is an optimization 
classifier that assigns each instance to a specific class by 
considering a margin of error for classification [45]. XGB 
employs aggregation of predictions from multiple weak 
learners to classify instances. Each weak learner contrib-
utes valuable information for prediction, enabling the 
boosting strategy to combine these learners into a more 
robust model [46].

In this research, rather than using each classifier indi-
vidually, we implemented a voting aggregation approach 
with a hard strategy to leverage the best outcomes from 
all estimators. The voting classifier uses the best possible 
outcome for classification in the hard strategy. The final 

classifier aggregates the results of the individual classi-
fiers. The benefit of using each individual and aggregat-
ing the result will lead to covering the individual classifier 
weakness. The main aim of this research is to use the dis-
criminative features and the voting classifier exploit from 
the discriminative features for final classification. struc-
ture of voting classifier with hard strategy is shown in 
Fig. 7. The proposed algorithm begins by extracting fea-
tures from handwriting pictures, its physical characteris-
tics and then, by combining the extracted features a new 
set of distinguishable features is available for final PD ver-
sus healthy subjects’ identifications.

Experimental result
We utilized a cross-validation approach [47] to evaluate 
the proposed algorithm. Specifically, we implemented a 
five-fold cross-validation method, where the dataset is 
divided into five “folds”. In each iteration, four of these 
folds are used to train the model, while the remaining 
fold serves as the validation set. Each fold acts as the 
validation set once across the five iterations, provid-
ing a comprehensive performance assessment. The final 
performance metrics represent the average results from 

Fig. 7 The results of using the hard voting strategy on the individual classifier
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each of these iterations, offering a robust measure of the 
model’s effectiveness. For feature integration, we com-
bined various types of feature sets image-based features, 
statistical features, and dynamic features—obtained 
from patients categorized into either the healthy or PD 
groups. Each feature set was processed independently 
before being merged for model training. We trained each 
deep learning (DL) model separately using the Nest-
erov Adaptive Moment Estimation (Nadam) optimizer 
[48], which adjusts the learning rate dynamically during 
training. The categorical cross-entropy loss function was 
employed, which is well-suited for classification tasks 
with multiple classes. This approach ensures that the 
model benefits from the combined feature sets, thereby 
enhancing classification accuracy. To avoid overfit- ting, 
we stopped the training process if the training loss had 
not been improved after 100 epochs. For both the valida-
tion as well as testing stages, we used a batch size of eight 

and set the training procedure to run for 500 epochs. We 
employed a number of metrics, including the confusion 
matrix, accuracy, precision, recall, as well as F1-score, to 
assess the outcomes. The following is a summary of the 
formulas used to determine these metrics:

 
Accuracy =

TP + TN

TP + FP + TN + FN
 (3)

 
Precision =

TP

TP + FP
 (4)

 
Sensitivity =

TP

TP + FP
 (5)

 
F1_score =

2 ∗ TP

2 ∗ TP + FP + FN
 (6)

Here, TP, TN, FP, and FN represent True Positive, True 
Negative, False Positive, and False Negative predictions, 
respectively. The outcomes for each classifier are summa-
rized in Table 2.

The extracted heatmaps of the presented method on 
CNN attention are shown in Fig.  8. 7. As shown, the 

Table 2 Results of PD classification using the separate CNN and 
CNN-LSTM models
Model Accuracy Precision Sensitivity F1-score
CNN-Attention 91.24% 91.20% 90.74% 91.01%
CNN-LSTM 89.88% 89.50% 89.66% 89.62%

Fig. 8 The extracted feature maps from the input pictures using various convolutional feature maps

 



Page 12 of 16Aljohani BMC Medical Informatics and Decision Making          (2024) 24:269 

proposed method focused on the curves on the circu-
lar dataset to extract the corresponding features. At the 
same time, the model for healthy subjects focused on the 
spiral line to distinguish them from the PD subjects. Usu-
ally, the models focus on the outlines generated from the 
original schema.

The results of both models are close to each other. The 
learning diagrams for both models are shown in Fig. 9.

We evaluated different combinations for CNN-LSTM, 
and as similar research has shown, using only CNN-
LSTM with 3 dense layers and 16, 8, and 2 neurons, 
respectively, achieved 97.81% accuracy using the PaHaW 
dataset [48]. However, this architecture must be separate 
from the CNN-Attention model. We used the ML models 
as the final classifiers to complete our aim. Due to the lim-
ited validation data, the validation loss result is unstable 
for CNN-LSTM and CNN-Attention models. To identify 

the optimal hyperparameters, we employed a grid search 
method to determine the best settings for these machine 
learning models [49–51]. The best set of hyperparameters 
is reported as the number of estimators = 300, maximum 
depth = 50, and learning rate = 0.9 for the XGB classifier. 
The same hyperparameters, number of estimators = 50, 
and maximum depth = 100 are reported for the RF. Maxi-
mum features = 1 and minimum samples leaf = 1 are also 
noted for RF. The performance of the SVM and LR didn’t 
improve when utilizing the grid search model. Experi-
mental results on the proposed architecture as a fusion 
technique and ML models as the classifier are shown in 
Table  3. As shown in Table  3, the proposed methodol-
ogy has reached nearly perfect accuracy. For evaluation, 
five-fold cross-validation is used, and Table 3 represents 
the average results for each class over five different folds. 
To rely on the model’s performance, we have evaluated 
the model further on tenfold cross-validation. The accu-
racy results using 10-fold cross-validation are shown in 
Table 4. The model’s performance is more robust, with an 
average result of 99.85% accuracy.

Table  3 indicates a rapid improvement in the PD ver-
sus healthy subjects’ discrimination performance using 
the voting classifier. To choose the best individual to cre-
ate a voting classifier, we decided on the RF and XGB. 
Almost all ML models outperformed the single DL model 
for PD classification 32 healthy and 34 PD subjects from 
the original dataset were used as the test set to check the 
model’s performance. The confusion matrix in Fig.  10 
explains the investigated result in detail.

As shown in Fig.  10, combining the proposed feature 
extractor and voting out-performed all the evaluated 

Table 3 Average results of PD versus healthy subjects’ 
identification using ML models and proposed fusion technique 
for each class
Model Classes Acc Pre Sen F1
Fusion + LR PD 84.00% 80.76% 84.00% 82.33%
Fusion + LR Healthy 99.99% 99.98% 99.99% 99.98%
Fusion + XGB PD 96.20% 80.70% 92.00% 85.98%
Fusion + XGB Healthy 99.99% 99.98% 99.99% 99.98%
Fusion + RF PD 87.21% 81.72% 92.00% 85.98%
Fusion + RF Healthy 99.99% 99.99% 99.99% 99.98%
Fusion + SVM PD 76.69% 86.71% 70.00% 72.96%
Fusion + SVM Healthy 99.98% 99.98% 99.98% 99.98%
Fusion + Voting PD 99.98% 99.90% 99.91% 99.90%
Fusion + Voting Healthy 99.99% 99.99% 99.99% 99.99%

Fig. 9 Learning diagram for feature extraction models using; (a) CNN-Attention, (b) CNN-LSTM

 



Page 13 of 16Aljohani BMC Medical Informatics and Decision Making          (2024) 24:269 

models for PD versus healthy subjects’ classification. 
The proposed model achieved perfect performance in 
both PD and healthy discrimination. Using the com-
bined feature set with the voting strategy created a com-
plimentary performance for PD classification. As shown 
in Table  3, all models have excellent performance for 
healthy instance discrimination. Furthermore, evaluation 
is done to prove the robust performance of the method-
ology using tenfold cross-validation. Table 4 confirms the 
results’ robustness by evaluating the model across ten 
folds.

However, only XGB and RF demonstrated relatively 
good performance in PD discrimination. However, using 
the voting classifier, the voting classifier’s complementary 
performance improved the individual’s performance in 
PD classification. The configuration for running the code 
is 1xTesla K80, 12GB of virtual randomized accessible 
memory with one single-core hyperthreaded Xeon Pro-
cessor @2.3Giga hertz. The environment for training the 
model is Python 3.7.10 alongside TensorFlow and Scikit 
learn libraries. All models’ training and testing responses 
are shown in Table 5.

Discussion
PD significantly affects the physical behavior of the 
patients and has a lasting effect on hand and body move-
ment. With a rough estimation of more than 10  mil-
lion people worldwide suffering from PD, the urgency 
of finding effective solutions is clear. Many researchers 

have proposed various solutions to extract features from 
available information for discriminating between PD and 
healthy subjects. Previous researchers have focused on 
using either ML or DL models to tackle the challenges 
of PD versus healthy subjects’ discrimination. However, 
in this research, a novel feature fusion procedure is pro-
posed, which could potentially make a significant impact. 
The proposed algorithms comprised three steps: feature 
extraction, fusion, and classification. In the first step, a 
combination of CNN with the attention layer is devel-
oped to extract features from pictures. To extract features 
from the statistical and dynamic features of subjects’ 
handwriting shapes, a combination of CNN and LSTM 
is used. By evaluating DL models, it is evident that the 
lack of a large dataset for training can impact their per-
formance for PD versus healthy subject classification. 
However, training a deep model on the dataset, using the 
saved weight of the model to extract features, and add-
ing an ensemble ML model showed promising results, 
instilling hope for its potential in future research. The 
inner product is used to fuse extracted features. Finally, 
the fused feature is fed into ML models for classifica-
tion. Pearson correlation is used to choose the least lin-
early related features to benefit from the complementary 
effect of the extracted feature. The proposed approach 
demonstrates 99.95% accuracy for PD versus healthy sub-
ject discrimination. The performance of the proposed 
algorithms indicates perfect discrimination between 
positive PD and healthy instances simultaneously. To 
complete the process of providing a reference to contrast 
the explored methodology with other reviewed models 
on PD versus healthy subjects’ discrimination, Table 6 is 
presented.

As shown, the proposed model outperformed previ-
ous research. The proposed model has reported a new 
state-of-the-art performance for PD versus healthy sub-
jects’ discrimination with more than 99.85% accuracy. 

Table 4 Results of evaluating the fusion + voting classifier on 10-fold cross-validation
Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Total
Proposed
(Fusion +
Voting)

99.92 99.91 99.99 99.98 99.98 99.90 99.94 99.89 99.12 99.93 99.85

Table 5 Reported response time and computation complexity 
by all individual methods
Model Trainable 

parameters
Training time 
(second)

Testing 
time 
(second)

CNN-LSTM 38,914 503 0.56
CNN-Attention 702,293 923 0.63
Voting classifier - 152 1

Fig. 10 Instance based confusion matrix; (a) Fusion + LR, (b) Fusion + XGB, (c) Fusion + RF, (d) Fusion + SVM, (e) Fusion + voting
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As shown in Table 6, the proposed model outperformed 
both DL and ML models in the case of PD versus healthy 
subject classification. In the PaHaW dataset, some 
patients have shown PD symptoms before their 60th 
birthdays. Also, 21% of all patients demonstrated their 
symptoms less than five years after the PD diagnosis. 
Thus, the proposed model can discriminate PD cases 
from healthy subjects in the earliest stages and people 
under 60. Therefore, the investigated merging process 
can help to provide superior discriminating features for 
PD versus healthy subject discrimination. The main dis-
tinguishable results of the proposed methodology are 
explained in three facts. First, a novel fusion algorithm is 
proposed to use dynamic signals and pictures for PD ver-
sus discrimination against healthy subjects. Second, the 
proposed algorithm outperformed similar PD research 
versus healthy subject classification. Third, the proposed 
algorithm provides better discriminating features for PD 
versus healthy subject classification.

The proposed method’s performance is further dem-
onstrated in the HandPD Dataset [54, 55]. This dataset 
comprises 18 male and 17 female healthy samples and 21 
male and ten female patient samples. The average age of 
healthy and PD subjects is 44.05 ± 14.88 and 57.83 ± 7.85 
years, respectively. 66% of the HC subjects are women, 
and only 34% of the HC subjects are men. The subject’s 
age range is between 19 and 79. Finally, the results of 
testing the proposed methodology on HandPD are dem-
onstrated in Tabale7, underscoring the effectiveness of 
our proposed method (Table 7).

As shown in Table 6, the performance of the proposed 
method is consistently using other types of handwrit-
ing samples. The proposed model outperformed the 

base article (83.77% accuracy using the CNN model) by 
14.75%.

Limitations and future of the works
The main challenge and limitation of the proposed work 
is the possibility of gathering datasets from the same 
patients to fuse their features. Another limitation of the 
proposed method is using hyperparameter tuning meth-
ods for two models simultaneously. Meta-heuristics 
methods will be investigated to solve this problem in the 
future. In the future, we plan to further investigate the 
performance of the proposed model for discriminating 
between PD subjects in different stages. This will involve 
the use of additional types of information, such as text, 
pictures, and speech, to enhance the model’s capabilities. 
The future model offers a discriminator model that can 
distinguish between various stages of PD. This can signif-
icantly impact the estimation of treatment efficacy based 
on PD progress, instilling hope for better patient out-
comes. Since the proposed method provides a new set of 
fused features for PD classification, the proposed mode 
will discriminate between Parkinson’s patients and those 
with other neurological diseases with similar symptoms.

Conclusion
This study presents a fusion method to distinguish Par-
kinson’s Disease (PD) patients from healthy individu-
als using picture and electronic healthcare features. 
The technique combines Convolutional Neural Net-
works (CNN) and attention mechanisms to extract fea-
tures from images and handwriting characteristics. The 
extracted features are then. They were fused using the 
inner product with the Pearson correlation factor. Five 
machine learning models are evaluated as classifiers, 
with the voting classifier achieving 99.85% accuracy on 
the PaHaW and corresponding motion datasets. Further-
more, the proposed methodology is evaluated using the 
HandPD dataset, and it reported 98.52% accuracy, 98.12% 
precision, 97.29% sensitivity, and 98.37% F1-score. The 
method outperforms other models and shows potential 
for further development to discriminate between various 
stages of PD.

Acknowledgements
Not Applicable.

Table 6 Results of contrasting the explored combination 
methodology with other methods for PD versus healthy subjects
Author Dataset Model’s 

name
Accuracy Sensitiv-

ity
F1-
score

Diaz et al. 
[21]

PaHaw RF 86.67% 83.33% -

Ali et al. 
[22]

PaHaw NB 71.21% - -

Deharab et 
al. [27]

PaHaw SVM 86.26% - -

Basnin et 
al. [28]

PaHaw VGG 91.36% - -

Valla et al. 
[52]

PaHaw Ensemble 84.86% 75.00% -

Lamba et 
al. [53]

PaHaw Alexnet 93.33% - 0.96

Loh et al. 
[24]

PaHaw CNN-LSTM 99.2% - -

Proposed PaHaw Fu-
sion + Vot-
ing

99.85% 99.86 99.85

Table 7 Results of PD detection on HandPD dataset
Model Acc Pre Sen F1
Fusion + RF 98.52% 98.12% 97.29% 98.37%
Fusion + XGB 97.81% 97.83% 97.82% 97.83%
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Fusion + voting 98.52% 98.12% 97.29% 98.37%
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