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Abstract 

Aims The primary goal of this study is to evaluate the capabilities of Large Language Models (LLMs) in understand-
ing and processing complex medical documentation. We chose to focus on the identification of pathologic complete 
response (pCR) in narrative pathology reports. This approach aims to contribute to the advancement of compre-
hensive reporting, health research, and public health surveillance, thereby enhancing patient care and breast cancer 
management strategies.

Methods The study utilized two analytical pipelines, developed with open-source LLMs within the healthcare 
system’s computing environment. First, we extracted embeddings from pathology reports using 15 different 
transformer-based models and then employed logistic regression on these embeddings to classify the presence 
or absence of pCR. Secondly, we fine-tuned the Generative Pre-trained Transformer-2 (GPT-2) model by attaching 
a simple feed-forward neural network (FFNN) layer to improve the detection performance of pCR from pathology 
reports.

Results In a cohort of 351 female breast cancer patients who underwent neoadjuvant chemotherapy (NAC) 
and subsequent surgery between 2010 and 2017 in Calgary, the optimized method displayed a sensitivity of 95.3% 
(95%CI: 84.0–100.0%), a positive predictive value of 90.9% (95%CI: 76.5–100.0%), and an F1 score of 93.0% (95%CI: 
83.7–100.0%). The results, achieved through diverse LLM integration, surpassed traditional machine learning models, 
underscoring the potential of LLMs in clinical pathology information extraction.

Conclusions The study successfully demonstrates the efficacy of LLMs in interpreting and processing digital pathol-
ogy data, particularly for determining pCR in breast cancer patients post-NAC. The superior performance of LLM-
based pipelines over traditional models highlights their significant potential in extracting and analyzing key clinical 
data from narrative reports. While promising, these findings highlight the need for future external validation to con-
firm the reliability and broader applicability of these methods. 
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Introduction
Pathologic complete response (pCR) is characterized by 
the absence of residual invasive malignant cells, whether 
with or without in  situ disease [1]. It is a known prog-
nostic factor for long-term outcomes of breast cancer 
patients and is used to guide the course of adjuvant sys-
temic therapy [2–4]. The presence of pCR is not explic-
itly documented in pathology reports for patients treated 
with neoadjuvant chemotherapy (NAC); however, uti-
lizing such information is crucial for further reporting 
and research purposes. Detecting pCR from Electronic 
Medical Records (EMR) primarily serves the purposes 
of comprehensive reporting, advancing health research, 
and supporting public health surveillance. The challenge 
lies in the fact that pCR data is not always stored in a 
structured format within EMRs. Consequently, manually 
extracting pCR from narrative reports is both time-con-
suming and costly, particularly due to its implicit nature, 
which creates a significant burden when handling large, 
population-based datasets.

Using advanced algorithms and data mining techniques 
can facilitate the pCR detection from unstructured 
medical text [5]. This method is essential for classifying 
patients into clinical categories automatically, thereby 
enabling the detection of the presence of pCR in breast 
cancer patients to become feasible [6].

Traditional rule-based methods like keyword matching 
and regular expression-based techniques are straightfor-
ward and interpretable within medical contexts [7]. How-
ever, their development and maintenance present numerous 
challenges, such as handling abbreviations, negations, con-
ditional or uncertain statements, and conditions based on 
their presence or historical context [8–11]. Additionally, 
the variability in grammatical and syntactic structures of 
medical texts, along with keyword variations across differ-
ent cases and institutions, restricts the generalizability of 
these methods [11]. Furthermore, developing and testing 
these systems necessitates a deep understanding of medical 
and clinical knowledge and close collaboration with experts 
[12]. While expert involvement can enhance system perfor-
mance, it also results in significant maintenance costs [13].

In response to these challenges, we explored the integra-
tion of Large Language Models (LLMs), which are trained 
with billions of parameters and capable of handling a 
diverse set of natural language tasks [14]. Representing a 
promising development in pathology informatics, LLMs 
have the potential to enhance the comprehension and 
analysis of pathology reports significantly [15]. Models 
like bidirectional encoder transformers (BERT) [16] and 
generative pretrained transformers (GPT) [17] are trained 
to predict the likelihood of word sequences based on con-
textual understanding, enabling the generation of coher-
ent and contextually relevant outputs.

To harness the full potential of these LLMs in pathol-
ogy reports analysis, we incorporate LLM embeddings 
within our data pipelines. These embeddings are vec-
tor representations of text, which capture deep lin-
guistic and semantic relationships. By transforming 
complex medical jargon into dense numerical vectors, 
embeddings enable our models to process and analyze 
text with heightened accuracy and efficiency. The use 
of embeddings not only improves the contextual com-
prehension of the text but also enriches the feature set 
available for training our predictive models, enhancing 
the overall predictive performance.

Therefore, leveraging both the predictive capabili-
ties and the embeddings generated by LLMs, this study 
aims to develop and validate robust data pipelines for 
the identification of pCR. Such advancements could 
facilitate data collection and analysis automation in 
research settings, potentially leading to more personal-
ized and timely therapeutic strategies.

Methods
Cohort and data
This retrospective cohort study included all female non-
metastatic invasive breast cancer patients who under-
went NAC and subsequent curative-intent surgery 
during their admission at all four tertiary acute care 
hospitals in Calgary, Alberta, Canada, between 1 Janu-
ary 2010 and 31 December 2017. The study excluded 
patients with a diagnosis of multiple breast primary 
tumors. The study followed the Standards for Report-
ing of Diagnostic Accuracy Study (STARD) [18] and was 
approved by Health Research Ethics Board of Alberta–
Cancer Committee. A waiver of consent was granted.

The patient cohort was identified from the Alberta Can-
cer Registry (ACR) database which captures all new can-
cer diagnoses in Alberta. Text data were retrieved from 
Sunrise Clinical Manager (SCM), which is an EMR system 
universally applied in all four acute care hospitals in Cal-
gary. Final surgical pathology reports, containing compre-
hensive biomarker and histopathology evaluations in raw 
free-text format, were utilized for the development of pCR 
phenotyping algorithms. Patient text pathology reports 
without a lymph node evaluation report were excluded 
because true pCR achievement cannot be verified without 
lymph node evaluation. All databases then were linked 
by the patient’s personal health care number (PHN) and 
unique lifetime identifiers (ULIs). Patient records without 
a valid PHN or ULI were excluded.

Definition and ascertainment of pCR
In our dataset, “pCR” is not explicitly mentioned in all 
reports. Therefore, to ensure accuracy in identifying 
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pCR, each pathology report was meticulously reviewed 
by a breast radiology fellow who served as the gold 
standard. pCR was defined as the complete absence 
of residual invasive malignant cells, regardless of the 
presence of in situ disease [6].

All uncertainties raised from chart review were 
discussed and resolved to ensure that they satisfied 
the case definition. The data extraction agreement 
between the physician and a senior pathologist was 
tested to confirm the presence of pCR for the first 10 
charts, and the result was excellent (kappa = 1).

Pipeline development
To assess the capabilities of LLM embeddings in inter-
preting natural text within pathology reports, our 
research encompassed two innovative pipelines. Firstly, 
we ventured into adapting LLMs within a local comput-
ing environment under a healthcare institution firewall 
to capture the unique linguistic characteristics of pathol-
ogy texts. Second, our approach expanded to a tailored 
system, where we embedded LLMs as a crucial layer in 
a neural network architecture. This network was metic-
ulously fine-tuned to enhance its proficiency in under-
standing complex medical terminology, demonstrating 
the diverse potential of LLMs in medical text analysis.

Both pipelines consist of preprocessing, feature 
extraction, classification, and evaluation process 
(shown in Fig.  1) and have minor differences in fea-
tures extraction and classification stage when it comes 
to using default LLMs and fine-tuned LLMs.

Pipeline A—identify pCR with custom machine learning 
pipelines using LLMs embedding models on local 
environments with original patient reports
We evaluate and assess the effectiveness of various 
pre-trained LLM embedding models, without further 

fine-tuning at this stage, to determine which ones possess 
better inherent knowledge of healthcare, particularly in 
comprehending pathology reports in our local healthcare 
environment. To achieve this, we utilized locally deploya-
ble models from BERT [16], BART [19], T5 [20] and GPT 
[21] families, which have shown considerable promise in 
EMR text classification tasks [22, 23].

Preprocessing These locally deployable LLM embedding 
models have a limitation on the input length of text. To 
address this limitation, we implemented a strategy that 
segments longer texts into manageable chunks.

Our chunking method processes the input text by 
tokenizing it into discrete units, assessing the total token 
count, and segmenting the text to fit the model’s maxi-
mum token capacity while maintaining contextual conti-
nuity through designed overlaps. Each segment includes 
special boundary tokens that ensure seamless integration 
for processing by the specific LLM. This method strikes 
a balance between computational efficiency and informa-
tion integrity, thus improving model performance across 
large text datasets without sacrificing quality.

The overlapping strategy preserves the inherent con-
textual information that might be lost at the boundaries 
of individual segments. Segments that do not reach the 
maximum token capacity are extended with zeros to 
ensure a consistent input length.

Feature extraction The chunked pathology reports are 
processed by various transformer-based language mod-
els, which generate embeddings for each token. These 
token embeddings are subsequently analyzed and aver-
aged to produce a consolidated vector for each segment, 
effectively capturing its core semantic content. Then, we 
use mean pooling to aggregate these segment vectors into 
a holistic representation of the entire document. Mean 

Fig. 1 Analytical pathways for processing text data in pathology reports. *GPT: Generative Pre-trained Transformer; LLM: Large Language Model; 
ML: Machine Learning; pCR: Pathologic Complete Response. Designed using images from [Flaticon.com]
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pooling involves averaging the vectors of all segments, 
which simplifies the data while retaining important fea-
tures and reducing noise. The output of this mean pool-
ing is a comprehensive embedding vector that encapsu-
lates the full essence of the text. This vector then served 
as a foundation for various downstream applications, 
ensuring that the insights derived were both accurate and 
reflective of the document’s entirety.

Classification The extracted embedding vectors were fed 
to down streaming binary classifier. To identify whether a 
pCR presented in the given pathology report can be trans-
ferred to a binary classification task. To ensure a compre-
hensive assessment, the primary dataset was divided into 
training and testing subsets with an 80–20 split, stratified 
by class label (pCR vs. non-pCR). This strategic split was 
crucial to ensure the models achieved both high accuracy 
and robust generalizability to unseen data. After process-
ing the data for classification, we employed fivefold cross-
validation on the training set to ensure a robust evaluation 
of our model’s performance. Additionally, we use Bayes-
ian optimization [24] to choose optimal hyperparameters 
for a logistic regression classifier. This method builds a 
probabilistic model of the objective function, guiding the 
selection of hyperparameters like regularization strength, 
learning rate, and tolerance. The data flow for model selec-
tion and evaluation is illustrated in Fig. 2.

In addition, we noted that the number of patients with 
the presence of pCR was relatively lower than those with-
out it. This is a common scenario in machine learning pro-
jects dealing with medical data, where a balanced dataset 
is crucial for accurate analysis. To rectify this, we used the 
Synthetic Minority Over-sampling Technique (SMOTE) 
[25], which allows the minority class to be over-sampled by 
synthesizing new examples in the feature space.

Data pipeline B—locally hosted LLMs with advanced 
fine‑tuning to unlock its potential on understanding textual 
data
In addition to validating pre-training LLMs’ embeddings, 
we endeavored to explore the potential enhancements 
in model performance through optimization, particu-
larly focusing on fine-tuning techniques. Fine-tuning is a 
critical method in machine learning where a pre-trained 
model, such as the GPT-2 used in this study, is further 
trained (or “fine-tuned”) on a specific, smaller dataset 
relevant to a particular task—in our case, pCR detection. 
To this end, the GPT-2 model served as the foundational 
language model. The main idea behind this was to har-
ness the inherent capabilities of GPT-2 and augment it 
for our specific pCR detection task.

Model architecture The neural architecture attached 
to the GPT-2 consisted of two main components. After 

Fig. 2 Data processing and model evaluation workflow
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processing the input sequence through the GPT-2 model, 
its output underwent a mean pooling operation to con-
dense the sequence representation. These pooled embed-
ding vectors were subsequently fed into a fully connected 
neural network layer. The weights of this layer were ini-
tialized using the Xavier normal initializer [26] to ensure 
optimal backpropagation. The output of this layer was 
then passed through a sigmoid activation function, pro-
ducing a probability score representative of the pCR 
classification.

Fine‑tuning procedure For fine-tuning purposes, 
we adopted a technique called Low-Rank Adaptation 
of Large Language Models (LoRA) [27]. LoRA cur-
tails the count of adjustable parameters for special-
ized tasks by incorporating trainable rank decomposi-
tion matrices into the Transformer’s every layer. This 
significant reduction in adjustable parameters and 
computational resource requirements allows for agile 
task transitioning during deployment without added 
latency. This greatly reduces the number of trainable 
parameters and computational resource requirements 
for LLMs adapted to specific tasks, enabling efficient 
task-switching during deployment without introduc-
ing inference latency.

Moreover, to fine-tune our model’s learning rate, we 
utilized the Adam optimizer [28] in tandem with a learn-
ing rate scheduler. This scheduler systematically modi-
fied the learning rate, enhancing the training regimen 
throughout the learning phase.

Model evaluation and statistical analysis
Descriptive analysis of text data was summarized, with 
median and interquartile range (IQR). Each pipeline was 
evaluated against the chart reviewed pCR data using vari-
ous metrics: Positive Predictive Value (PPV), sensitivity, 
specificity, Negative Predictive Value (NPV), F1-score, 
and accuracy. To further ensure the robustness and relia-
bility of our results, we employed stratified fivefold cross-
validation, where the data was divided into 5 distinct 
subsets, and the model was trained and tested 5 times, 
each time with a different subset reserved as the test set 
and the remaining 4 subsets used for training. This helps 
in ensuring that our evaluation metrics are not overly 
optimistic and are indicative of the model’s performance 
on unseen data.

In addition to cross-validation, we enhanced the reli-
ability of our results by employing a bootstrapping resa-
mpling method to determine the 95% confidence interval 
for each of these metrics. Bootstrapping involved resa-
mpling with replacement from the original data and 

recalculating the metrics for each resampled dataset. This 
procedure was repeated 10,000 times, and the confidence 
intervals were calculated from the empirical distribution 
of these metrics. The computational analyses were car-
ried out on an isolated health authority-approved system 
equipped with an NVIDIA Tesla V100 16GB graphics 
processing unit (GPU). All statistical analyses were con-
ducted using Python 3.10, NumPy [29], SciPy [30], and 
PyTorch [31].

Results
Data characteristics
The pathology text data was processed following the flow 
of Fig. 1. There were 425 patient records linked to EMR 
data and 74 were excluded due to either the presence of 
multiple tumors or missing lymph node evaluation. The 
final cohort included 351 female breast cancer patients. 
Of them, 102 (29%) patients achieved pCR after NAC as 
ascertained by manual chart review. The flow of patient 
cohorts, detailed patient demographics, and clinical 
characteristics have been previously reported [6].

The median report length was 1,316 words (IQR: 
925, 1,631). Patients who achieved pCR tended to have 
shorter reports compared to those who did not achieve 
pCR. The median unique word count per report was 583 
(IQR: 425, 754), with patients who achieved pCR exhib-
iting a lower median count of 436 (IQR: 335, 518) com-
pared to patients who did not achieve pCR (M = 684, 
IQR: 517, 788). After the removal of unnecessary charac-
ters, punctuation, and special symbols, the median token 
count was 2,293 (IQR: 1,540, 2,786) per report.

Performance of data pipeline A
We tested 15 LLMs in pipeline A (Table 1). The sensitiv-
ity ranged from 76.2% to 100.0%, while the PPV ranged 
from 64.0% to 87.0%. The overall performance of the F1 
score ranged from 69.6% to 91.3% and the GPT-2 Large 
model performed the best (highest F1 score and nar-
row 95% CI). Specifically, BERT-based models exhibited 
a sensitivity ranging from 90.5% to 100.0%, PPV ranging 
from 73.1% to 87.0%, and F1 scores ranging from 80.8% 
to 90.9%. Encoder-to-decoder models such as BART and 
T5 demonstrated a sensitivity range of 76.2% to 100.0%, 
PPV ranging from 64.0% to 84.0%, and F1 scores from 
69.6% to 91.3%. GPT-based decoder models achieved a 
sensitivity range of 95.2% to 100.0%, PPV ranging from 
80.0% to 84.0%, and F1 scores of 87.0% to 91.3%.

Performance of data pipeline B
The fine-tuning of GPT-2 with LORA significantly 
improved the performance of the LLMs achieving a high 
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sensitivity (95.3%, 95CI%: 84.0–100.0%) and PPV (90.9, 
95CI%: 76.5 -100%). In addition, the NPV and accuracy 
reached 90.9% (95% CI: 76.5–100%) and 95.6% (95% CI: 
89.4–100%), respectively. The F1 score outperformed all 
other models, peaking at 93.0% (95% CI: 83.7–100%). The 
decreasing training and validation loss, along with the 
improving model performance metrics, signify effective 
learning and enhanced classification abilities (Fig. 3).

Discussion
Our study designed a novel application of LLMs in digital 
health for the determination of pCR among breast cancer 
patients who underwent NAC and subsequent curative-
intent surgery. We developed and validated two pipelines 
for processing pathology text data. Our findings demon-
strated that LLMs outperformed traditional ML models 
in the task of pCR detection, confirming their potential 
utility in extracting critical information from textual 
pathology data.

Compared to keyword-based methods, our methods 
present distinct advantages, particularly in simplify-
ing the development process and reducing the depend-
ency on extensive rule-based programming. Firstly, 
these models significantly lower the threshold of medi-
cal knowledge required from developers. Unlike tradi-
tional methods, which necessitate deep domain expertise 
to accurately model the nuances of medical language, 
LLMs learn from vast datasets, capturing these com-
plexities inherently. This capability allows developers to 
focus more on application integration and less on the 

underlying complexities of medical terminology and lan-
guage patterns.

A prevalent concern regarding the use of AI revolves 
around its reliability [37]. In our study, the optimized fine-
tuned model achieved high sensitivity and NPV. This implies 
that the model can effectively identify all possible presence 
of pCR cases or exclude the absence of pCR. Comparatively, 
this model surpassed the tree classifiers developed from 
the same dataset, showcasing higher performance metrics 
[6] (Table  1). The fine-tuned model, designed specifically 
for interpreting pathology reports, achieved near-perfect 
accuracy in the test dataset, suggesting it could be effectively 
implemented for pCR cohort retrieval in future studies.

From a data privacy and security perspective, our analysis 
evaluated various LLMs across different transformer fami-
lies to determine their effectiveness and feasibility for inter-
preting medical text in a secure, locally governed healthcare 
environment. Our proposed method is designed to inte-
grate seamlessly into existing healthcare infrastructures, 
effectively addressing potential data security concerns.

Based on the strengths described above, the pipelines 
developed in this study can be utilized for large cohort 
studies or clinical trials to evaluate interventions and 
treatment outcomes, significantly reducing the time 
required compared to manual chart reviews. They can 
also be integrated into local clinical information collec-
tion systems to accelerate diagnosis and enable person-
alized treatment strategies. Additionally, these pipelines 
can support population-based surveillance and facilitate 
cohort studies in specific clinical contexts.

Fig. 3 Training and validation loss along with performance metrics in fine-tuning logistic regression classifier
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We acknowledge several limitations in our study. First, 
our evaluation was limited to 15 commonly used LLMs in 
the field of medicine, and the performance of other pre-
trained LLMs remains unexplored. Specifically, Dialog-
based AI such as ChatGPT was not included in our 
evaluation due to privacy and security concerns. While 
it is anticipated that as an advanced language model, 
ChatGPT may offer better performance than GPT-2, it 
is hosted by OpenAI which hindered its integration into 
our research framework and local system [37].

Secondly, while our models have been effectively vali-
dated within this study, integrating them into broader 
clinical information systems might require further valida-
tion. This need arises because our models were developed 
using hospital data from a single region. To ensure they 
work accurately and efficiently in different clinical set-
tings, additional compatibility assessments are necessary.

Third, in our study, we adopted a chunking text pro-
cessing method for pathology report preprocessing. This 
approach was necessary due to the data intake constraints 
of the transformer neural network architecture of the dif-
ferent LLMs. Chunking helps in managing large volumes 
of text data more efficiently. However, it’s important to 
note that this method might segment the text in a way 
that disrupts its natural continuity. As a result, the models 
might face challenges in fully grasping wider context and 
nuances within the text, which is a crucial aspect to con-
sider in multidisciplinary applications where contextual 
understanding is key [38].

Lastly, as our validation was performed using internal 
cross-validation, it is important to acknowledge certain 
limitations in our approach. While internal validation 
is a valuable method for assessing model robustness, it 
may not fully capture the potential variability inherent in 
datasets from different centers or pathologists.

Future research should focus on exploring the robust-
ness of the model against a more diverse and independent 
dataset, potentially with the inclusion of center or pathol-
ogist-level information, to better ensure generalizability. 
Moreover, studies that have access to such detailed data 
could implement center-based or pathologist-based vali-
dation strategies to provide a more rigorous assessment 
of model performance in varied clinical settings.

Conclusion
Our study demonstrates the efficacy of LLMs in digital 
pathology for precise pCR determination in breast cancer 
patients post-NAC treatment. The superior performance 
of the developed pipelines over traditional ML models. 
These findings highlight LLMs’  potential in extracting 
key clinical data from narrative reports, although exter-
nal validation is needed in the future.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12911- 024- 02677-y.

Supplementary Material 1.

Authors’ contributions
K.C. and G.W. contributed equally to this work and are considered co-first 
authors. Y.X., K.C., G.W., M.Q., A. Laws and A.B contributed to the conceptualiza-
tion and study design. A.Li, A.B., and J.X. contributed data collection. K.C. and 
G.W. contributed to the development of the analysis plan. K.C. implemented 
the pipelines and analyzed the results. K.C. and G.W. drafted the first version 
of the manuscript. All authors contributed result interpretation, the revision of 
the manuscript, and the final approval of the manuscript.

Funding
This research was funded by the CIHR (Grant Reference Number: PJT191963).

Availability of data and materials
The data underlying this article were obtained from the local health authority 
and cannot be shared externally due to privacy and confidentiality restrictions. 
The complete code and fine-tuned models used in this study are avail-
able from the corresponding author upon reasonable academic request.

Declarations

Ethics approval and consent to participate
This study received approval from the Health Research Ethics Board of Alberta 
– Cancer Committee, with a waiver of informed consent granted.

Consent for publication
Not applicable as this manuscript does not contain any individual person’s 
data in any form that could be used to identify them.

Competing interests
The authors declare no competing interests.

Author details
1 The Centre for Health Informatics, Cumming School of Medicine, University 
of Calgary, Calgary, Canada. 2 Provincial Research Data Services, Alberta Health 
Services, Calgary, Canada. 3 Department of Community Health Sciences, Cum-
ming School of Medicine, University of Calgary, Calgary, Canada. 4 Department 
of Surgery, Cumming School of Medicine, University of Calgary, Calgary, 
Canada. 5 Department of Oncology, Cumming School of Medicine, University 
of Calgary, Calgary, Canada. 6 Department of Radiology, Cumming School 
of Medicine, University of Calgary, Calgary, Canada. 

Received: 1 March 2024   Accepted: 9 September 2024

References
 1. Cortazar P, Geyer CE. Pathological complete response in neoadjuvant 

treatment of breast cancer. Ann Surg Oncol. 2015;22:1441–6.
 2. Mamounas EP. Impact of neoadjuvant chemotherapy on locoregional 

surgical treatment of breast cancer. Ann Surg Oncol. 2015;22:1425–33.
 3. Cortazar P, et al. Pathological complete response and long-term 

clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 
2014;384:164–72.

 4. Korn E, Sachs M, McShane L. Statistical controversies in clinical research: 
assessing pathologic complete response as a trial-level surrogate end-
point for early-stage breast cancer. Ann Oncol. 2016;27:10–5.

 5. Pathak J, Kho AN, Denny JC. Electronic health records-driven phenotyp-
ing: challenges, recent advances, and perspectives. J Am Med Inform 
Assn. 2013;20:E206–11. https:// doi. org/ 10. 1136/ amiaj nl- 2013- 002428.

 6. Wu G, Cheligeer C, Brisson AM, Quan ML, Cheung WY, Brenner D, 
et al. A new method of identifying pathologic complete response 

https://doi.org/10.1186/s12911-024-02677-y
https://doi.org/10.1186/s12911-024-02677-y
https://doi.org/10.1136/amiajnl-2013-002428


Page 9 of 9Cheligeer et al. BMC Medical Informatics and Decision Making          (2024) 24:283  

after neoadjuvant chemotherapy for breast cancer patients using a 
population-based electronic medical record system. Ann Surg Oncol. 
2023;30(4):2095–103. https:// doi. org/ 10. 1245/ s10434- 022- 12955-6.

 7. Sarker IH. Machine learning: algorithms, real-world applications and 
research directions. SN Comput Sci. 2021;2:160. https:// doi. org/ 10. 1007/ 
s42979- 021- 00592-x.

 8. Garcelon N, Neuraz A, Benoit V, Salomon R, Burgun A. Improving a full-
text search engine: the importance of negation detection and family his-
tory context to identify cases in a biomedical data warehouse. J Am Med 
Inform Assoc. 2017;24:607–13. https:// doi. org/ 10. 1093/ jamia/ ocw144.

 9. Sheikhalishahi S, et al. Natural language processing of clinical notes on 
chronic diseases: systematic review. JMIR Med Inform. 2019;7:e12239. 
https:// doi. org/ 10. 2196/ 12239.

 10. Carrell DS, Schoen RE, Leffler DA, Morris M, Rose S, Baer A, et al. Chal-
lenges in adapting existing clinical natural language processing systems 
to multiple, diverse health care settings. J Am Med Inform Assoc. 
2017;24(5):986–91.

 11. Perera S, Sheth A, Thirunarayan K, Nair S, Shah N. Challenges in under-
standing clinical notes: Why NLP engines fall short and where back-
ground knowledge can help. In Proceedings of the 2013 international 
workshop on Data management & analytics for healthcare; 2013. p. 21–6.

 12. van Baalen S, Boon M, Verhoef P. From clinical decision support to clinical 
reasoning support systems. J Eval Clin Pract. 2021;27:520–8. https:// doi. 
org/ 10. 1111/ jep. 13541.

 13. Wei WQ, et al. Improving reporting standards for phenotyping algorithm 
in biomedical research: 5 fundamental dimensions. J Am Med Inform 
Assn. 2024;31:1036–41. https:// doi. org/ 10. 1093/ jamia/ ocae0 05.

 14. Thirunavukarasu AJ, et al. Large language models in medicine. Nat Med. 
2023;29:1930–40.

 15. Hart SN, et al. Organizational preparedness for the use of large language 
models in pathology informatics. J Pathol Inform. 2023;14:100338.

 16. Devlin J, Chang MW, Lee K, Toutanova K. Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: 2019 Conference 
of the North American Chapter of the Association for Computational 
Linguistics: Human Language Technologies (Naacl Hlt 2019), vol. 1. 2019. 
p. 4171–86.

 17. Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language 
understanding by generative pre-training. 2018.

 18. Bossuyt PM, et al. Towards complete and accurate reporting of stud-
ies of diagnostic accuracy: the STARD initiative. Ann Clin Biochem. 
2003;40:357–63. https:// doi. org/ 10. 1258/ 00045 63037 66476 986.

 19. Lewis M, et al. Bart: denoising sequence-to-sequence pre-training for 
natural language generation, translation, and comprehension. arXiv 
preprint arXiv:1910.13461. 2019.

 20. Raffel C, et al. Exploring the limits of transfer learning with a unified text-
to-text transformer. J Mach Learn Res. 2020;21:1–67.

 21. Radford A, et al. Language models are unsupervised multitask learners. 
OpenAI blog. 2019;1:9.

 22. Cheligeer C, et al. BERT-based neural network for inpatient fall detection 
from electronic medical records: retrospective cohort study. JMIR Med 
Inform. 2024;12:e48995. https:// doi. org/ 10. 2196/ 48995.

 23. Lu HX, Ehwerhemuepha L, Rakovski C. A comparative study on deep 
learning models for text classification of unstructured medical notes with 
various levels of class imbalance. Bmc Med Res Methodol. 2022;22:181. 
https:// doi. org/ 10. 1186/ s12874- 022- 01665-y.

 24. Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of 
machine learning algorithms. Adv Neural Inf Process Syst. 2012;25. 
https:// proce edings. neuri ps. cc/ paper/ 2012/ file/ 05311 655a1 5b75f ab869 
56663 e1819 cd- Paper. pdf.

 25. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minor-
ity over-sampling technique. J Artif Intell Res. 2002;16:321–57. https:// doi. 
org/ 10. 1613/ jair. 953.

 26. Glorot X, Bengio Y. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international 
conference on artificial intelligence and statistics. JMLR Workshop and 
Conference Proceedings; 2010. p. 249–56.

 27. Hu EJ, Shen Y, Wallis P, Allen-Zhu Z, Li Y, Wang S, et al. Lora: Low-rank 
adaptation of large language models. arXiv preprint arXiv:2106.09685. 
2021.

 28. Kingma DP. Adam: a method for stochastic optimization. arXiv preprint 
arXiv:1412.6980. 2014.

 29. Harris CR, et al. Array programming with NumPy. Nature. 2020;585:357–
62. https:// doi. org/ 10. 1038/ s41586- 020- 2649-2.

 30. Virtanen P, et al. SciPy 1.0: fundamental algorithms for scientific comput-
ing in Python (vol 33, pg 219, 2020). Nat Methods. 2020;17:352–352. 
https:// doi. org/ 10. 1038/ s41592- 020- 0772-5.

 31. Paszke A, et al. PyTorch: an imperative style, high-performance deep 
learning library. Adv Neur In. 2019;32.

 32. Sanh V. DistilBERT, A distilled version of BERT: smaller, faster, cheaper and 
lighter. arXiv preprint arXiv:1910.01108. 2019.

 33. Alsentzer E, Murphy JR, Boag W, Weng WH, Jin D, Naumann T, et al. Pub-
licly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323. 
2019.

 34. Jiao X, Yin Y, Shang L, Jiang X, Chen X, Li L, et al. Tinybert: distilling BERT 
for natural language understanding. arXiv preprint arXiv:1909.10351. 
2019.

 35. Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, et al. 
A large language model for electronic health records. NPJ Digit Med. 
2022;5(1):194.

 36. Chung HW, Hou L, Longpre S, Zoph B, Tay Y, Fedus W, et al. Scal-
ing instruction-finetuned language models. J Mach Learn Res. 
2024;25(70):1–53.

 37. Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot 
for medicine. N Engl J Med. 2023;388:1233–9.

 38. Ramkumar P, et al. Chunking as the result of an efficiency computation 
trade-off. Nat Commun. 2016;7:12176.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1245/s10434-022-12955-6
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1093/jamia/ocw144
https://doi.org/10.2196/12239
https://doi.org/10.1111/jep.13541
https://doi.org/10.1111/jep.13541
https://doi.org/10.1093/jamia/ocae005
https://doi.org/10.1258/000456303766476986
https://doi.org/10.2196/48995
https://doi.org/10.1186/s12874-022-01665-y
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-020-0772-5

	Validation of large language models for detecting pathologic complete response in breast cancer using population-based pathology reports
	Abstract 
	Aims 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Cohort and data
	Definition and ascertainment of pCR
	Pipeline development
	Pipeline A—identify pCR with custom machine learning pipelines using LLMs embedding models on local environments with original patient reports
	Data pipeline B—locally hosted LLMs with advanced fine-tuning to unlock its potential on understanding textual data

	Model evaluation and statistical analysis

	Results
	Data characteristics
	Performance of data pipeline A
	Performance of data pipeline B

	Discussion
	Conclusion
	References


