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Abstract 

Background Histopathology is a gold standard for cancer diagnosis. It involves extracting tissue specimens from sus‑
picious areas to prepare a glass slide for a microscopic examination. However, histological tissue processing proce‑
dures result in the introduction of artifacts, which are ultimately transferred to the digitized version of glass slides, 
known as whole slide images (WSIs). Artifacts are diagnostically irrelevant areas and may result in wrong predictions 
from deep learning (DL) algorithms. Therefore, detecting and excluding artifacts in the computational pathology 
(CPATH) system is essential for reliable automated diagnosis.

Methods In this paper, we propose a mixture of experts (MoE) scheme for detecting five notable artifacts, includ‑
ing damaged tissue, blur, folded tissue, air bubbles, and histologically irrelevant blood from WSIs. First, we train 
independent binary DL models as experts to capture particular artifact morphology. Then, we ensemble their predic‑
tions using a fusion mechanism. We apply probabilistic thresholding over the final probability distribution to improve 
the sensitivity of the MoE. We developed four DL pipelines to evaluate computational and performance trade‑offs. 
These include two MoEs and two multiclass models of state‑of‑the‑art deep convolutional neural networks (DCNNs) 
and vision transformers (ViTs). These DL pipelines are quantitatively and qualitatively evaluated on external and out‑
of‑distribution (OoD) data to assess generalizability and robustness for artifact detection application.

Results We extensively evaluated the proposed MoE and multiclass models. DCNNs‑based MoE and ViTs‑based MoE 
schemes outperformed simpler multiclass models and were tested on datasets from different hospitals and cancer 
types, where MoE using (MobileNet) DCNNs yielded the best results. The proposed MoE yields 86.15 % F1 and 97.93% 
sensitivity scores on unseen data, retaining less computational cost for inference than MoE using ViTs. This best 
performance of MoEs comes with relatively higher computational trade‑offs than multiclass models. Furthermore, 
we apply post‑processing to create an artifact segmentation mask, a potential artifact‑free RoI map, a quality report, 
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and an artifact‑refined WSI for further computational analysis. During the qualitative evaluation, field experts assessed 
the predictive performance of MoEs over OoD WSIs. They rated artifact detection and artifact‑free area preservation, 
where the highest agreement translated to a Cohen Kappa of 0.82, indicating substantial agreement for the overall 
diagnostic usability of the DCNN‑based MoE scheme.

Conclusions The proposed artifact detection pipeline will not only ensure reliable CPATH predictions but may 
also provide quality control. In this work, the best‑performing pipeline for artifact detection is MoE with DCNNs. Our 
detailed experiments show that there is always a trade‑off between performance and computational complexity, 
and no straightforward DL solution equally suits all types of data and applications. The code and HistoArtifacts dataset 
can be found online at Github and Zenodo, respectively.

Keywords Computational pathology, Deep learning, Histological artifacts, Mixture of experts, Vision transformer, 
Whole slide images

Introduction
Cancer develops in organs when genetic mutations in 
normal cells trigger their transformation into tumor 
cells. This transformation may be triggered by frequent 
exposure to carcinogens, a class of substances (chemi-
cal, biological, or physical), or several other factors that 
have the potential to cause cancer [1]. Diagnosing cancer 
accurately and efficiently is critical for medical treatment 
and a reduced mortality rate, given its status as one of the 
deadliest diseases worldwide, with a projected estimate 
of 29 million deaths by 2040 [2, 3]. Histopathology is con-
sidered a gold standard for identifying cancerous cells, 
which involves examining tissue samples under a micro-
scope using a histological glass slide  [4]. However, this 
manual inspection and laboratory procedure is not with-
out its pitfalls, as it is labor-intensive, subjective, and can 
be affected by inter- and intra-observer variability [5, 6]. 
Furthermore, the projected rise in cancer cases and the 
shortage of pathologists are significant issues that may 
lead to delayed diagnosis and treatment, resulting in a 
severe impact on clinical decision-making [7]. Therefore, 
streamlining the traditional diagnostic process through 
digitization and automation can provide timely diagno-
sis, improved treatment decisions, and efficacy [3]. Digi-
tal pathology (DP) has the potential to overcome these 
challenges by providing rapid diagnosis and smooth 
sharing of secondary opinions [8]. In fact, in the last dec-
ade, there has been a five-fold growth in DP research 
and development  [9, 10]. This increase in the adoption 
of DP in clinical practice enables computation over the 
digitized version of histological slides, commonly called 
whole slide images (WSIs).

Computational pathology (CPATH) systems have the 
potential to unfold information embedded in WSIs by 
automated systems based on AI and image process-
ing  [10–12]. The seamless integration of CPATH with 
DP can enhance diagnostic or prognostic methodologies 
and save pathologists’ time  [6, 13]. However, artifacts 
that appear during the histological slide preparation are 

ultimately transferred to the WSIs [14–16]. Artifacts are 
diagnostically irrelevant areas, and pathologists usually 
ignore these areas during manual inspection, but unfor-
tunately, the presence of histological artifacts can hamper 
the performance of CPATH systems during automated 
diagnosis  [10, 17]. Therefore, it is essential to equip the 
CPATH system with an artifact detection pipeline to 
exclude artifacts and ensure the flow of histologically 
relevant tissue for diagnostic or prognostic algorithms, 
as illustrated in Fig. 1. Thus, a CPATH system with arti-
fact processing capacity will not only increase the likeli-
hood of reliable and accurate predictions but also provide 
quality control (QC) for laboratory procedures, identi-
fying weaknesses during the histotechnical stages (see 
review [10]) in acquiring WSIs.

In recent years, deep learning (DL) approaches have 
garnered more attention from the CPATH community 
due to their ability to extract hidden patterns in histo-
logical data  [18–21]. Popular DL architectures such as 
deep convolution neural networks (DCNNs) and vision 
transformers (ViTs) have widely been used as state-of-
the-art (SOTA) to distinguish tissue patterns for differ-
ent cancer types and perform image classification and 
segmentation tasks  [16, 19, 22]. Some researches  [23, 
24] demonstrate that DCNNs perform better on small 
datasets, thanks to the inductive bias, which helps 
them to learn spatial relevance effectively. While other 
works [25–27] argue in favor of ViTs, showing that they 
are highly robust, attend to overall structural informa-
tion, and are less biased towards textures. Neverthe-
less, both DL architectures may suffer from overfitting, 
poor generalization, and reproducibility issues, leading 
to overconfident predictions on new (external) data. To 
address these problems, ensembles of DL models (a.k.a. 
deep ensembles) have been used to overcome the weak-
ness of an individual model [28–30]. Ensemble methods 
combine the prediction of independent models using 
averaging or majority voting. A mixture of experts (MoE) 
is an extended method that trains DL for a sub-task and 
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then combines the predictions dynamically to obtain a 
nuanced prediction. In short, the MoE approach consists 
of multiple DCNNs or ViTs, experts on each subclass, 
to achieve improved results. MoEs benefit in terms of 
reproducibility by reducing the variance of predictions 
but augmenting computational expense [31]. In contrast, 
the multiclass approach can be computationally efficient 
but does not involve the strength of multiple models, 
which are adaptive for looking into different aspects of 
data. Based on these arguments, the choice between DL 
approaches depends on application requirements. This 
raises a fundamental question: how to build an effective 
artifact detection DL approach for CPATH systems with 
suitable trade-offs between computational complexity 
and performance?

An effective DL approach for artifact detection appli-
cations (our case) might be created using MoEs, one DL 
model for each artifact class, or multiclass models with 
multiple output classes. In this paper, we propose the 
MoE-based DL approach, which uses a fusion mecha-
nism to integrate predictions from experts and apply 
probabilistic thresholding to improve the sensitivity. 
We establish several DL pipelines using the MoE and 
multiclass models for detecting notable artifacts (i.e., 

damaged tissue, blur, folded tissue, air bubbles, and 
diagnostically irrelevant blood) from histological WSIs 
(see Fig.  1). Our DL pipelines produce four outcomes 
for the input WSI: i) Artifact segmentation map; ii) 
Artifact report for QC using six classes (five artifacts 
and artifact-free area); iii) Artifact-free mask with 
potential regions of interest (RoIs) with diagnostic rel-
evance; and iv) Artifact-refined WSI for the diagnostic 
algorithm.

Our contributions to this work are summarized 
below:

• We develop four DL models (referred to as DL pipe-
line throughout the paper), with SOTA DCNNs 
(MobileNet  [32]) and ViTs (ViT-tiny  [33]), using 
MoE and a multiclass approach.

• We evaluate the computational complexity of the 
pipelines and systematically choose a learned prob-
ability threshold for maximizing the sensitivity of DL 
models in external validation.

• We conduct a qualitative and quantitative evaluation 
over external data (from different cancer types) and 
assess the efficiency of the proposed MoE scheme for 
detecting artifacts and QC.

Fig. 1 An overview of computational pathology (CPATH) system equipped with artifact processing pipeline. Whole slide images (WSIs) are split 
into small sub‑images (patches) to make them computationally tractable for deep learning (DL) models. These patches are fed to a mixture 
of experts (MoE) or multiclass models composed of state‑of‑the‑art DL architectures to perform different CPATH classification tasks. Only patches 
with histological relevance can flow further for the downstream tasks. Finally, predictions are post‑processed to produce different outcomes, such 
as a segmentation map, artifact report for quality control, region of interest mask, and artifact‑free WSI for the diagnostic or prognostic algorithm 
to make a final clinical prediction
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The paper is structured as follows: “Related work” sec-
tion presents recent studies involving DL approaches for 
computational pathology and related work for detecting 
artifacts. “Data materials” section provides data material 
descriptions. “Proposed method”  section explains pre-
processing for creating datasets, the proposed method, 
post-processing, evaluation metrics, and implementation 
details. “Experimental results and discussion” section dis-
cusses results for performance and computational com-
plexity. “Conclusion” section concludes this work. Finally, 
“Limitations and future work”  section discusses limita-
tions and future directions for a smooth integration of 
artifact processing pipelines in CPATH systems.

Related work
Deep learning for computational pathology
Deep learning (DL) approaches have gained popularity in 
the CPATH community for different tasks [21, 34–36]. In 
recent years, several works [20, 37–40] have used popular 
DL architectures for diagnosis and prognostic algorithms. 
FDA-approved PAIGE [41] is an example of such a DL-
based algorithm for prostate cancer. These works can be 
roughly divided into two branches, such as DCNN-based 
(MobileNet  [32], DenseNet  [42], ResNet  [43], or Goog-
leNet [44], etc.) or ViT-based (ViT-Tiny( [33], DINO [45], 
or SwinTransformer [46] etc.) approaches.

In the first branch, Srinidhi et  al.  [47] comprehen-
sively reviewed different DL approaches for developing 
disease-specific classification algorithms using histologi-
cal images. Riasatian et al.  [48] applied transfer learning 
over DCNNs to classify various tumor types and accom-
plished remarkable results using three public histopa-
thology datasets. Talo [49] demonstrated that pre-trained 
ResNet [43] and DenseNet [42] achieved better accuracy 
than traditional methods in the literature for classify-
ing grayscale and color histopathological images. Simi-
larly, Wang et al.  [50] proposed a DCNN-based method 
based on GoogleNet [44] to locate tumors in breast and 
colon images using complex example-guided training 
for WSI analysis. Among other DCNN works, Meng 
et  al.  [29] compared several architectures for classifica-
tion and segmentation problems on a cervical histopa-
thology dataset. Their approach found the best results 
for precancerous lesions using ResNet-101  [43]. For 
the same task, MobileNet  [32] was the fastest. Wang 
et  al.  [51] performed multi-class breast cancer classifi-
cation in their two-stage dependency-based framework. 
A MobileNet [32] was used as a backbone to extract the 
features in the first stage. Then, the MobileNet [32] back-
bone was modified to perform sub-type classification for 
benign and malignant categories. Gandomkar et al.  [38] 
deployed ResNet  [43] for classifying breast histology 
images into benign or malignant and then identified 

them among several sub-types using a meta-classifier 
based on a decision tree.

Works in the second branch used ViTs, which have 
emerged as new SOTA, leveraging attention mecha-
nisms to improve shape understanding and gener-
alizablity  [26]  [27]. Stegmüller et  al.  [40] developed 
ViT-based ScoreNet for breast cancer classification. Their 
approach attended to some regions in the WSI for faster 
processing based on image semantics. Wessel et al.  [39] 
used DINO  [45] for predicting overall and disease-spe-
cific survival in renal cell carcinoma. Zidan et  al.  [46] 
introduced a ViT-based cascaded architecture for seg-
menting glands, nuclei, and stroma in colorectal cancer. 
Gao et  al.  [52] proposed instance-based ViT to capture 
global and local features for subtyping papillary renal car-
cinoma, achieving better performance over selected RoIs.

Unsurprisingly, in both branches, most of these DL 
algorithms were trained and tested on manually anno-
tated clean data (with diagnostic relevance) and over-
looked the impact of potential noise (histological 
artifacts) during the inference stage or unseen scenarios.

Schomig et al. [53], in their stress-testing study, showed 
that the accuracy of the prostate cancer DL algorithm 
was negatively affected by the presence of artifacts and 
resulted in more false positives. Even the presence of arti-
facts in the training data may result in poor learning by 
DL models, as they add irrelevant features to the data [10, 
54]. Wright et  al.  [17] demonstrated that removing 
images with artifacts improved the accuracy of DL mod-
els by a significant margin. Laleh et  al.  [55] emphasized 
the need for robustness of DL-based CPATH systems 
against artifacts for their widespread clinical adaptability. 
Artifact processing pipeline that can detect, extract, and 
eliminate non-relevant patches from WSIs before run-
ning a diagnostic algorithm would avoid any detrimental 
effect on downstream image analysis [11, 17, 56]. There-
fore, it is essential to equip CPATH systems with artifact 
detection ability, which is also the focus of this work, to 
obtain reliable predictions [17, 57, 58].

Detection of histological artifacts
Most researches focus on reducing color variations and 
image augmentations during the preprocessing phase in 
CPATH literature [59, 60]. Detection of artifacts is often 
an underrepresented aspect of WSI pre-processing [10]. 
Compared to color normalization techniques, there 
remains a scarcity of research detecting notable artifacts 
before feeding histologically relevant data to the diag-
nostic algorithms. While some works  [17, 61–63] have 
relied on quickly identifying faulty WSIs by doing QC 
at low magnification. Avanki et al. [64] proposed a qual-
ity estimation method by combining blurriness, con-
trast, brightness, etc., to accept or discard WSI based 
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on a reference. Bahlmann et  al.  [63] exploited texture 
features and stain absorption to separate diagnosti-
cally relevant and irrelevant regions. However, artifacts 
appearing in diagnostically relevant areas are likely to be 
missed. Apart from their limitations with lower magni-
fication, they were validated based on specific staining 
and tissue types. Therefore, artifact detection methods 
need to be extended to higher magnification. Moreover, 
artifact detection methods that can identify specific arti-
facts are desirable for QC, as some artifacts, like a blur, 
can be avoided by re-scanning glass slides or de-blurring 
techniques.

Earlier works for artifact detection relied on tradi-
tional image processing and color-space transformation 
approaches. Gao et  al.  [65] detected blurry areas using 
44 handcrafted (local statistics, brightness, etc) features. 
Hashimoto et  al.  [66] combined image sharpness and 
noise information to create a regression model for out-of-
focus detection. For folded tissue detection, Palokangas 
et al. [67] transformed red, green, and blue (RGB) images 
to hue, saturation, and intensity (HSI) to apply k-means 
clustering over the different saturation and intensity 
values. Bautista and Yagi  [68] detected folds using RGB 
shift with fixed thresholding on luminance and satura-
tion values to enhance color structure in thick (folded) 
areas. Kothari et al. [57] introduced a rank-sum approach 
that used connectivity descriptors and image features to 
discard folded tissues. Their approach used two adaptive 
thresholds on saturation and intensity ranges. Chadaj 
et  al.  [69] separated uninformative blood (hemorrhage) 
from blood vessels using cyan, magenta, yellow, and black 
(CYMK) color space and morphology. Mercan et al. [70] 
proposed a k-means method to classify diagnostically 
relevant vs. non-relevant patches using local binary pat-
terns extracted from stains and L*a*b histograms. A 
detailed review of other artifact detection works can be 
found in Kanwal et al. [10]. Since color-based approaches 
can heavily underperform when exposed to data from 
different cohorts with stain variation, data-driven DL 
approaches are needed to resolve the challenges.

Among recent works using DL-based approaches, 
Albuquerque et  al.  [71] compared several DCNNs for 
detecting out-of-focus areas in their ordinal classifica-
tion problem. Kohlberger et al. [72] proposed ConvFocus 
to quantify and localize blurry areas in WSI. Wetteland 
et  al.  [73, 74] proposed a segmentation model to find 
blood and damaged tissue in bladder cancer WSIs. Cly-
mer et  al.  [75] developed a two-stage method to detect 
blood at low resolution using RetinaNet and later Xcep-
tion CNN for subsequent classification. Babie et al.  [76] 
used SOTA DCNNs with SVM, KNN, and decision tree 
classifiers to separate folded tissues from normal tis-
sue in a binary fashion. HistoQC  [77] was proposed to 

perform a content-based evaluation for detecting out-
liers in a cohort of WSIs using a combination of image 
metrics and supervised classifiers. However, it did not 
remove or detect each artifact in smaller regions on 
WSIs. Kanwal et  al.  [78] used several DCNNs to assess 
the impact of color normalization over blood and dam-
aged tissue detection. In another work [16], they trained 
ViT-Tiny  [33] for air bubble detection using knowledge 
distillation. All these works relied on training a sin-
gle network to classify one or two artifacts against an 
artifact-free class. It is a well-known problem that DL 
models suffer from poor generalization, robustness, 
and overconfident predictions over out-of-distribution 
(OoD) data  [79–81]. Thus, the high variance in the pre-
diction of DL models needs to be addressed, especially 
when deployed in a critical application. A prominent DL 
technique, “deep ensembles”, resolves these problems by 
training several baseline DL architectures and combining 
the resultant predictions to increase accuracy and OoD 
performance  [5]. However, the success of the ensem-
ble method relies on several factors, such as how base-
line models are trained and integrated. The most widely 
used ensemble techniques include averaging and major-
ity voting [31]. It is worth noting that a simple aggrega-
tion using averaging methods or majority voting is not 
a smart choice and is very sensitive to biased baseline 
models  [31]. A mixture of experts (MoE) may address 
this shortcoming by combining base learners, who are 
experts on detecting particular artifact morphology. 
Unlike deep ensemble, where all models are trained on 
the same data, in MoE, each DL model is trained for a 
sub-task to master specific aspects of the data, resulting 
in improved robustness. This is the first work to provide 
a comprehensive DL-based artifact processing pipeline 
that takes the entire WSI, preprocess, infer, and post-pro-
cess in an end-to-end fashion for artifact detection and 
QC applications.

Data materials
This section details the histological data used for training 
and validating DL models. The following in-house (pri-
vate) datasets are used for the experiments.

Training and development data
We obtained 55 WSIs of bladder cancer resection 
biopsies from the Erasmus Medical Centre (EMC) in 
Rotterdam, The Netherlands. The glass slides were for-
malin-fixed, stained with Hematoxylin (purple) and 
Eosin (pink) (H&E) dyes, scanned with a Hamamatsu 
Nanozoomer 2.0HT at 40× and saved in ndpi format 
with a pixel size of 0.227 µ m × 0.227 µ m. These WSIs 
were properly anonymized to preserve patient privacy, 
and all ethical requirements were followed before the 
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dataset was created. NK received training for the task 
and manually annotated five artifacts (blurry areas, 
folded tissues, blood (hemorrhage), air bubbles, and 
damaged tissue). The rest of the tissue was marked as an 
artifact-free region. Note that not all WSIs contained five 
artifacts present and they were not extensively labeled 
as distinct tissue types since this histological data is not 
used for any task other than artifact detection. How-
ever, each WSI had at least one annotation for RoI or 
the artifact region (i.e., blur, fold, etc). Later sections 
refer to this cohort as EMCdev . A detailed description of 
the prepared dataset and its availability is mentioned in 
“Pre-processing” section.

External validation data
Since these external cohorts are not involved in training 
and development, they can be considered OoD data with 
different tissue types and staining. We have used the fol-
lowing cohorts for inference only to validate the general-
izability and robustness of the proposed methods.

EMC cohort:
This cohort is a collection of bladder cancer WSIs from 
a multi-center cohort provided by Erasmus MC, Rotter-
dam, The Netherlands. These WSIs with MRXS format 
were prepared with H&E staining and scanned with a 
3DHistech P100 scanner at 80× magnification. A few 
WSIs were selected based on the presence of artifacts to 
test their generalization ability. FK manually annotated 
these WSIs for five artifacts, in a similar fashion as men-
tioned earlier. We have used a 40× magnification level for 
inference as the models are trained at a similar level. We 
will refer to this dataset as EMCinf  , and it is a different 
cohort than the above-mentioned EMCdev.

SUH cohort:
This cohort is a private breast cancer cohort of 258 surgi-
cal specimens. It contains H&E WSIs prepared from sur-
gical specimens and collected by the Stavanger University 
Hospital (SUH) in Norway between 1978 and 2004. The 
WSIs are in ndpi format and scanned using the Hama-
matsu NanoZoomer S60 at 40× magnification. An expert 
pathologist (UK) selected and manually annotated a few 
WSIs based on the severity of the presence of these arti-
facts. Only five artifacts were carefully annotated, and the 
rest were marked as artifact-free regions. We have used 
these WSIs to test DL pipelines over cancer types that 
differ from the ones they are trained on. We will refer to 
this dataset as SUHinf .

INCLIVA cohort:
This cohort was prepared by the Department of Anatom-
ical Pathology of the Hospital Clínico Universitario de 

Valencia, Spain. It is a collection between 1988 and 2020. 
The glass slides were prepared from skin cancer biopsies 
and were scanned with Roche’s Ventana iScan HT at 40× 
magnification. WSIs were saved in tiff format. An expert 
dermatopathologist (AM) selected and annotated a few 
WSIs with artifacts from this cohort to validate the pro-
posed pipeline over the external cohort. We will refer to 
this dataset as INCLIVAinf .

Proposed method
This section describes the data pre-processing, the pro-
posed method for MoE, post-processing, evaluation 
metrics, and details of the implementation of the DL 
pipelines.

Figure  1 gives a graphical overview of the proposed 
DL method for detecting histological artifacts in WSIs. 
We proceed with the artifact detection task in two steps. 
First, we train binary and multiclass models for patch-
wise classification. The binary models are trained to 
detect one particular artifact, i.e., blur against artifact-
free. The multiclass models provide output with six 
classes (five artifacts and one artifact-free). In the second 
step, we used these trained binary models to create a sort 
of MoE for inference and post-processing the predic-
tions. We combine predictions from each expert in MoE 
by fusing their outputs. We apply a probability threshold 
to maximize sensitivity for detecting notable artifacts and 
providing artifact-free WSI with diagnostic potential. We 
deploy multiclass models with probabilistic thresholding 
similar to MoE. A detailed description of the proposed 
method is given below.

Pre‑processing
We have used the EMCdev cohort to prepare the dataset. 
This included WSIs from this cohort, which were divided 
into 35/10/10 training, validation, and test WSIs to pre-
vent data leakage.

Let a WSI at magnification level 40× (sometimes 
known as 400× ) be denoted by I40×WSI(i) for specific (i)th 
WSI. Since I40×WSI are huge gigapixel images, it is not pos-
sible to process the entire WSI in compute memory at 
once. Most CPATH systems first tile or patch the WSI, 
or RoI, to make computation feasible before processing 
it further. The initial step in the patching procedure was 
to separate the foreground tissue from the background 
(white) areas irrelevant for image analysis. Foreground/
background separation is usually done with a low-resolu-
tion version of the image, which can later be interpolated 
to be used with the full-resolution image. We obtained 
tissue foreground by transforming the RGB (red, green, 
and blue) color space to HSV (hue, saturation, and value). 
Later, Otsu thresholding was performed on the value 
channel to separate the foreground-containing tissue 
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from the background. We set a uniform patch-coordinate 
sampling grid over the extracted foreground. Patches 
having at least 70% overlap with the annotation area (R) 
were retrieved after the extracted foreground was tiled 
across the grid with a non-overlapping stride, as depicted 
in Fig.  1. In short, if a patch had 70% overlap with the 
artifact mask, then it was labeled as a histological artifact 
and vice versa.

Assuming T : I40×WSI(i)∈R → {xij; j = 1 · · · J } denotes the 
patching process, which gives a set of J patches over R. 
Here, xij ∈ R

W×H×C corresponds to patch j with coor-
dinates (xij , yij) from WSIi and H, W, and C represent 
the width, height, and channels of the patch, respec-
tively. We refer to this prepared patch-based dataset 
from EMCdev as D = (X, y) = {(xn, yn)}

N
n=1 containing 

N patches. Here xn is a vector and denotes n-th instance 
with 224 × 224 × 3 pixels, and yn ∈ {0, ..., k} is a scalar, 
where k = 1 for binary and k = 5 for multiclass dataset 

formulation. For instance, in a multiclass dataset, ‘0’ rep-
resents artifact-free class, and {1,2,3,4,5} correspond to 
the blood, blur, air bubbles, damaged tissue, and folded 
tissue classes, respectively. Table 1 shows the breakdown 
of patches in each subset of the dataset D and Fig.  2 
shows example instances for all classes obtained from 
I40×WSI . This training and development dataset, named His-
toArtifacts, is publicly available and can be downloaded 
from Zenodo.

Feature extractors and classifiers
The feature extractor and classifier are two significant com-
ponents of most DL models for classification tasks. Fea-
ture extractors are crucial in DL algorithms as they help 
identify critical features in the data. In short, it reduces 
the dimensionality of the image and facilitates classifica-
tion from a vector. Based on artifact detection works in 
the literature  [16, 78], we have selected two popular DL 

Table 1 Breakdown of the number of patches obtained in each class of the dataset D , obtained form EMCdev after preprocessing

(Label) class (35 WSIs) training (10 WSIs) validation (10 WSIs) test Total

(0) Artifact‑free 5,249 1,591 965 7,805

(1) Blood 16,743 4,186 5996 26,655

(2) Blur 5,661 754 1,137 7,552

(3) Air bubbles 2,499 1,175 846 4520

(4) Damaged Tissue 2,577 332 1,013 3,922

(5) Folded Tissue 998 114 131 1,243

Fig. 2 Examples of artifact‑free and artifact‑classes patches in our prepared patch‑based dataset D from EMCdev , and extracted at 40x magnification

https://zenodo.org/records/10809442
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architectures as feature extractors due to their smaller 
parametric size and faster inference: i) DCNN-based 
MobileNet-v3 [32] architecture, and ii) Vision transformer-
based ViT-Tiny [33] architecture.

MobileNetv3: MobileNet-v3 is a SOTA DCNN architec-
ture proposed by Howard et al. [32] and is part of the fam-
ily of computationally efficient models for small devices by 
Google. The basic building blocks of MobileNetv3 include 
depth-wise separable convolutions and inverted residual 
blocks designed to reduce computational complexity and 
improve accuracy. MobileNet-v3 is optimized through 
a combination of hardware-aware network architecture 
search and novel architecture advances, including the use 
of hard-swish activation and squeeze-and-excitation mod-
ules  [32]. This architecture is released in different vari-
ants. The large architecture variant (used in this work) has 
a 5.4M parameter and is lightweight and efficient, making 
it suitable for computationally efficient image classification 
pipelines.

Vision Transformer: Vision Transformers (ViTs) 
have gained attention as a new SOTA for image recogni-
tion tasks [26, 27]. ViT architecture breaks down an input 
image into a series of smaller patches, linearly embeds 
each patch, adds position embeddings, and then feeds 
the resulting sequence of vectors to a standard Trans-
former encoder  [82]. This Transformer encoder consists 
of a stack of identical layers. It uses a self-attention mecha-
nism to focus on different parts of the input by computing 
a weighted sum of the input features based on their simi-
larity. We use a lightweight and efficient variant of the ViT 
architecture, ViT-Tiny [33], with 6M parameters for faster 
inference.

We apply transfer learning to train DL models and 
update model parameters at each epoch. Assume φ repre-
sents our feature extractor with θf  parameters. Then, for 
the input patch ( xn ) with ground truth ( yn ), we get a flat-
tened feature embedding ( an ) using;

For patch-wise classification, we train classifiers in a 
binary and multiclass fashion. We appended a three-layer 
fully connected (FC) classifier ( Cθc ) at the end of the fea-
ture extractor. Let us denote our DL models with notation 
ψθ , where θ = θf ∪ θc , denotes the parameter set of both 
the feature extractor and the classifier. To obtain the out-
put probability vector ( Pyn ) for the input patch, we apply 
softmax ( σ ) to the output logits of the classifier as shown 
in Eq. (2). For instance, binary models predict (artifact vs. 
artifact-free), and multiclass models predict (five artifact 
classes vs. artifact-free), as shown in Eq. (3).

(1)φθf (xn) = an where an = {a1, a1, ...., az}

(2)
Pyn(xn) = ψθ(xn) = σ(Cθc (φθf (xn))) = σ(Cθc (an))

Here, yp0 is the probability of being an artifact-free 
class. In the binary model, yp1 corresponds to artifact 
class and in the multiclass model, [yp1 , yp2 , yp3 , yp4 , yp5 ] are 
predicted probabilities for blood, blur, air bubbles, dam-
aged tissue, and folded tissue classes respectively. Finally, 
we calculate cross-entropy loss between the ground 
truth and the prediction, back-propagate this loss, and 
update model parameters, θ , at each epoch based on 
the experimental setup explained in “Implementation 
details” section.

To obtain final predictions ( P̂yn ) for classes, we apply 
argmax to Pyn.

At the inference stage, we establish four DL pipelines 
using combinations of trained models, i.e., multiclass 
models (with MobileNet-v3 and ViT-Tiny) and MoEs 
(combining binary MobileNet-v3 and ViT-Tiny), as 
explained further in the following sections.

Mixture of experts
The “mixture of experts (MoE)” DL approach is often con-
fused with deep ensembles. A deep ensemble combines DL 
models trained on the same data using different seed ini-
tializations or hyperparameters to learn different aspects 
of the data [81]. Unlike deep ensemble, in MoE, each DL 
model is trained for a specific task (blur, fold, blood, folded 
tissue, and damaged tissue detection) to become a special-
ist in particular task of data. Instead of applying simple 
majority voting like deep ensembles, a gating mechanism 
forms the final prediction, incorporating output from 
diverse experts and improving robustness.

Our proposed DL scheme is a kind of MoE where we 
integrate five identical DL architectures (also called base 
learners or experts) after training on the parts of the 
data (similar to bagging). Bagging offers the advantage of 
reducing variance, thus eliminating overfitting by train-
ing models on subsets of data. This parallel and data-
independent training strategy avoids affecting the results 
of other experts. We form two MoE-based DL pipelines, 
ViTs-based MoE and DCNNs-based MoE, by choos-
ing five base learners (DCNN or ViT architectures as 
explained in “Feature extractors and classifiers”  section). 
All these experts are trained on five overlapping sub-
sets, {Dblood ,Dblur ,Dairbubble ,Ddamaged ,Dfolds} ∈ D . Each sub-dataset 

(3)Pyn =

py0 , py1
T

if binary

py0 , py1 , py2 , py3 , py4 , py5
T

if multiclass

(4)

LCE (yn ,Pyn ) =

{

−yn · log(py0 )+ (1− yn) · log(1− py0 ) for binary

−
∑k

i=0 yn · log(pyi ) for multiclass

(5)P̂yn = argmax(Pyn)
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contains a distinct artifact class and the same artifact-free 
class as shown in Fig. 3. For simplicity, we transform ground 
truth labels as a positive class with the label ‘1’ for artifact-
free and a negative class with the label ‘0’ for the artifact 
class.

The contingent MoE model, � , forms a single predic-
tion using the aggregation function (G). G is similar to 
gating, which combines the output probabilities of the 
experts using a fusion approach. In short, the proposed 
approach formulates MoE trained on individual arti-
fact morphology detection tasks. For artifact models 
ψi ∈ {ψblood ,ψblur ,ψairbubble,ψdamage,ψfold} , we only uti-
lize the prediction for negative class ( Pψ0 ) (a.k.a probabil-
ity of being an artifact), and fuse binary outputs for � as 
shown in Eq. (7).

To evaluate the final prediction ( P̂�y ), we adopt a form 
of meta-learning by placing a constraint on maximizing 
the sensitivity of the model for the positive (artifact-free) 
class. Therefore, we introduce a probability threshold, 
ts , to handle previously unseen tissue morphology and 
avoid misclassifying artifact-free patches with potential 
diagnostic relevance. In other words, if the probability 
of being a positive class in P�y is higher than ts , then we 
assign artifact-free label to the patch as shown in Eq. (8). 
Here, ts would help to efficiently minimize false negatives 
without re-training models with a new cohort of WSIs 
with different tissue types or staining. We determine the 
best value of ts by maximizing the true positive rate (sen-
sitivity) in the receiver operating characteristic (ROC) 
curve over the validation data.

Multiclass models
In case of multiclass models ( ψmulti ) with predicted prob-
ability distribution Pψyi

∀ i ∈ {0, 1, 2, 3, 4, 5} . We find the 
probability threshold ( ts ) by maximizing sensitivity simi-
lar to MoE (see “Mixture of experts”  section). In other 
words, if the predicted probability for the artifact-free 
class is higher than ts , then the patch is assigned artifact-
free label. Otherwise, the artifact label with the highest 
probability value is assigned (see Eq. (9)).

(6)P�y = G(ψblood ,ψblur ,ψairbubble,ψdamage,ψfold)

(7)P�y =

{

1−max(Pψi0
) for artifact-free (positive) class

max(Pψi0
) for artifact (negative) class

(8)P̂�y =

{

Artifact − free if P�y0
≥ ts

Artifactk Otherwise k ∈ {1, 2, 3, 4, 5}

(9)

P̂ψmultiy
=







Artifact − free with pψy0
if pψy0

≥ ts

Artifactk with pψyk
max(pψy1

, pψy2
, ..., pψyk

) Otherwise

Post‑processing
At the inference stage, we utilize predictions for both 
artifact detection and QC applications, as illustrated 
in the post-processing part of Fig. 1. Since the predic-
tions of DL models are patch-based, we need to stitch 
patches back to see the overall view of the tissue in 
the WSI structure. However, stitching smaller patches 
introduces boundary artifacts (blockish appear-
ance) [4]. To avoid this problem, we turn to the matrix-
filling approach.

For patch xi with coordinates (x0, y0) , the next con-
secutive patch x(i+1) holds the difference of sampling 
stride (s) with coordinates (x1, y1) = (x0+s, y0+s) . Here, s 
equals the patch size owing to a uniform, non-overlap-
ping grid. For the segmentation map, we use a matrix 
(M), a downscale version of the original resolution, to 
assign predicted class k.

Since M is down-scaled to sampling stride size, every 
filled box can be seen as a pixel in the final segmenta-
tion map (see 1 in Fig.  4). We use filled-in M for the 
artifact report to calculate the percentage of predicted 
patches with artifact class k over the total number 
of patches (Ntot ) in the foreground. See 2 in Fig. 4 for an 
example artifact report for QC.

We denote the artifact-free post-processed region 
as ρ . It measures the usefulness of the WSI and can be 
compared against a predefined threshold τ for assessing 
its suitability (accepting or discarding) for developing 
DL algorithms.

To highlight the histologically relevant region, we 
binarize M to Mρ and treat all artifact classes as a single 
class, as shown in Eq. (13). The binary mask ( Mρ ) indi-
cates the potentially histologically relevant RoI (see 3 in 
Fig. 4). Later, we apply a morphological closing opera-
tion to remove small holes in the final mask.

Finally, obtain artifact-free WSI by performing the 
Hadamard product between Mρ and the original WSI 
( I ∈ R

m×n ) with the dimensions of m× n (see Eq. (14)). 
Using the nearest interpolation, we resize the Mρ mask 

(10)

M[x0 : x0 + s, y0 : y0 + s] = k where s = 224 (patch-size)

M[x1 : x1 + s, y1 : y1 + s] = k where k = {0, 1, ..5}

(11)
Perk =

Nk

Ntot
∗ 100% where Nk = Number of patches predicted with class k

(12)ρ =

Number of artifact-free pixels (Nk0 )

Total number of pixels in the foreground (Ntot )

(13)

Mρ(i,j) =

{

1, if M(i,j) = k0 (artifact-free)
0, Otherwise
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Fig. 3 An overview of the mixture of experts (MoE) formation for artifact detection. Five base learners (either MobileNet‑v3 or ViT‑Tiny deep 
learning architectures) are trained on overlapping sub‑datasets to learn the distinct morphology of each artifact. Labels are transformed to take 
the artifact class as a negative class. A fusion function integrates output from all experts to form a predictive probability distribution for the final 
prediction. A meta‑learned probability threshold is applied to maximize the sensitivity of the MoE
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to m× n . Let us denote the element at the i-th row 
and j-th column of Mρ as Mρ(i, j) , and the correspond-
ing element in I as I(i,  j). This element-wise operation 
between Mρ and I removes any regions or areas with 
the presence of artifacts (see 4 in Fig. 4) and Iartifact−free 
can be written as:

(14)

(I ⊙Mρ)ij =













Mρ(1,1) · I(1,1) Mρ(1,2) · I(1,2) . . . Mρ(1,n) · I(1,n)
Mρ(2,1) · I(2,1) Mρ(2,2) · I(2,2) . . . Mρ(2,n) · I(2,n)

.

.

.

.

.

.
. . .

.

.

.

Mρ(m,1)
· I

(m,1)
Mρ(m,2)

· I
(m,2)

. . . Mρ(m,n)
· I

(m,n)













Evaluation metrics
For performance comparison, we report accuracy, sensi-
tivity, and the F1-score. Let TP, FN, FP, and TN denote 
true positive and false negative, false positive, and true 
negative predictions, respectively. Here, a positive class 
refers to a patch without artifacts (artifact-free patch). 
Then, the confusion matrix (CM) is a tabular represen-
tation of the model’s predictions using TP, FN, FP, and 
TN. Accuracy is the proportion of correct predictions 
to the total number of predictions and is defined as 
Acc. = (TP + TN )/(TP + FN + FP + TN ) . Sensitivity, 
also known as recall, measures the proportion of actual 
positives correctly identified by the model and is termed 
Sens. = TP/(TP + FN ) . High sensitivity is essential to 
retaining potentially relevant (artifact-free) RoIs for 

Fig. 4 Overview of deep learning pipeline emphasizing the post‑processing stage during the inference. Pre-processing: The whole slide image (WSI) 
is split, and every patch is stored with its corresponding coordinate. Inference: Every patch is assigned a label using a mixture of experts or multiclass 
DL models. Post-processing: The matrix‑based filling method assigns a color to every pixel (in the downscaled version of WSI) at the corresponding 
coordinate location. Post‑processing provides: 1) Segmentation map; 2) Artifact report for quality control; 3) Artifact‑free region of interest map, 
and 4) Artifact‑refined WSI for computational analysis
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the diagnostic algorithm. On the other hand, specific-
ity Specs. = TP/(TP + FP) , quantifies the performance 
of a model in distinguishing negative instances from 
those falsely labeled as positive. In our application, high 
specificity filters out irrelevant information (artifacts) 
appearing in relevant RoIs. The F1 score is the har-
monic mean of precision and recall and is calculated as 
F1 = 2 · (precision · recall)(precision+ recall) , where 
precision = TP/(TP + FP) . For overall segmentation, dice 
co-efficient is reported. Dice scores the overlap between 
the predicted segmentation and the ground truth and 
ranges from 0 to 1, where 1 indicates perfect overlap 
between the predicted and ground truth segmentation. 
We use model weights with the lowest validation loss 
during the training to report these evaluation metrics.

We have considered FLOPS, parameters, and inference 
time for computational complexity evaluation. FLOPS 
measures the number of floating-point operations 
required by a specific algorithm. The number of param-
eters refers to the learnable parameters in the model 
that are used to perform operations, where high param-
eters result in more FLOPS. Finally, inference time is the 
time the DL model consumes to make predictions over 
a patch. These metrics, combined, provide a comprehen-
sive understanding of the DL model’s performance and 
computational efficiency, which are crucial for assessing 
the practical applicability in real-world scenarios.

Implementation details
The code was implemented using Python. The patch 
extraction was accomplished using the Pyvips1 library. 
During the patching, we used torch multiprocessing2 
to carry out process pooling for faster pre-processing. 
The extracted patches were standardized to the mean 
and standard deviation of ImageNet [83] due to transfer 

learning over ImageNet weights. To compensate for the 
scarcity of labeled data, augmentation is applied at each 
epoch during the training [34, 84]. We used random geo-
metric transformations, including rotations and flips, 
both horizontally and vertically. Our DL models consist 
of a feature extractor and a classifier with three fully con-
nected (FC) layers. We used state-of-the-art architec-
tures MobileNet-v3 [32] and ViT-Tiny [33] as backbones 
for feature extractors. MobileNe-tv3 was borrowed from 
the Pytorch3 DL framework, and ViT-Tiny was taken 
from the Timm4 library. Both of these backbones were 
initialized with ImageNet weights. We referred to the 
best hyperparameter settings from works  [16, 58, 78] 
and fixed final parameters to cross-entropy loss, SGD 
optimizer, ReduceLRonPlateau scheduler initialized with 
0.01, batch size of 128, early stopping of 20 epoch over 
the validation loss to avoid overfitting, dropout of 0.2, 
and fixed random seed for reproducibility. All training 
and inference experiments were done on the Nvidia A100 
40GB GPU. The source code is available at Github.

Experimental results and discussion
This section presents experimental results for train-
ing and validating DL pipelines of the EMC cohort and 
discusses their performance on validation, testing, and 
external data.

Validation on the EMCdev cohort
This experiment aims to evaluate the performance of the 
proposed MoE and multiclass models for artifact detec-
tion task. These pipelines consist of four DL approaches 
using MoE and multiclass models based on DCNNs 
(MobileNet-v3  [32]) and ViTs (ViT-Tiny  [33]). For sim-
plicity, we will refer to DCNNs or ViTs in the discussion. 
For a baseline comparison, we also trained binary classifi-
cation models (DCNN and ViT) using the entire EMCdev 

Table 2 Performance of artifact processing pipelines on the validation set of EMCdev cohort “Training and development data”. Various 
DL pipelines, including the mixture of experts (MoE) and multiclass models using SOTA DCNN and ViT architectures, are deployed. A 
simple binary formulation is used for a fair comparison, and accuracy for the artifact‑free class is reported. The best results are marked 
in bold, and the second‑best results are underlined in each column

DL architecture Acc.(%) F1 Acc.afree(%) F1afree Sens.afree

DCNNs MoE 92.08 91.87 97.82 88.66 90.12

Multiclass 93.48 93.43 94.96 78.64 96.89
Binary 95.92 95.26 ‑ ‑ 94.68

ViTs MoE 94.81 94.53 97.84 89.06 91.92

Multiclass 94.29 94.48 96.79 83.80 86.84

Binary 97.45 97.46 ‑ ‑ 87.25

1 https:// libvi ps. github. io/ pyvips/
2 https:// pytor ch. org/ docs/ stable/ multi proce ssing. html

3 https:// github. com/ pytor ch/ pytor ch
4 https:// timm. fast. ai/

https://github.com/NeelKanwal/Equipping-Computational-Pathology-Systems-with-Artifact-Processing-Pipeline
https://libvips.github.io/pyvips/
https://pytorch.org/docs/stable/multiprocessing.html
https://github.com/pytorch/pytorch
https://timm.fast.ai/
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dataset in a binary fashion. In other words, we wanted to 
compare the benefits and drawbacks of the simpler clas-
sification model against a MoE and their computational 
and performance trade-offs for efficient DL pipelines.

We will first focus on discussing the performance 
aspect. Table  2 presents classification results over the 
EMCdev validation subset. We have reported metrics 
for artifact-free classes to compare them fairly against 
baseline (binary) models. For better classification per-
formance, we desire high sensitivity to avoid misclassify-
ing artifact-free patches as artifacts and retain potential 
histologically relevant tissue for automated diagnostics. 
This is because the artifact detection application is not 
affected by one artifact class being classified as another. 
In the end, patches with the presence of any artifacts 
will be excluded from downstream (diagnostic) applica-
tions. Though the baseline models yield the best overall 
accuracy, they relatively underperform and exhibit lower 
sensitivity in classifying the artifact-free class. The MoEs 
outperform multiclass models and baseline models in 
detecting artifact-free class. Overall, both MoE pipelines 
give superior results for the positive class and avoid false 
negatives. However, the DCNN-based multiclass model 
yields the best sensitivity score. Table 3 shows validation 
results from other relevant works from the literature as a 
reference. The reported results can not be directly com-
pared as the methods were trained using different data 
and varying experimental setup. To present an unbiased 
view, we test MoEs and multiclass models on unseen data 
from the same EMCdev cohort.

We present generalization results in Table 4. The table 
reports mixed results when probabilistic threshold-
ing is not applied. To improve the sensitivity over new 
data, we learn a probability threshold ( ts ) using ROC 
curves of the validation set (see “Mixture of experts” sec-
tion), as displayed in Fig.  5. We target a 98% sensitivity 
and obtain different ts values for each DL pipeline, as 
reported in Table 4. Interestingly, the DCNN-based pipe-
lines assign higher probability scores to the artifact-free 

class, indicating better confidence and stronger learning 
of histologically relevant morphology than the ViT-based 
models. Figure  6 reflects similar insight that ViT-based 
pipelines carry weak differentiation between artifacts and 
artifact-free patches (see black dotted line). It is fascinat-
ing to see that probabilistic thresholding significantly 
improves the ability to detect artifact-free class, hinting 
that the proposed MoEs would be the best choice with 
the fewest false negatives.

To evaluate the computational aspect, Table 5 indicates 
the computational complexity of all four DL pipelines. 
Undoubtedly, MoEs have nearly five times more param-
eters than multiclass models. This is because each MoE 
combines five binary experts. Comparatively, DCNN-
based pipelines can be efficient at the inference stage due 
to very little patch processing time per second. Similarly, 
MoEs have lower throughput than simpler multiclass 
models. As WSIs can be of different sizes, we considered 
reporting throughput as a more informative metric, as 

Table 3 Comparison of the proposed mixture of experts (MoE) 
against the literature on identical classification tasks. Note 
that the reported methods were developed using different 
data under different experimental setups. Thus, the results are 
provided for reference, not as a direct comparison. The best 
results are marked in bold, and the second‑best results are 
underlined

Task and method from literature Accuracy (%)

Folded tissue detection by [85] 92.17

Folded tissue detection by [76] 96.7

Blur detection by [86] 93.2

Blur detection by [71] 94.4

Air bubble detection by [85] 87.33

Air bubble detection by [87] 91.5

Blood detection by [69] 85.0

Damaged tissue detection by [88] 90.0

Five artifacts ‑ MoE‑DCNNs (Ours) 97.82

Five artifacts ‑ MoE‑ViTs (Ours) 97.84

Table 4 Generalization results on the test set of EMCdev cohort “Training and development data”. The table presents results over 
unseen data, with and without probabilistic thresholding. All metrics are calculated for the classification performance over artifact‑free 
class. The best results in each column are marked in bold, and the second‑best results are underlined

DL architecture Without probabilistic threshold With probabilistic 
threshold

Acc. (%) F1 Sens. ts F1 Sens.

DCNNs MoE 97.82 88.66 89.12 0.326 86.15 97.93
Multiclass 93.58 85.21 94.72 0.341 83.53 95.47

ViTs MoE 95.61 88.91 90.45 0.052 84.90 97.83

Multiclass 92.55 82.51 89.94 0.015 70.15 96.54
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it scales linearly with the number of patches in a WSI. 
For instance, in skin cancer WSIs, MoEs roughly take 
3-4 minutes per WSIs, and for urinary bladder cancer 
WSIs, which are 3-4 times larger, the end-to-end process-
ing takes 10-12 minutes. We have to make a trade-off in 
selection, either choosing multiclass DCNN with bet-
ter computational efficiency but relatively lower perfor-
mance or based on the best performance. We prioritize 
classification performance and opt for the two best-per-
forming DL pipelines from Table 4; therefore, we will use 
MoEs for the following experiments.

Table 5 A comparative analysis of computational complexity. 
Lower values of parameters and flops indicate computationally 
efficient models, and higher throughput is desired for faster 
inference

DL pipelines Parameters (M)⇓ Flops (B)⇓ Throughput 
(p/sec.)⇑

MoE (DCNNs) 17.65 1.13 178

MoE (ViTs) 27.62 5.38 128

Multiclass (DCNN) 3.53 0.22 832

Multiclass (ViT) 5.53 1.08 419

Fig. 5 ROC curves for deep learning pipelines over the validation subset. All plots highlight the area under the curves (AUC) score and best 
probability thresholds for maximizing F1 and sensitivity metrics
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Quantitative evaluation
We perform this experiment to assess the robustness 
of DL pipelines over external (OoD) data. For this pur-
pose, we chose six WSIs ( s1-s6 ) from external validation 
data (see “External validation data” section). Note that all 
these WSIs were prepared and scanned by different labo-
ratories and scanning hardware. Thus, they exhibit vast 
differences in staining, tissue types, and image acquisi-
tion protocols, as displayed in Fig. 7. We did not incor-
porate color normalization in the artifact processing 
pipeline due to their additive computational cost and 
latency [78].

Quantitative assessment is crucial to objectively evalu-
ate the numerical performance, enabling us to com-
pare both the proposed MoEs of DCNNs and ViTs. We 
require histological correctness that only an expert can 
provide in the form of ground truths. Therefore, all WSIs 
were roughly annotated by FK, UK, and AM for differ-
ent artifacts. At the inference level, every patch from the 

WSI tissue foreground is used to perform predictions. 
Therefore, the error is calculated using evaluation met-
rics reported in “Evaluation metrics”  section, where the 
ground truth label of a patch is only an artifact if it over-
laps 70% with artifact annotation as described in “Feature 
extractors and classifiers”  section. Table  6 presents the 
results for classification and segmentation performance. 
Since certain artifacts, such as folded tissue, have blurry 
areas surrounded  [10]; one artifact class is likely to be 
predicted as another. Thus, for simplicity purposes, we 
report metrics for artifact-free (positive) classes only.

Both MoE pipelines experience a drop in sensi-
tivity over breast cancer (SUHinf  ) and skin cancer 
(INCLIVAinf  ) WSIs. This behavior could be due to mis-
classifying ambiguous regions or susceptibility to specific 
tissue types. Since SUHinf  and INCLIVAinf  WSIs are OoD 
data for our DL pipelines, it is interesting to see that we 
get high specificity scores. In short, both pipelines ensure 
that most of the actual artifacts present in the data are 

Fig. 6 Classification plots for deep learning pipelines over the validation subset. All subplots highlight the delineation (black dotted line) 
with the estimated value of ts for probabilistic thresholding
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accurately flagged. Dice score in Table 6 shows good seg-
mentation results on the EMCinf  cohort. Nevertheless, 
EMCinf  is bladder cancer tissue and may carry more sim-
ilarity in structural appearance.

Quantitative metrics can miss subtle nuances masked 
by overall performance scores. Therefore, we observe 
false predictions of both DCNNs-based MoE and ViT-
based MoE over the better-performing cases ( s1 , s4 , and 

s5 ) and the worse-performing cases ( s2 , s3 , and s6 ) in 
OoD data. Figures 8 and 9 show ground truths and pre-
dictions masks for the better results in each cohort, and 
Figs.  10 and  11 show the same for the worst results in 
each cohort. Both MoEs densely predict artifacts in all 
three examples. Here, false negative instances pertain to 
regions identified as artifacts but were artefact-free. Con-
versely, false positives are cases classified as artifact-free 

Table 6 The results for quantitative evaluation for assessing the robustness of the proposed mixture of experts (MoE) approach. 
Qualitative evaluation is performed on external (out‑of‑distribution) data. The table reports classification performance corresponding 
to patch‑wise classification and dice scores for overall segmentation maps obtained through artifact processing pipelines

DL pipeline Cohort WSIs F1afree Sens.afree Spec.afree Dice

MoE of DCNNs EMCinf s1 92.86 93.48 53.76 0.909

s2 89.11 89.61 52.71 0.784

SUHinf s3 70.91 55.07 99.09 0.487

s4 85.51 79.78 44.57 0.572

INCLIVAinf s5 60.05 43.99 80.53 0.532

s6 37.39 23.55 98.97 0.506

MoE of ViTs EMCinf s1 93.17 93.01 60.92 0.939

s2 89.34 87.97 63.18 0.795

SUHinf s3 68.79 54.51 79.56 0.367

s4 87.97 85.63 26.38 0.482

INCLIVAinf s5 78.92 66.02 79.71 0.559

s6 45.49 42.49 42.91 0.412

Fig. 7 Hue‑Saturation plot shows massive variation in the external (out‑of‑distribution) data. Random patches from all six WSIs ( s1‑s6 ) are used 
to calculate hue and saturation values to observe the depth of H&E staining. WSI acquisition procedures from different laboratories and scanning 
hardware affect the final appearance of histological images (as shown on the right)
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but were labeled as any artifact class. Figure 10 highlights 
that DCNN-based MoE might be overdoing their job pre-
dicting certain artifacts like air bubbles. For instance, in 
s6 , the entire WSI has a hazy appearance, with air trapped 
under most of the tissue. The false predictions for s6 show 
that those examples lack cellular features. Likewise, for 
false positives in the case of s2 , those specific examples 
were the boundary of another artifact region and con-
tained some presence of blood. In cases s2 and s3 , annota-
tions had some noise, and with the chosen mask overlap, 
the obtained ground truth was not accurate enough. On 
the other hand, the ViT-based MoE (in Fig. 11) appears 

to be slightly overdoing damage detection. In most false 
predictions here, we might be dealing with potentially 
noisy and imprecise ground truth annotations. Therefore, 
relying on only quantitative analysis is not concrete and 
conclusive. We require a thorough qualitative analysis by 
field experts to scrutinize further the strengths and weak-
nesses of both MoEs in detecting artifacts.

Qualitative evaluation
In this experiment, we perform qualitative evaluations 
by three field experts to delve deeper into the DL pipe-
lines’ behavior and see the holistic view after the artifacts 

Fig. 8 Visualization of DCNNs‑based mixture of experts’ predictions with better performance over out‑of‑distribution data. The image shows 
the original WSIs ( s1 , s4 , and s5 ) along with ground truth for artifacts (combined), artifact segmentation map, and a few examples of false predictions. 
False negative refers to patches detected as artifacts but were artifact‑free, and false positive refers to patches detected as artifact‑free but belonged 
to any artifact class
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refinement. While quantitative metrics provide valuable 
numerical insights into a model’s performance, they often 
fall short of capturing the intricacies of segmentation 
results. Therefore, assessing whether the model was mis-
classified due to genuine limitations or imperfections in 
the ground truth is vital.

Three field experts (P1, P2, and P3) assessed segmen-
tation maps for six WSIs ( s1-s6 ) from three cohorts used 
in the above experiment. They scored them based on 
visual interpretation, including how well artifacts were 
detected, how artifact-free regions were preserved, and 
the overall diagnostic usability of WSIs after the artifact 

processing, where field experts scored them from 1 
(worst) to 10 (best). Each expert who rated these WSIs 
was a domain specialist on a specific cancer type (see 
box plot in Fig. 12). Figure 12 represents the score vari-
ability for each task across the six WSIs. The central 
line in each box represents the median, while the box’s 
upper and lower edges correspond to the interquartile 
range.

Cohen’s Kappa coefficient measures the agreement 
between experts, where ‘1’ indicates perfect agreement 
between experts and ‘0’ indicates agreement no bet-
ter than chance. Figure  13 reveals levels of agreement 

Fig. 9 Visualization of ViTs‑based mixture of experts’ predictions with better performance over out‑of‑distribution (OoD) data. Image shows original 
WSIs ( s1 , s4 , and s5 ) along with ground truth for artifacts (combined), artifact segmentation map, and a few examples of false predictions. False 
negative refers to patches detected as artifacts but were artifact‑free, and false positive refers to patches detected as artifact‑free but belonged 
to any artifact class
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for each assessment category among the different pairs 
of experts for DCNNs-based MoE and ViT-based MoE. 
Vertical dotted lines present the average consensus 
across three assessment categories for each pair (in cor-
responding color). Both subplots highlight substantial 

agreement for overall usability and high average agree-
ment between P1 and P2 (red dashed line) in Fig. 13. In 
contrast, artifact-free preservation has relatively lower 
agreement, echoing similar findings across all pairs. 
Based on the remarks obtained from field experts (see 

Fig. 10 Visualization of DCNNs‑based mixture of experts’ predictions with worst performance over out‑of‑distribution (OoD) data. Image shows 
original WSIs ( s2 , s3 , and s6 ) along with ground truth for artifacts (combined), artifact segmentation map, and a few examples of false predictions. 
False negative refers to patches detected as artifacts but were artifact‑free, and false positive refers to patches detected as artifact‑free but belonged 
to any artifact class
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Fig. 12), generally, better results were obtained for blad-
der cancer WSIs ( s1 , s2 ). Although MoEs were too sensi-
tive for detecting blurry areas, their folded and damaged 
regions were well segmented. In breast cancer WSIs ( s3 , 
s4 ), adipose tissue was predicted as air bubbles (with 

DCNNs-based MoE) or damaged (with ViTs-based MoE). 
Note that the training data did not include adipose tissue, 
primarily fat cells. This situation can be more evident in 
breast samples because there is more adipose tissue in 
them than in other cancer types. While adipose tissue 

Fig. 11 Visualization of ViTs‑based mixture of experts’ predictions with worst performance over out‑of‑distribution data. Image shows original WSIs 
( s2 , s3 , and s6 ) along with ground truth for artifacts (combined), artifact segmentation map, and a few examples of false predictions. False negative 
refers to patches detected as artifacts but were artifact‑free, and false positive refers to patches detected as artifact‑free but belonged to any artifact 
class
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Fig. 12 Scores for qualitative evaluation by field experts (P1, P2 and P3) for different Tasks. The boxplot provides a visual representation 
of the experts’ assessments for predictions of OoD WSIs. The scores were provided on a scale of 1 to 10, with higher scores indicating better 
performance

Fig. 13 Qualitative evaluation of artifact detection by the mixture of experts (MoE) models over OoD data. Plot (a) represent Cohen’s kappa 
score (on the x‑axis) for DCNNs‑based MoE and a pair of field experts on the y‑axis, and (b) show scores for ViTs‑based MoE. Both subplots show 
agreement by chance for each task. Each pair’s average agreement of all three tasks is plotted as a vertical dashed line
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can provide valuable contextual information and aid in 
certain aspects of diagnosis, its absence does not neces-
sarily preclude an accurate assessment of breast cancer. 
In practical scenarios, there can also be other artifacts, 
like pen markings, due to manual annotation of RoIs. 
Since the models are trained for artifact-free class, we 
may expect MoE to distinguish between artifact-free and 
other regions. It is due to the fact that pen marking gives 
a similar visual of folded or blurry class patches as the 
cellular feature or tissue texture diminishes and becomes 
hard to observe. Nevertheless, encountering patches with 
pen markings might disappear as DP workflow becomes 
standard in all labs, and annotation over glass slides will 
be done manually rather than with markers.

The particular examples of skin cancer WSIs ( s5 , s6 ) had 
significant air bubbles, leaving a hazy and unclear appear-
ance over the foreground tissue. At the same time, both 
artifact processing pipelines were overdoing air bubble 
prediction, and the epidermis was predicted as blood. 
The performance of both MoEs is worst in these cases; 
one of the reasons could be the severity of artifacts and 
significant variation in staining in the WSI. While there 
is generally substantial agreement among field experts for 
overall diagnostic usability, there are areas, such as arti-
fact-free preservation, where discrepancies emerge and 
may be more challenging to achieve. Moreover, consid-
ering inter-rater variability, DCNNs-based MoE indicates 
potential effectiveness for artifact detection and overall 
diagnostic usability.

By triangulating quantitative and qualitative analysis 
findings, we conclude that DCNNs-based MoE provides 
better generalizability and robustness with the trade-off 
of higher computational cost.

Conclusion
In this work, we established end-to-end deep learn-
ing (DL) pipelines, taking whole slide images (WSIs) 
as input and providing artifact-refined WSIs to ena-
ble computational pathology (CPATH) systems to 
make reliable predictions. For the development of DL 
pipelines, we propose the mixture of experts (MoE) 
scheme and multiclass models. The MoE scheme uses 
five base learners (experts) with underlying state-of-
the-art DL architectures (MobileNet-v3 or ViT-Tiny). 
The MoE captures the intricacies of different artifact 
morphologies and dynamically combines predictions 
using a fusion mechanism to generate predictive prob-
ability distribution. Later, a meta-learned probabilistic 
threshold is applied to improve sensitivity for histo-
logically relevant regions. In rigorous experiments, we 
performed generalizability and robustness tests over 
DL pipelines by testing on external cohorts of different 

tissue types. During the investigation, we found that 
the MoE scheme with underlying DCNNs attains the 
best classification and segmentation performance with 
some computational trade-offs compared to multiclass 
models. However, if high inference speed is the desired 
requirement, then multiclass models can be a better 
alternative with some degree of performance trade-off. 
Furthermore, during the qualitative evaluation, field 
experts rated the outcomes and agreed substantially on 
the overall usability of DCNNs-based MoE.

Our artifact-processing DL pipelines can provide 
various outcomes, such as a segmentation map, artifact 
report, artifact-free mask with potential regions of inter-
est with histological relevance, and an artifact-refined 
WSI for further computational analysis. Overall, the pro-
posed DL solution is efficient and has a significant advan-
tage in equipping the CPATH system with the necessary 
tools to isolate anomalies (or noise) from affecting auto-
mated clinical applications.

Limitations and future work
The proposed work has a limitation in that the DL mod-
els were trained on a dataset prepared from a single 
cohort of data. In future work, these limitations can be 
overcome by pooling datasets from different cohorts in 
training and adopting an active learning strategy to adjust 
meta-learned thresholding parameters for improved sen-
sitivity. Also, by formulating tailored fusion mechanisms 
for different cancer types. Furthermore, artifact-refined 
WSIs can be tested with the corresponding diagnostic or 
prognostic algorithms to assess the usefulness of artifact 
processing pipelines for clinical practice.
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