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Abstract 

Responding to the rising global prevalence of noncommunicable diseases (NCDs) requires improvements in the man-
agement of high blood pressure. Therefore, this study aims to develop an explainable machine learning model 
for predicting high blood pressure, a key NCD risk factor, using data from the STEPwise approach to NCD risk factor 
surveillance (STEPS) surveys. Nationally representative samples of adults aged 18-69 years were acquired from 57 
countries spanning six World Health Organization (WHO) regions. Data harmonization and processing were per-
formed to standardize the selected predictors and synchronize features across countries, yielding 41 variables, includ-
ing demographic, behavioural, physical, and biochemical factors. Five machine learning models - logistic regression, 
k-nearest neighbours, random forest, XGBoost, and a fully connected neural network - were trained and evaluated 
at global, regional, and country-specific levels using an 80/20 train-test split. The models’ performance was assessed 
using accuracy, precision, recall, and F1 score. Feature importance analysis identified age, weight, heart rate, waist 
circumference, and height as key predictors of blood pressure. Across the 57 countries studied, model performances 
varied considerably, with accuracy ranging from as low as 58.96% in some models for specific countries to as high 
as 81.41% in others, underscoring the need for region and country-specific adaptations in modelling approaches. The 
explainable model offers an opportunity for population-level screening and continuous risk assessment in resource-
limited settings.
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Background
High blood pressure affects over 1.2 billion people glob-
ally, with two-thirds of them residing in low- and middle-
income countries (LMICs) [1–3]. High blood pressure 
is a risk factor for premature death and disability due 
to cardiovascular diseases, stroke, and chronic kidney 
disease [4]. In low- and middle-income countries, the 
economic impact of high blood pressure and its related 
complications is significant, often exceeding per capita 
health expenditure multiple times. For example, the aver-
age cost of managing high blood pressure can range from 
$500 to $1500 per episode, starkly contrasting with the 
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more modest health budgets in these regions [5]. This 
financial strain is compounded by the broader economic 
effects, including substantial productivity losses due to 
the disease.

While individual blood pressure measurements are rel-
atively straightforward to obtain, conducting widespread 
screenings and maintaining long-term monitoring across 
large populations, especially in resource-limited set-
tings, remains a significant challenge. This study aims to 
develop an explainable machine learning model for pre-
dicting blood pressure levels using demographic, lifestyle, 
and other data available across contexts.

An explainable machine learning model that predicts 
blood pressure across settings using data that can be col-
lected virtually can serve multiple purposes. Firstly, it can 
function as an efficient initial screening tool to identify 
high-risk individuals to prioritise for direct intervention 
in resource-limited settings. Secondly, the model has the 
potential for early risk identification, potentially flag-
ging individuals at high risk of developing hypertension 
in the future based on current risk factors. Furthermore, 
the integration of such a predictive model with existing 
health data systems could provide continuous risk assess-
ment without requiring frequent direct measurements. 
Lastly, the model’s ability to predict blood pressure 
trends over time could offer valuable insights into popu-
lation health trajectories.

In light of these considerations, this study aims to 
develop an explainable machine learning model that pre-
dicts high blood pressure using clinical and demographic 
data from a large, diverse population across multiple 
LMICs.

Methods
The STEPS noncommunicable disease risk factor 
surveillance instrument
The STEPwise approach to noncommunicable disease 
(NCD) risk factor surveillance (STEPS) constitutes a 
standardized tool, designed for low- and middle- income 

countries (LMICs) to systematically collect, analyze, and 
disseminate data on key NCD risk factors [6–9]. This 
dataset encompasses behavioural risk factors, including 
tobacco and alcohol consumption, physical inactivity, 
and unhealthy dietary patterns, as well as biological risk 
factors such as overweight and obesity, high blood pres-
sure, high blood glucose, and dyslipidemia.

STEPS employs a multistage cluster sampling method-
ology to generate a nationally representative sample of 
adults between the ages of 18 and 69 years. Data collec-
tion is conducted via in-person interviews with selected 
respondents at their residences. The survey comprises 
three distinct levels or “steps”, as detailed in Table 1.

For the study, STEPS data from 57 countries spanning 
6 WHO regions were acquired, as delineated in Fig. 1. 57 
of the 71 countries comprising the WHO STEPS data-
set that were obtained, are those who questionnaire are 
in English or could be easily converted to English. The 
country-level sample size ranged from 275 in Liberia to 
9,183 in Ethiopia.

Data harmonization
For the harmonization of features of interest in predict-
ing high blood pressure, we utilized author-led expert 
surveys and analyzed the STEPS questionnaire to identify 
relevant variables for predicting blood pressure. These 
variables were then adjusted for consistency across all 
participating countries based on the harmonization strat-
egy outlined in our feature-engineering plan.

The harmonization process was critical in ensuring 
that the data collected from different countries could 
be accurately compared and analyzed. This involved 
aligning variable definitions, categories, and measure-
ment techniques across different sections of the STEPS 
questionnaire: 

1.	 Demographic information: We condensed earnings-
related questions into a single “Earnings per year” 
variable.

Table 1  The STEPS survey encompasses distinct levels of risk-factor assessment [10]

Level Collection Method Risk factors

Step 1 Collected via self-report Demographics and behavioural risk factors: The scope of inquiry includes tobacco and alcohol consumption, 
dietary habits such as fruit and vegetable intake, and salt/sodium ingestion, physical inactivity, medical history 
of NCDs and related conditions, such as hypertension, diabetes, dyslipidemia, and cardiovascular diseases. Additional 
factors encompass cervical cancer screening coverage in women and the provision of comprehensive lifestyle guid-
ance to mitigate NCD risks..

Step 2 Collected via self-report Physical measurements: Assessment includes height and weight measurements for body mass index (BMI) deter-
mination, calculated as weight in kilograms divided by the square of height in meters. Additionally, waist circumfer-
ence and blood pressure evaluations form part of the physical measurements.

Step 3 Conducted at local clin-
ics or health centers

Biochemical measurements: The analysis encompasses fasting blood glucose, total cholesterol levels, and urinary 
sodium concentrations, providing essential insights into the biochemical aspects of NCD risk factors.
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2.	 Tobacco Use: We merged several questions to cre-
ate more concise variables, such as “Length of time 
smoking” and “Number of tobacco products per day.” 
We also consolidated different types of tobacco prod-
ucts, recognizing their similar health risks.

3.	 Alcohol Consumption: We condensed frequency and 
quantity questions into more manageable variables 
like “How often do you drink alcohol?” and “How 
many alcoholic drinks do you consume per day?”

4.	 Diet: We consolidated fruit and vegetable consump-
tion questions into a single “How many fruit/vegeta-
bles do you eat per day?” variable.

5.	 Physical Activity: We simplified work intensity and 
physical activity questions to capture key information 
more efficiently.

6.	 Medical History: We focused on key variables related 
to blood pressure, diabetes, cholesterol, and cardio-
vascular diseases, removing redundant or less rel-
evant questions.

7.	 Physical Measurements: We retained key measure-
ments like blood pressure readings, height, weight, 
waist circumference, and relevant biochemical meas-
urements.

This harmonization strategy allowed us to create a 
more streamlined and consistent dataset across all 
countries, focusing on the most relevant predictors of 
blood pressure while reducing redundancy and poten-
tial inconsistencies in data collection across different 
settings.

The study dataset included 48 variables, as illustrated 
in Table 2. Among these variables, 11 represent demo-
graphic factors, including sex, age, years of schooling, 
educational level, marital status, and employment sta-
tus. There are 24 variables associated with behavioural 
measurements, including factors like smoking habits, 
alcohol consumption, fruit and vegetable intake, work 

Fig. 1  LMIC countries and their sample sizes in the STEPS dataset
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Table 2  Variable descriptions

Variable name Question Variable type

Demographic Information - Step 1
    sex Sex (Record Male / Female as observed) Category

    age How old are you? Numeric

    number of years at school In total, how many years have you spent at school and in full- time study (excluding pre-
school)?

Numeric

    level of education What is the highest level of education you have completed? Category

    marital status What is your marital status? Category

    work status Which of the following best describes your main work status over the past 12 months? Category

    number of people in household How many people older than 18 years, including yourself, live in your household? Numeric

    earnings per year Taking the past year, can you tell me what the average earnings of the household have 
been?

Numeric

    currently smoking tobacco Do you currently smoke tobacco products? Category

    age started smoking How old were you when you first started smoking? Numeric

    length of time smoking Length of time smoking Numeric

Behavioural Measurements - Step 1
    number of tobacco On average, how many of the following products do you smoke each day? Numeric

    type of tobacco What type of tobacco do you use? Category

    age stopped smoking How old were you when you stopped smoking? Numeric

    smoking in the home or workplace During the past 30 days, did someone smoke in your home or workplace? Category

    consume alcohol Have you ever consumed any alcohol such as beer, wine, or spirits? Category

    quit drinking for health Have you stopped drinking due to health reasons, such as a negative impact on your health 
or on the advice of your doctor or other health worker?

Category

    number of alcoholic drinks How many alcoholic drinks do you consume per day Numeric

    number daily fruit vegetables How many fruit/ vegetables do you eat per day? Numeric

    salt consumption How much salt or salty sauce do you think you consume? Category

    work intensity How intense is your work? Category

    days vigorous exercise In a typical week, on how many days do you do vigorous intensity activities as part of your 
work?

Numeric

    days moderate exercise In a typical week, on how many days do you do moderate intensity activities as part of your 
work?

Numeric

    time walking bicycling minutes How much time do you spend walking or bicycling for travel on a typical day? Numeric

    time sedentary How much time do you usually spend sitting or reclining on a typical day? Numeric

    had blood pressure measurement Have you ever had your blood pressure measured by a doctor or other health worker? Category

    taken drugs raised bp Have you taken any drugs (medication) for raised blood pressure? Category

    blood sugar measurement Have you ever had your blood sugar measured by a doctor or other health worker? Category

    taken diabetes drugs Have you taken any drugs (medication) for diabetes? Category

    had cholesterol measurement Have you ever had your cholesterol (fat levels in your blood) measured by a doctor or other 
health worker?

Category

    taken cholesterol oral treatment Have you taken any oral treatment (medication) for raised total cholesterol? Category

    had heart attack Have you ever had a heart attack or chest pain from heart disease (angina) or a stroke (cer-
ebrovascular accident or incident)?

Category

    taking heart disease medication Are you currently taking medication to prevent or treat heart disease? Category

    treated for raised bp Have you been treated for raised blood pressure? Category

    are you pregnant Are you pregnant? Category

Physical measurements - Step 2
    height Height in cm Numeric

    weight Weight in kg Numeric

    waist circumference Waist circumference in cm Numeric

    hip circumference Hip circumference in cm Numeric

    reading bpm Average readings beats per minute Numeric



Page 5 of 21Bisong et al. BMC Medical Informatics and Decision Making          (2024) 24:234 	

intensity, and treatment for hypertension and heart 
disease. Five variables represent the physical measure-
ments of the respondents, including the height, weight, 
waist, and hip circumference. Additionally, eight vari-
ables are related to the biochemical measurements of 
the respondents, including fasting blood glucose, cho-
lesterol, urinary sodium, urinary creatinine, and the 
average systolic and diastolic measurements from three 
readings. The final study dataset comprises 27 numeric 
and 21 categorical variables in total.

Data processing
For numeric variables, the Z-score method was utilized 
to identify and remove outliers by setting a threshold 
value. Observations with a Z-score exceeding this thresh-
old were considered outliers and were removed from 
the dataset [11, 12]. It must, however, be noted that, our 
approach only replaced extreme outliers, not all values 
below Q1 and Q3. This ensures that extreme values do 
not unduly influence the model training.

To handle categorical variables, a dictionary was cre-
ated, containing mappings of categorical encodings for 
each variable. This dictionary facilitated the transforma-
tion of the categorical data into numerical values, aiding 
further analysis. Missing values within categorical col-
umns were replaced with a designated “no response” cat-
egory to ensure these instances were still accounted for in 
the dataset.

The creation of the target variable for the analysis 
involved first determining each person’s blood pressure 
status by averaging their systolic and diastolic readings. 
We then used the average of the three blood pressure 
measurements taken during the STEPS survey to mini-
mize variability and improve the reliability of our pre-
dictive models. Based on CDC [13] and AHA [14] 
guidelines, a comprehensive blood pressure classification 

system was created that considered both systolic and 
diastolic measurements. The criteria were: 

1.	 If the systolic and diastolic readings were below 120 
and 80 mm Hg, blood pressure was considered nor-
mal.

2.	 The “normal” classification was also given if the sys-
tolic reading was 120 to 129 mm Hg and the diastolic 
was below 80.

3.	 High blood pressure was defined as a systolic reading 
between 130 and 139 mm Hg or a diastolic reading 
between 80 and 89.

4.	 The “high” classification was also applied if either the 
systolic or diastolic reading was 140 or 90 mm Hg.

5.	 Finally, “high” status was given if the systolic or dias-
tolic reading was 180 or 120 mm Hg.

A robust approach was applied to address nonsensical 
outliers in the dataset, thereby enhancing the reliability 
of the analysis. This approach involved the use of two 
complementary methods, aiming to identify and replace 
extreme values that lay outside the bounds of the upper 
and lower whiskers of the data distribution.

The first method was focused on handling outliers situ-
ated above the upper whisker. This boundary was deter-
mined by computing the third quartile (Q3) of the data 
distribution and adding a product of a predefined con-
stant multiplier and the interquartile range (IQR). This 
is formally represented as U = Q3+ k × IQR , where 
U is the upper boundary, Q3 is the third quartile, k is a 
predefined constant multiplier, and IQR is the interquar-
tile range, calculated as Q3− Q1 . Upon identification 
of these upper-bound outliers, they were replaced with 
random numbers RU that fell within the interquartile 
range, or alternatively, between the mean and Q3 (i.e., 
µ ≤ RU ≤ Q3 ), ensuring a more representative value in 
line with the general data distribution.

Table 2  (continued)

Variable name Question Variable type

Biochemical measurements - Step 3
    fasting blood glucose Fasting blood glucose (mg/dl) Numeric

    total cholesterol Total Cholesterol (mg/dl) Numeric

    urinary sodium Urinary sodium (mg/dl) Numeric

    urinary creatinine Urinary creatinine (mg/dl) Numeric

    triglycerides Triglycerides (mg/dl) Numeric

    hdl cholesterol HDL Cholesterol (mg/dl) Numeric

    systolic Average systolic (mmHG) Numeric

    diastolic Average diastolic (mmHG) Numeric

Target variable
    blood pressure Blood pressure readings Category
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In a similar manner, the second method was aimed at 
outliers residing below the lower whisker. This bound-
ary was established by calculating the first quartile (Q1) 
and subtracting a product of a predefined constant 
multiplier and the IQR. This is formally presented as 
L = Q1− k × IQR , where L is the lower boundary, Q1 
is the first quartile, k and IQR are already defined. Once 
these lower-bound outliers were identified, they were 
replaced with random numbers either within the inter-
quartile range or, alternatively, between Q1 and the mean 
of the data distribution (i.e., Q1 ≤ RL ≤ µ ). This proce-
dure ensured the replaced values were more harmoni-
ous with the overall data distribution, leading to a more 
accurate and reliable dataset for further analysis. For fur-
ther reading on robust methods for handling outliers and 
their theoretical justification, see [15] and [16], which 
discuss the principles and application of these techniques 
in statistical analysis.

Model design and evaluation
A comprehensive approach was employed to predict 
blood pressure status, using multiple machine learning 
models. The methodology encompassed global, regional, 
and country-specific levels. This allowed for the tailoring 
of predictions to each level’s unique characteristics.

The process began with data preprocessing. One-hot 
encoding was performed for categorical variables, a tech-
nique that converts categorical data into a binary matrix 
representation. This allows machine learning algorithms 
to work with categorical data in a numerical format. For 
example, a categorical variable “work status” with catego-
ries “employed,” “unemployed,” and “student” would be 
transformed into three binary columns.

Numerical variables were scaled using the Standard-
Scaler method, which standardizes features by removing 
the mean and scaling to unit variance. This preprocess-
ing step ensures that all numerical features contribute 
equally to the model and prevents features with larger 
magnitudes from dominating the learning process.

This preprocessing stage was crucial to ensure that 
the models could effectively learn from the data without 
being unduly influenced by the varying scales of differ-
ent features. The dataset was split into training and test-
ing subsets using the ‘split’ column, which was randomly 
assigned to each data point. This allowed for an unbiased 
evaluation of the models’ performance on unseen data. 
Table 3 shows the data split for the countries.

At each level (global, regional, country), we applied a 
diverse set of machine learning algorithms to capture dif-
ferent aspects of the data and provide a comprehensive 
comparison. The chosen models represent a spectrum of 
approaches in machine learning: 

1.	 Logistic Regression: A linear model serving as a 
baseline and representing traditional statistical 
approaches [17].

2.	 K-Nearest Neighbours (KNN): A non-parametric 
method that can capture local patterns in the data 
[18].

3.	 Random Forest: An ensemble tree-based method 
known for handling non-linear relationships and 
interactions [19].

4.	 XGBoost: A gradient boosting algorithm that often 
achieves state-of-the-art performance in structured 
data problems [20].

5.	 Fully Connected Neural Network (FCNN): A deep 
learning approach capable of learning complex pat-
terns and representations [21].

This selection allows us to compare linear (Logistic 
Regression) vs. non-linear (all others) models, tree-based 
ensemble methods (Random Forest, XGBoost) vs. other 

Table 3  Country-wise test and train data distribution

Country Test Train Country Test Train

Afghanistan 727 2876 Liberia 47 228

Algeria 1166 4939 Libya 616 2587

Armenia 348 1475 Madagascar 1021 4169

Azerbaijan 482 2013 Malawi 630 2590

Bahamas 242 1113 Maldives 279 1106

Bangladesh 1471 5964 Mali 204 834

Barbados 56 242 Micronesia 235 927

Belarus 979 3916 Moldova 696 2971

Benin 921 3528 Mongolia 992 4319

Bhutan 1088 4121 Mozambique 535 2106

Botswana 700 2755 Myanmar 1425 5542

Chad 357 1306 Namibia 635 2556

Comoros 856 3470 Nauru 196 808

Ecuador 893 3521 Nepal 1116 4319

Eritrea 1271 4879 Niger 445 1785

Eswatini 546 2200 Niue 153 622

Ethiopia 1864 7319 Palau 300 1086

Fiji 493 1982 Palestine 1286 5184

Gabon 453 1854 Qatar 431 1696

Gambia 667 2484 Rwanda 1385 5182

Georgia 804 2984 Samoa 312 1186

Ghana 507 1978 Tanzania 1011 4103

Grenada 181 673 Togo 730 2857

Guinea 449 1783 Tokelau 103 428

Guyana 513 1965 Tonga 681 2923

Kiribati 235 937 Tuvalu 216 798

Kyrgyzstan 488 2034 Uganda 727 2867

Lesotho 351 1385 Vanuatu 844 3525

Zambia 661 2654
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approaches, and traditional machine learning (first four) 
vs. deep learning (FCNN) techniques. By including this 
diverse set, we aim to comprehensively evaluate different 
modeling paradigms and identify which approaches are 
most effective for blood pressure prediction across vari-
ous geographical scales.

Model performance was evaluated using the testing 
subset, with metrics including accuracy, precision, recall, 
and F1 score. This multi-metric approach provides a 
holistic view of model performance, considering both the 
ability to correctly identify positive cases (precision and 
recall) and overall predictive accuracy.

For the global models, the entire dataset (comprising 
all countries) was used for training and evaluation. At the 
regional level, models were developed for each of the six 
WHO regions, allowing for a more nuanced understand-
ing of factors influencing blood pressure status in differ-
ent geographical areas. Country-specific models were 
trained using data from each individual country to cap-
ture unique aspects of blood pressure patterns, maximiz-
ing reliability and accuracy of results.

Class imbalance was addressed by computing class 
weights inversely proportional to class frequencies, 
which were then incorporated into model training. This 
ensured that the models were not biased towards the 
majority class and could effectively learn from minority 
classes.

By employing this comprehensive, multi-level approach 
to model design and evaluation, the study aimed to pro-
vide accurate and reliable predictions of blood pressure 
status at global, regional, and country-specific levels.

Model explainability
In this section, the interpretability of predictor variables 
in a random forest global model is investigated by assess-
ing the feature importance of each respective variable. 
While machine learning literature often refers to this as 
“feature importance”, it’s crucial to distinguish this con-
cept from the epidemiological notion of “risk factors 
associated with raised BP”. Feature importance in a ran-
dom forest model quantifies the statistical contribution 
of each variable to the model’s predictive accuracy. A 
higher value indicates that the feature plays a more sig-
nificant role in the model’s predictions.

While feature importance can help identify variables 
that contribute substantially to the model’s predictive 
power, it’s important to note that high feature impor-
tance does not necessarily equate to clinical signifi-
cance or causality in the context of blood pressure risk 
factors. Feature importance provides insights into the 
model’s decision-making process but should be inter-
preted alongside clinical knowledge and epidemiological 
evidence.

In the present study, feature importance is com-
puted through two complementary techniques: mean 
decrease in impurity (MDI) and feature permutation. 
MDI measures the total decrease in node impurity 
averaged over all trees of the forest, while feature per-
mutation assesses the decrease in model performance 
when a feature’s values are randomly shuffled.

Results
Study sample characteristics
The study dataset included 184,674 participants, with a 
mean age of 40.06 years and an average of 7.6 years of 
education. The average participant lived in a household 
with 3.01 members, and participants had an annual 
income of 1,727.08 USD.

On average participants started smoking at 18.65 
years, consumed 7.62 tobacco products, and quit smok-
ing at 29.87 years. They consumed 4.76 alcoholic drinks 
and had 10.91 servings of fruits and vegetables daily. 
Vigorous exercise occurred for 4.66 days and moder-
ate exercise for 5.64 days per week. Participants spent 
60.23 minutes walking or bicycling and 206.03 minutes 
sedentary daily.

The average height was 162.12 cm, with an average 
weight of 66.62 kg, waist circumference of 84.89 cm, 
and hip circumference of 95.89 cm. Mean fasting blood 
glucose was 39.67 mg/dL, total cholesterol 76.42 mg/
dL, urinary sodium 121.13 mmol/L, and urinary creati-
nine 55.04 mg/dL. Triglycerides averaged 84.16 mg/dL, 
HDL cholesterol 17.67 mg/dL, systolic blood pressure 
126.91 mmHg, diastolic blood pressure 80.27 mmHg, 
and resting heart rate 77.48 bpm.

The dataset was divided into training (n=147,739) 
and test (n=36,935) datasets for model development 
and validation, with similar characteristics in both sets, 
ensuring adequate representation (see Table 4).

In the study, 53.55% of participants were female, 
36.40% had completed elementary school, 58.84% were 
married, 45.12% were employed. In addition, 80.00% 
did not smoke, 54.77% did not consume alcohol, salt 
consumption was reportedly normal among 29.11%, 
work intensity was vigorous-intensity 29.76%.

Blood pressure measurements were reported by 
53.06% of the total population, while 80.60% did not 
respond about taking drugs for raised blood pressure. 
Blood sugar measurements were reported by 29.30% 
of the population, with 89.76% not responding about 
taking diabetes drugs. Cholesterol measurements were 
reported by 10.93% of the population, and only 0.07% 
reported taking oral cholesterol treatment. These char-
acteristics are summarized in Table 5.
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Model performance
Performance globally
The global models were trained and evaluated on the 
entire dataset, encompassing all 57 countries from the six 
WHO regions. Table 6 presents the performance metrics 
for each model, including accuracy, F1 score, precision, 
and recall.

Among the five models, XGBoost achieved the highest 
accuracy of 68.52%, followed closely by the Fully Con-
nected Neural Network (FCNN) with an accuracy of 
68.25% and Logistic Regression with 68.20%. The Ran-
dom Forest model performed comparably to Logistic 
Regression, with an accuracy of 68.14%. The K-Nearest 
neighbours (KNN) model had the lowest accuracy at 
63.21%.

The F1 score, which is the harmonic mean of precision 
and recall, followed a similar trend to accuracy. XGBoost 
had the highest F1 score of 67.43%, while FCNN and 
Logistic Regression had scores of 67.66% and 67.19%, 
respectively. The Random Forest model had an F1 score 
of 66.67%, and KNN had the lowest score at 62.32%.

Precision, which measures the proportion of true posi-
tive predictions among all positive predictions, was high-
est for XGBoost at 67.85%, followed by FCNN at 67.64% 
and Logistic Regression at 67.51%. Random Forest had a 
precision of 67.56%, and KNN had the lowest precision at 
62.39%.

Recall, which measures the proportion of true posi-
tive predictions among all actual positive instances, was 
highest for FCNN at 67.69%, followed by XGBoost at 
67.27% and Logistic Regression at 67.06%. Random For-
est had a recall of 66.51%, and KNN had the lowest recall 
at 62.28%.

The global model results demonstrate that XGBoost 
and FCNN consistently outperformed the other models 
across all performance metrics. Logistic Regression and 
Random Forest also showed competitive performance, 
while KNN had the lowest scores in all metrics.

Performance per region
The regional models were trained and evaluated on sub-
sets of the dataset, each corresponding to one of the six 

Table 4  Study sample characteristics between the train and test dataset for the numeric variables

Variables (µ± σ) Total Population (n=184674) Train dataset (n=147739) Test Dataset (n=36935)

Age 40.06 ± 13.27 40.08 ± 13.26 40.02 ± 13.31

Years at school 7.6 ± 5.33 7.6 ± 5.33 7.58 ± 5.32

People in household 3.01 ± 2.02 3.01 ± 2.02 3 ± 2.01

Earnings per year 1727.08 ± 1533.97 1734.25 ± 1538.65 1698.52 ± 1515

Age started smoking 18.65 ± 1.77 18.65 ± 1.77 18.63 ± 1.78

Length time smoking 7.38 ± 6.32 7.34 ± 6.33 7.52 ± 6.28

Number tobacco 7.62 ± 3.55 7.64 ± 3.47 7.57 ± 3.94

Age stopped smoking 29.87 ± 5.81 29.87 ± 5.82 29.88 ± 5.77

Number alcoholic drinks 4.76 ± 1.06 4.75 ± 1.06 4.76 ± 1.06

Number daily fruit vegetables 10.91 ± 6.73 10.91 ± 6.72 10.91 ± 6.75

Days vigorous exercise 4.66 ± 1.04 4.66 ± 1.04 4.67 ± 1.04

Days moderate exercise 5.64 ± 1.41 5.64 ± 1.41 5.64 ± 1.41

Time walking bicycling minutes 60.23 ± 34.33 60.33 ± 34.33 59.87 ± 34.32

Time sedentary 206.03 ± 172.04 205.89 ± 171.9 206.57 ± 172.59

Height 162.12 ± 10.29 162.12 ± 10.32 162.14 ± 10.17

Weight 66.62 ± 17.73 66.63 ± 17.73 66.59 ± 17.7

Waist circumference 84.89 ± 25.35 84.87 ± 25.13 84.98 ± 26.24

Hip circumference 95.89 ± 15.71 95.88 ± 15.7 95.9 ± 15.75

Fasting blood glucose 39.67 ± 37.09 39.6 ± 37.07 39.94 ± 37.17

Total cholesterol 76.42 ± 72.24 76.26 ± 72.23 77.06 ± 72.29

Urinary sodium 121.13 ± 32.8 121.09 ± 32.76 121.29 ± 32.95

Urinary creatinine 55.04 ± 38.3 55.06 ± 38.39 54.96 ± 37.93

Triglycerides 84.16 ± 23.99 84.13 ± 23.97 84.29 ± 24.08

Hdl cholesterol 17.67 ± 17.64 17.62 ± 17.64 17.87 ± 17.65

Systolic 126.91 ± 19.1 126.91 ± 19.09 126.89 ± 19.17

Diastolic 80.27 ± 11.7 80.28 ± 11.7 80.22 ± 11.71

Reading bpm 77.48 ± 12.32 77.48 ± 12.31 77.48 ± 12.33
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Table 5  Baseline characteristics between the train and test dataset for the categorical variables

Variable Total population Train dataset Test dataset

Sex, n(%)

     female 98902.0 (53.55) 79050.0 (53.51) 19852.0 (53.75)

     male 68096.0 (36.87) 54565.0 (36.93) 13531.0 (36.63)

     no response 17676.0 (9.57) 14124.0 (9.56) 3552.0 (9.62)

level of education, n(%)

     elementary school 67226.0 (36.40) 53810.0 (36.42) 13416.0 (36.32)

     high school 52337.0 (28.34) 41891.0 (28.35) 10446.0 (28.28)

     no formal schooling 32767.0 (17.74) 26269.0 (17.78) 6498.0 (17.59)

     tertiary 19993.0 (10.83) 15959.0 (10.80) 4034.0 (10.92)

     no response 12351.0 (6.69) 9810.0 (6.64) 2541.0 (6.88)

marital status, n(%)

     married 108653.0 (58.84) 86865.0 (58.80) 21788.0 (58.99)

     not married 29446.0 (15.94) 23569.0 (15.95) 5877.0 (15.91)

     no response 21506.0 (11.65) 17250.0 (11.68) 4256.0 (11.52)

     widowed 9677.0 (5.24) 7814.0 (5.29) 1863.0 (5.04)

     cohabitating 6291.0 (3.41) 4984.0 (3.37) 1307.0 (3.54)

     divorced 4977.0 (2.70) 3976.0 (2.69) 1001.0 (2.71)

     separated 4124.0 (2.23) 3281.0 (2.22) 843.0 (2.28)

work status, n(%)

     employed 83332.0 (45.12) 66711.0 (45.15) 16621.0 (45.00)

     homemaker 32866.0 (17.80) 26435.0 (17.89) 6431.0 (17.41)

     unemployed 29313.0 (15.87) 23502.0 (15.91) 5811.0 (15.73)

     no response 15891.0 (8.60) 12613.0 (8.54) 3278.0 (8.88)

     student 13117.0 (7.10) 10396.0 (7.04) 2721.0 (7.37)

     retired 10155.0 (5.50) 8082.0 (5.47) 2073.0 (5.61)

currently smoke tobacco, n(%)

     no 147737.0 (80.00) 118191.0 (80.00) 29546.0 (79.99)

     yes 29116.0 (15.77) 23295.0 (15.77) 5821.0 (15.76)

     no response 7821.0 (4.24) 6253.0 (4.23) 1568.0 (4.25)

type tobacco, n(%)

     no response 184414.0 (99.86) 147529.0 (99.86) 36885.0 (99.86)

     cigarettes 238.0 (0.13) 192.0 (0.13) 46.0 (0.12)

     shisha 19.0 (0.01) 16.0 (0.01) 3.0 (0.01)

     cigars 3.0 (0.00) 2.0 (0.00) 1.0 (0.00)

smoke home workplace, n(%)

     no 111323.0 (60.28) 89033.0 (60.26) 22290.0 (60.35)

     no response 37313.0 (20.20) 29897.0 (20.24) 7416.0 (20.08)

     yes 36038.0 (19.51) 28809.0 (19.50) 7229.0 (19.57)

consumed alcohol, n(%)

     no 101138.0 (54.77) 80934.0 (54.78) 20204.0 (54.70)

     yes 68693.0 (37.20) 54961.0 (37.20) 13732.0 (37.18)

     no response 14843.0 (8.04) 11844.0 (8.02) 2999.0 (8.12)

quit drinking for health, n(%)

     no response 171569.0 (92.90) 137285.0 (92.92) 34284.0 (92.82)

     no 7643.0 (4.14) 6068.0 (4.11) 1575.0 (4.26)

     yes 5462.0 (2.96) 4386.0 (2.97) 1076.0 (2.91)

salt consumption, n(%)

     no response 99523.0 (53.89) 79551.0 (53.85) 19972.0 (54.07)

     normal 53766.0 (29.11) 43082.0 (29.16) 10684.0 (28.93)
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Table 5  (continued)

Variable Total population Train dataset Test dataset

     low 16413.0 (8.89) 13091.0 (8.86) 3322.0 (8.99)

     high 14972.0 (8.11) 12015.0 (8.13) 2957.0 (8.01)

work intensity, n(%)

     no response 65581.0 (35.51) 52339.0 (35.43) 13242.0 (35.85)

     moderate-intensity 64134.0 (34.73) 51384.0 (34.78) 12750.0 (34.52)

     vigorous-intensity 54959.0 (29.76) 44016.0 (29.79) 10943.0 (29.63)

had blood pressure measurement, n(%)

     yes 97983.0 (53.06) 78419.0 (53.08) 19564.0 (52.97)

     no 67811.0 (36.72) 54229.0 (36.71) 13582.0 (36.77)

     no response 18880.0 (10.22) 15091.0 (10.21) 3789.0 (10.26)

taken drugs for raised bp, n(%)

     no response 148841.0 (80.60) 119021.0 (80.56) 29820.0 (80.74)

     no 22428.0 (12.14) 17921.0 (12.13) 4507.0 (12.20)

     yes 13405.0 (7.26) 10797.0 (7.31) 2608.0 (7.06)

had blood sugar measurement, n(%)

     no 126432.0 (68.46) 101154.0 (68.47) 25278.0 (68.44)

     yes 54113.0 (29.30) 43272.0 (29.29) 10841.0 (29.35)

     no response 4129.0 (2.24) 3313.0 (2.24) 816.0 (2.21)

taken diabetes drugs, n(%)

     no response 165765.0 (89.76) 132600.0 (89.75) 33165.0 (89.79)

     yes 17022.0 (9.22) 13607.0 (9.21) 3415.0 (9.25)

     no 1887.0 (1.02) 1532.0 (1.04) 355.0 (0.96)

had cholesterol measurement, n(%)

     no 87445.0 (47.35) 69866.0 (47.29) 17579.0 (47.59)

     no response 77040.0 (41.72) 61670.0 (41.74) 15370.0 (41.61)

     yes 20189.0 (10.93) 16203.0 (10.97) 3986.0 (10.79)

taken cholesterol oral treatment, n(%)

     no response 179155.0 (97.01) 143288.0 (96.99) 35867.0 (97.11)

     no 3835.0 (2.08) 3095.0 (2.09) 740.0 (2.00)

     yes 1684.0 (0.91) 1356.0 (0.92) 328.0 (0.89)

had heart attack, n(%)

     no 98979.0 (53.60) 79176.0 (53.59) 19803.0 (53.62)

     no response 76528.0 (41.44) 61254.0 (41.46) 15274.0 (41.35)

     yes 9167.0 (4.96) 7309.0 (4.95) 1858.0 (5.03)

taking heart disease medication, n(%)

     no 96645.0 (52.33) 77291.0 (52.32) 19354.0 (52.40)

     no response 83737.0 (45.34) 66963.0 (45.33) 16774.0 (45.41)

     yes 4292.0 (2.32) 3485.0 (2.36) 807.0 (2.18)

treated for raised bp, n(%)

     no 160181.0 (86.74) 128063.0 (86.68) 32118.0 (86.96)

     no response 12560.0 (6.80) 10068.0 (6.81) 2492.0 (6.75)

     yes 11933.0 (6.46) 9608.0 (6.50) 2325.0 (6.29)

are you pregnant, n(%)

     no 105556.0 (57.16) 84437.0 (57.15) 21119.0 (57.18)

     no response 74248.0 (40.20) 59427.0 (40.22) 14821.0 (40.13)

     yes 4870.0 (2.64) 3875.0 (2.62) 995.0 (2.69)

blood pressure, n(%)

     high 105677.0 (57.22) 84523.0 (57.21) 21154.0 (57.27)

     normal 78997.0 (42.78) 63216.0 (42.79) 15781.0 (42.73)
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WHO regions. Table 7 presents the performance metrics 
for each model in each region, including accuracy, preci-
sion, recall, and F1 score.

Sub‑Saharan Africa  In the Sub-Saharan Africa region, 
the Fully Connected Neural Network (FCNN) achieved 
the highest accuracy at 64.96%, followed by Logistic 

Regression at 64.89% and XGBoost at 64.44%. The Ran-
dom Forest model had an accuracy of 64.39%, while the 
K-Nearest neighbours (KNN) model had the lowest accu-
racy at 59.99%.

East Asia and Pacific  For the East Asia and Pacific 
region, FCNN outperformed the other models with an 
accuracy of 71.16%, followed by Random Forest at 71.02% 
and Logistic Regression at 70.09%. XGBoost had an accu-
racy of 70.04%, and KNN had the lowest accuracy at 
64.66%.

South Asia  In South Asia, FCNN achieved the highest 
accuracy at 68.70%, followed by Logistic Regression at 
68.38% and XGBoost at 68.17%. Random Forest had an 
accuracy of 68.13%, and KNN had the lowest accuracy at 
64.32%.

Table 6  Global model results

Model Accuracy F1 Precision Recall

Logistic Regression 0.682000 0.671893 0.675080 0.670566

KNN 0.632135 0.623198 0.623900 0.622770

Random Forest 0.681374 0.666707 0.675614 0.665052

XGBoost 0.685157 0.674266 0.678514 0.672741

FCNN 0.682490 0.676615 0.676402 0.676859

Table 7  Region model results

Region Model Accuracy Precision Recall F1 Score

Sub-Saharan Africa Logistic Regression 0.648861 0.644065 0.641447 0.642049

KNN 0.599936 0.594048 0.592844 0.593083

Random Forest 0.643888 0.639734 0.631392 0.631252

XGBoost 0.644370 0.639408 0.635315 0.635860

FCNN 0.649583 0.646307 0.647006 0.646550

East Asia and Pacific Logistic Regression 0.700882 0.693892 0.688995 0.690592

KNN 0.646561 0.637632 0.636127 0.636703

Random Forest 0.710229 0.706572 0.692152 0.694847

XGBoost 0.700353 0.693469 0.687624 0.689394

FCNN 0.711640 0.707025 0.695255 0.697858

South Asia Logistic Regression 0.683828 0.675252 0.667238 0.669180

KNN 0.643239 0.633138 0.631687 0.632254

Random Forest 0.681265 0.673443 0.661091 0.663098

XGBoost 0.681692 0.672732 0.667324 0.668931

FCNN 0.687033 0.678637 0.677180 0.677809

Middle East and North Africa Logistic Regression 0.682332 0.681080 0.678263 0.678740

KNN 0.627655 0.625866 0.625866 0.625866

Random Forest 0.682332 0.681902 0.677070 0.677459

XGBoost 0.659738 0.657889 0.656126 0.656465

FCNN 0.685947 0.684707 0.685160 0.684859

Europe and Central Asia Logistic Regression 0.777456 0.723471 0.680339 0.694339

KNN 0.728733 0.650024 0.626934 0.634363

Random Forest 0.775349 0.734304 0.646467 0.663054

XGBoost 0.767711 0.708562 0.666829 0.679866

FCNN 0.771925 0.718277 0.660310 0.675606

Latin America and the Caribbean Logistic Regression 0.695491 0.695808 0.694014 0.694102

KNN 0.640849 0.641394 0.638583 0.637973

Random Forest 0.702918 0.702712 0.702018 0.702161

XGBoost 0.668966 0.668650 0.667921 0.668012

FCNN 0.693899 0.695581 0.691693 0.691448
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Middle East and North Africa  For the Middle East and 
North Africa region, FCNN had the highest accuracy at 
68.59%, followed by Logistic Regression and Random 
Forest, both at 68.23%. XGBoost had an accuracy of 
65.97%, and KNN had the lowest accuracy at 62.77%.

Europe and Central Asia  In Europe and Central Asia, 
Logistic Regression achieved the highest accuracy at 
77.75%, followed by Random Forest at 77.53% and FCNN 
at 77.19%. XGBoost had an accuracy of 76.77%, and KNN 
had the lowest accuracy at 72.87%.

Latin America and Caribbean  For the Latin America 
and Caribbean region, Random Forest outperformed 
the other models with an accuracy of 70.29%, followed 
by Logistic Regression at 69.55% and FCNN at 69.39%. 
XGBoost had an accuracy of 66.90%, and KNN had the 
lowest accuracy at 64.08%.

The regional model results demonstrate that the per-
formance of the models varies across regions, with 
FCNN and Logistic Regression generally performing well 
in most regions. Random Forest also showed strong per-
formance in some regions, particularly in East Asia and 
Pacific and Latin America and the Caribbean. XGBoost 
and KNN consistently had lower accuracies compared to 
the other models across all regions.

Performance per country
The country-specific models were trained and evaluated 
on subsets of the dataset corresponding to each of the 57 
countries included in the study. Table 8 presents the per-
formance metrics for each model in each country, includ-
ing accuracy, precision, recall, and F1 score.

The performance of the models varied considerably 
across countries, with some models consistently outper-
forming others in certain countries, while the reverse 
was true in other countries. For example, in Ethiopia, the 
Logistic Regression model achieved the highest accuracy 
at 62.55%, precision at 62.58%, recall at 62.31%, and F1 
score at 62.22%. In contrast, the KNN model had the low-
est scores across all metrics in Ethiopia, with an accuracy 
of 58.96%, precision of 58.88%, recall of 58.83%, and F1 
score of 58.82%.

In some countries, such as Georgia and Belarus, the 
FCNN model performed well, with accuracies of 72.51% 
and 81.41%, respectively. However, in other countries like 
the Bahamas and Barbados, the Random Forest model 
achieved the highest accuracies at 71.49% and 73.21%, 
respectively.

XGBoost demonstrated strong performance in certain 
countries, such as Tokelau, where it achieved the high-
est accuracy (77.67%), precision (77.52%), recall (76.46%), 

and F1 score (76.80%) among all models. However, its 
performance was less impressive in other countries, like 
Chad and Grenada, where it had lower scores compared 
to other models.

The Logistic Regression model showed consistent per-
formance across many countries, often ranking among 
the top models in terms of accuracy, precision, recall, 
and F1 score. For instance, in Mongolia, Logistic Regres-
sion achieved an accuracy of 72.98%, precision of 73.30%, 
recall of 72.92%, and F1 score of 72.86%.

The KNN model generally had lower scores compared 
to the other models across most countries. However, 
there were a few exceptions, such as in Grenada, where 
KNN achieved the highest accuracy at 66.85%, precision 
at 64.49%, recall at 61.81%, and F1 score at 61.94%.

Model explainability
Mean decrease in impurity (MDI)
Mean decrease in impurity (MDI) serves as a method 
for evaluating feature importance in decision tree-based 
models. This approach quantifies the average reduction 
in impurity-such as entropy or the Gini index-resulting 
from the utilization of a specific feature to partition the 
dataset. A greater decrease in impurity corresponds to a 
higher degree of importance for the feature. In essence, 
the feature that induces the largest reduction in impurity 
is deemed the most significant in the dataset. As illus-
trated in Fig. 2, the top five features include age, weight, 
hip circumference, waist circumference, and sex (male).

Feature permutation importance
Feature permutation importance evaluates the impact 
on model performance when a specific feature is ran-
domly altered by introducing noise. The importance of 
that particular feature for the model’s predictions can be 
estimated by contrasting the performance of the model 
utilizing the permuted or modified feature with the per-
formance of the model employing the original feature. A 
greater change in performance implies increased impor-
tance for the feature. This method has been implemented 
for a random forest classifier in the global model.

For each feature within the dataset, the values of the 
feature were randomly permuted, and predictions were 
generated using the trained model. Among the features 
included in the model, age, heart reading in beats per 
minute, weight, waist circumference, and hip circum-
ference emerged as the top five features contributing to 
the change in error of the model after training on the 
permuted features compared to the original model. The 
results for the feature permutation importance measure 
are depicted in Fig. 3.



Page 13 of 21Bisong et al. BMC Medical Informatics and Decision Making          (2024) 24:234 	

Table 8  Country model results

Country Model Accuracy Precision Recall F1 Score

Ethiopia Logistic Regression 0.625536 0.625842 0.623066 0.622245

KNN 0.589592 0.588780 0.588278 0.588184

Random Forest 0.624464 0.623993 0.622877 0.622740

XGBoost 0.598712 0.598074 0.597907 0.597934

FCNN 0.622854 0.623633 0.619993 0.618681

Georgia Logistic Regression 0.733831 0.705691 0.688705 0.694650

KNN 0.662935 0.622973 0.616784 0.619009

Random Forest 0.717662 0.690813 0.648612 0.655733

XGBoost 0.702736 0.668253 0.653978 0.658629

FCNN 0.725124 0.696775 0.668602 0.676023

Palestine Logistic Regression 0.665630 0.657683 0.659452 0.658328

KNN 0.644635 0.634411 0.634048 0.634220

Random Forest 0.692068 0.682941 0.680831 0.681709

XGBoost 0.671851 0.662777 0.662947 0.662861

FCNN 0.676516 0.667312 0.666953 0.667125

Bahamas Logistic Regression 0.681818 0.649082 0.617983 0.620913

KNN 0.582645 0.530801 0.527957 0.527005

Random Forest 0.714876 0.707520 0.638747 0.642311

XGBoost 0.665289 0.630389 0.620208 0.623060

FCNN 0.661157 0.625199 0.564034 0.545696

Barbados Logistic Regression 0.696429 0.655050 0.659357 0.656937

KNN 0.696429 0.649321 0.644737 0.646753

Random Forest 0.732143 0.690244 0.671053 0.677791

XGBoost 0.660714 0.615220 0.618421 0.616577

FCNN 0.678571 0.619048 0.602339 0.606250

Eritrea Logistic Regression 0.686074 0.659219 0.619708 0.621790

KNN 0.638867 0.595351 0.579376 0.579375

Random Forest 0.689221 0.662502 0.626358 0.629580

XGBoost 0.651456 0.612989 0.597621 0.599444

FCNN 0.684500 0.654385 0.637041 0.641096

Chad Logistic Regression 0.672269 0.672207 0.658439 0.658373

KNN 0.579832 0.571347 0.567640 0.566327

Random Forest 0.613445 0.613805 0.590466 0.579814

XGBoost 0.565826 0.557158 0.554949 0.554056

FCNN 0.666667 0.662973 0.657471 0.658258

Palau Logistic Regression 0.733333 0.733410 0.733493 0.733321

KNN 0.633333 0.633273 0.633320 0.633268

Random Forest 0.696667 0.699336 0.697679 0.696258

XGBoost 0.693333 0.695670 0.694278 0.692992

FCNN 0.740000 0.740991 0.740563 0.739954

Belarus Logistic Regression 0.816139 0.738583 0.690975 0.708446

KNN 0.781410 0.676625 0.642754 0.654732

Random Forest 0.814096 0.740968 0.665448 0.687578

XGBoost 0.803882 0.716959 0.668544 0.685272

FCNN 0.814096 0.733316 0.700955 0.714092

Nauru Logistic Regression 0.719388 0.716654 0.713805 0.714747

KNN 0.566327 0.570330 0.570707 0.566225

Random Forest 0.734694 0.744056 0.720328 0.721925

XGBoost 0.663265 0.661066 0.651305 0.651509

FCNN 0.704082 0.701258 0.702020 0.701565
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Table 8  (continued)

Country Model Accuracy Precision Recall F1 Score

Botswana Logistic Regression 0.647143 0.637373 0.636700 0.637002

KNN 0.584286 0.571909 0.571253 0.571482

Random Forest 0.657143 0.646250 0.637345 0.638738

XGBoost 0.662857 0.653093 0.651185 0.651935

FCNN 0.641429 0.629754 0.625674 0.626709

Malawi Logistic Regression 0.688889 0.678105 0.653439 0.656297

KNN 0.623810 0.598810 0.582011 0.579260

Random Forest 0.680952 0.674762 0.636243 0.636182

XGBoost 0.666667 0.650107 0.641534 0.643684

FCNN 0.701587 0.708848 0.653439 0.653830

Fiji Logistic Regression 0.673428 0.647494 0.645718 0.646529

KNN 0.643002 0.608170 0.599642 0.601558

Random Forest 0.705882 0.684696 0.652801 0.658282

XGBoost 0.653144 0.618364 0.605335 0.607574

FCNN 0.713996 0.696499 0.659212 0.665328

Niger Logistic Regression 0.665169 0.609734 0.588531 0.590520

KNN 0.638202 0.580668 0.571469 0.572904

Random Forest 0.669663 0.611601 0.577175 0.575020

XGBoost 0.653933 0.598522 0.584972 0.587129

FCNN 0.676404 0.623507 0.592090 0.593463

Vanuatu Logistic Regression 0.645735 0.642009 0.626388 0.624881

KNN 0.614929 0.606436 0.600939 0.600760

Random Forest 0.635071 0.636640 0.608446 0.600585

XGBoost 0.637441 0.630802 0.622186 0.622109

FCNN 0.654028 0.649372 0.637857 0.637924

Qatar Logistic Regression 0.663573 0.662685 0.662433 0.662527

KNN 0.587007 0.585272 0.583531 0.582855

Random Forest 0.654292 0.653333 0.652903 0.653030

XGBoost 0.619490 0.618318 0.617904 0.617990

FCNN 0.647332 0.647693 0.643320 0.642714

Azerbaijan Logistic Regression 0.713693 0.699672 0.667344 0.673018

KNN 0.668050 0.642422 0.631758 0.634516

Random Forest 0.740664 0.737720 0.692253 0.700241

XGBoost 0.738589 0.722867 0.708956 0.713744

FCNN 0.742739 0.737575 0.697161 0.705199

Bhutan Logistic Regression 0.715074 0.695368 0.669524 0.675488

KNN 0.658088 0.629602 0.624850 0.626589

Random Forest 0.697610 0.675012 0.645892 0.650623

XGBoost 0.690257 0.664531 0.652934 0.656516

FCNN 0.705882 0.682779 0.666355 0.671059

Togo Logistic Regression 0.639726 0.635969 0.633385 0.633782

KNN 0.595890 0.590321 0.586691 0.585970

Random Forest 0.602740 0.599778 0.599965 0.599853

XGBoost 0.656164 0.653118 0.652706 0.652881

FCNN 0.643836 0.642635 0.631910 0.630636

Tokelau Logistic Regression 0.718447 0.713716 0.716680 0.714572

KNN 0.669903 0.661943 0.654083 0.655586

Random Forest 0.766990 0.763889 0.756163 0.758782

XGBoost 0.776699 0.775240 0.764638 0.767950

FCNN 0.766990 0.763889 0.756163 0.758782
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Table 8  (continued)

Country Model Accuracy Precision Recall F1 Score

Gambia Logistic Regression 0.667166 0.644245 0.620177 0.621805

KNN 0.650675 0.624230 0.611214 0.613045

Random Forest 0.674663 0.660153 0.615211 0.613135

XGBoost 0.638681 0.610284 0.599272 0.600582

FCNN 0.668666 0.648221 0.614764 0.614510

Guyana Logistic Regression 0.703704 0.706216 0.700129 0.700000

KNN 0.615984 0.615574 0.612321 0.611353

Random Forest 0.697856 0.698430 0.695233 0.695407

XGBoost 0.692008 0.691562 0.690337 0.690567

FCNN 0.684211 0.685751 0.680772 0.680538

Micronesia Logistic Regression 0.736170 0.734393 0.736142 0.734782

KNN 0.685106 0.683812 0.685425 0.683818

Random Forest 0.719149 0.717334 0.718956 0.717671

XGBoost 0.710638 0.709366 0.711204 0.709455

FCNN 0.748936 0.746934 0.744405 0.745321

Bangladesh Logistic Regression 0.692046 0.692115 0.692152 0.692041

KNN 0.643100 0.643257 0.643257 0.643100

Random Forest 0.682529 0.683077 0.682866 0.682491

XGBoost 0.664854 0.665434 0.665208 0.664804

FCNN 0.693406 0.693341 0.693363 0.693349

Mali Logistic Regression 0.666667 0.656082 0.660343 0.657143

KNN 0.671569 0.660462 0.664408 0.661608

Random Forest 0.691176 0.676740 0.674345 0.675381

XGBoost 0.656863 0.642637 0.643782 0.643143

FCNN 0.710784 0.697601 0.688497 0.691503

Tuvalu Logistic Regression 0.782407 0.758696 0.702644 0.718368

KNN 0.703704 0.639287 0.596314 0.599954

Random Forest 0.763889 0.808107 0.631724 0.639139

XGBoost 0.782407 0.761892 0.698538 0.715080

FCNN 0.773148 0.737654 0.708254 0.718743

Mongolia Logistic Regression 0.729839 0.732957 0.729222 0.728563

KNN 0.642137 0.644449 0.641420 0.639968

Random Forest 0.730847 0.731299 0.730586 0.730549

XGBoost 0.706653 0.706958 0.706410 0.706366

FCNN 0.721774 0.722880 0.721380 0.721175

Eswatini Logistic Regression 0.628205 0.622158 0.621067 0.621438

KNN 0.622711 0.615863 0.613536 0.614005

Random Forest 0.624542 0.617705 0.607775 0.606472

XGBoost 0.635531 0.629408 0.620223 0.619818

FCNN 0.635531 0.629808 0.628930 0.629262

Myanmar Logistic Regression 0.710175 0.697167 0.697047 0.697106

KNN 0.649825 0.632651 0.630654 0.631472

Random Forest 0.704561 0.692208 0.674789 0.678739

XGBoost 0.692632 0.677698 0.666727 0.669762

FCNN 0.703158 0.690313 0.691536 0.690880

Maldives Logistic Regression 0.713262 0.716073 0.710268 0.710130

KNN 0.670251 0.675646 0.665775 0.663679

Random Forest 0.731183 0.733325 0.728641 0.728828

XGBoost 0.684588 0.685456 0.682115 0.682035

FCNN 0.731183 0.730839 0.730340 0.730504
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Table 8  (continued)

Country Model Accuracy Precision Recall F1 Score

Uganda Logistic Regression 0.647868 0.642360 0.611689 0.606781

KNN 0.570839 0.555112 0.553520 0.553566

Random Forest 0.627235 0.628617 0.577554 0.555532

XGBoost 0.602476 0.583961 0.573499 0.570627

FCNN 0.647868 0.660842 0.599872 0.582858

Mozambique Logistic Regression 0.663551 0.638310 0.614308 0.615575

KNN 0.605607 0.575077 0.571241 0.571959

Random Forest 0.635514 0.601050 0.577543 0.573503

XGBoost 0.659813 0.633941 0.620690 0.623088

FCNN 0.656075 0.629357 0.599802 0.598230

Benin Logistic Regression 0.649294 0.623345 0.610178 0.611866

KNN 0.630836 0.600436 0.587284 0.587344

Random Forest 0.665581 0.650284 0.603476 0.598268

XGBoost 0.628664 0.597301 0.583417 0.582925

FCNN 0.644951 0.620728 0.614520 0.616219

Moldova Logistic Regression 0.839080 0.781997 0.676812 0.706276

KNN 0.791667 0.672123 0.626687 0.640873

Random Forest 0.826149 0.777489 0.625866 0.651087

XGBoost 0.806034 0.701556 0.645841 0.663475

FCNN 0.821839 0.734792 0.668418 0.689889

Nepal Logistic Regression 0.664875 0.629546 0.601241 0.601854

KNN 0.637993 0.596695 0.583224 0.584017

Random Forest 0.668459 0.640692 0.584701 0.575610

XGBoost 0.633513 0.586801 0.568709 0.566421

FCNN 0.672939 0.645476 0.594506 0.589560

Comoros Logistic Regression 0.689252 0.689676 0.689551 0.689237

KNN 0.600467 0.600530 0.600552 0.600459

Random Forest 0.689252 0.692012 0.690125 0.688702

XGBoost 0.657710 0.659065 0.658326 0.657463

FCNN 0.679907 0.679987 0.679515 0.679513

Tonga Logistic Regression 0.723935 0.672291 0.608892 0.614364

KNN 0.666667 0.587003 0.571578 0.573714

Random Forest 0.707783 0.642865 0.579910 0.577661

XGBoost 0.712188 0.650688 0.615081 0.621744

FCNN 0.709251 0.644995 0.598299 0.602426

Grenada Logistic Regression 0.624309 0.589517 0.576799 0.576171

KNN 0.668508 0.644887 0.618077 0.619428

Random Forest 0.646409 0.616013 0.591874 0.590266

XGBoost 0.629834 0.595878 0.581263 0.580627

FCNN 0.624309 0.587409 0.571234 0.568685

Madagascar Logistic Regression 0.631734 0.605470 0.574197 0.564566

KNN 0.619980 0.592991 0.583253 0.583279

Random Forest 0.671890 0.671190 0.611675 0.604290

XGBoost 0.670911 0.653440 0.631797 0.633806

FCNN 0.647405 0.625052 0.602382 0.601359

Ecuador Logistic Regression 0.715566 0.707130 0.689602 0.693620

KNN 0.645017 0.627281 0.608577 0.608124

Random Forest 0.702128 0.693695 0.672091 0.675682

XGBoost 0.678611 0.665848 0.648793 0.651281

FCNN 0.707727 0.700692 0.677236 0.681109
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Table 8  (continued)

Country Model Accuracy Precision Recall F1 Score

Gabon Logistic Regression 0.686534 0.686788 0.677684 0.678177

KNN 0.609272 0.607233 0.595057 0.590087

Random Forest 0.679912 0.678897 0.671969 0.672533

XGBoost 0.637969 0.634601 0.631053 0.631283

FCNN 0.668874 0.668249 0.669465 0.668018

Libya Logistic Regression 0.738636 0.717506 0.692677 0.700026

KNN 0.691558 0.660090 0.646970 0.650998

Random Forest 0.743506 0.734682 0.681313 0.690963

XGBoost 0.712662 0.685109 0.670455 0.675283

FCNN 0.745130 0.726864 0.696717 0.705081

Zambia Logistic Regression 0.650530 0.652300 0.644968 0.643626

KNN 0.571861 0.569341 0.566721 0.564833

Random Forest 0.617247 0.615781 0.614002 0.613849

XGBoost 0.594554 0.592675 0.591325 0.591071

FCNN 0.659607 0.661574 0.654231 0.653177

Lesotho Logistic Regression 0.700855 0.647063 0.612088 0.617310

KNN 0.643875 0.576465 0.567747 0.569367

Random Forest 0.675214 0.597547 0.553674 0.542593

XGBoost 0.663818 0.600459 0.587101 0.589921

FCNN 0.669516 0.592877 0.561092 0.556818

Namibia Logistic Regression 0.681890 0.682331 0.588432 0.572695

KNN 0.656693 0.618461 0.588699 0.586904

Random Forest 0.650394 0.608842 0.568190 0.557455

XGBoost 0.636220 0.589815 0.568912 0.565621

FCNN 0.677165 0.665168 0.587453 0.574426

Tanzania Logistic Regression 0.639960 0.629931 0.602395 0.597317

KNN 0.553907 0.527434 0.524584 0.520730

Random Forest 0.613254 0.596192 0.569989 0.557808

XGBoost 0.601385 0.582168 0.574107 0.572687

FCNN 0.629080 0.615445 0.611444 0.612355

Liberia Logistic Regression 0.702128 0.663095 0.638105 0.643939

KNN 0.595745 0.543750 0.542339 0.542755

Random Forest 0.617021 0.495935 0.497984 0.465909

XGBoost 0.787234 0.763105 0.763105 0.763105

FCNN 0.723404 0.693182 0.654234 0.662244

Samoa Logistic Regression 0.756410 0.756872 0.754120 0.754707

KNN 0.669872 0.672818 0.664552 0.663480

Random Forest 0.750000 0.750836 0.747363 0.747970

XGBoost 0.733974 0.734327 0.731460 0.731967

FCNN 0.778846 0.778256 0.778428 0.778334

Afghanistan Logistic Regression 0.661623 0.648159 0.647146 0.647605

KNN 0.617607 0.608101 0.610741 0.608480

Random Forest 0.672627 0.658818 0.655292 0.656613

XGBoost 0.658872 0.648610 0.651388 0.649481

FCNN 0.662999 0.650104 0.649939 0.650020

Ghana Logistic Regression 0.708087 0.665085 0.651338 0.656177

KNN 0.641026 0.589921 0.587628 0.588591

Random Forest 0.706114 0.660886 0.630063 0.636402

XGBoost 0.682446 0.632649 0.620033 0.623924

FCNN 0.694280 0.644149 0.615146 0.620129
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Discussion
This study applied several machine learning models to 
predict blood pressure status using the WHO STEPS 
dataset with a nationally-representative sample of 
184,674 participants from 57 low- and middle-income 
countries. The XGBoost and FCNN models performed 
slightly better than logistic regression and random for-
est models across various metrics, while KNN consist-
ently underperformed. Notably, model performance 
varied significantly across regions and countries, high-
lighting the need for context-specific approaches.

Our feature importance analysis identified age, 
weight, heart rate, waist circumference, and height as 

the most important blood pressure predictors, aligning 
with previous research findings [22–24]. The model’s 
explainability is crucial for facilitating its adoption and 
trust among healthcare professionals.

Our findings have several implications for policy-
makers, clinical care, and researchers focused on NCD 
prevention and control in resource-limited settings. Pre-
dictive machine learning models calibrated using health 
information systems can identify high-risk populations 
and prioritise sub-national regions for in-person hyper-
tension screening and interventions. Similarly, clinicians 
can use these models to screen their patient database and 

Table 8  (continued)

Country Model Accuracy Precision Recall F1 Score

Rwanda Logistic Regression 0.615162 0.614989 0.614894 0.614902

KNN 0.549458 0.549088 0.548373 0.547238

Random Forest 0.610830 0.611647 0.609647 0.608537

XGBoost 0.597834 0.597648 0.597586 0.597591

FCNN 0.622383 0.626220 0.623707 0.620921

Niue Logistic Regression 0.738562 0.734921 0.731170 0.732517

KNN 0.679739 0.675731 0.677195 0.676197

Random Forest 0.718954 0.719697 0.703835 0.706098

XGBoost 0.705882 0.701882 0.695505 0.697136

FCNN 0.738562 0.738978 0.742711 0.737654

Armenia Logistic Regression 0.755747 0.687307 0.661098 0.670510

KNN 0.744253 0.669384 0.640046 0.649412

Random Forest 0.781609 0.737388 0.659164 0.677070

XGBoost 0.747126 0.676745 0.661743 0.667867

FCNN 0.772989 0.737395 0.626940 0.641017

Kiribati Logistic Regression 0.736170 0.691840 0.661407 0.670362

KNN 0.693617 0.634327 0.615746 0.620764

Random Forest 0.765957 0.739412 0.683146 0.697172

XGBoost 0.727660 0.681974 0.673451 0.677087

FCNN 0.731915 0.686502 0.650999 0.660132

Algeria Logistic Regression 0.663808 0.663813 0.663801 0.663799

KNN 0.613208 0.613269 0.613184 0.613125

Random Forest 0.661235 0.662057 0.661294 0.660856

XGBoost 0.643225 0.643734 0.643274 0.642956

FCNN 0.669811 0.669832 0.669800 0.669792

Kyrgyzstan Logistic Regression 0.735656 0.632479 0.586549 0.592868

KNN 0.721311 0.606199 0.571750 0.575511

Random Forest 0.754098 0.680889 0.565839 0.560255

XGBoost 0.743852 0.649783 0.602297 0.611264

FCNN 0.750000 0.661911 0.614108 0.624663

Guinea Logistic Regression 0.645880 0.640829 0.643661 0.641065

KNN 0.636971 0.631348 0.633801 0.631643

Random Forest 0.634744 0.624379 0.623209 0.623676

XGBoost 0.634744 0.624379 0.623209 0.623676

FCNN 0.654788 0.645787 0.645574 0.645677
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identify those with a higher risk of raised blood pressure 
for intensive monitoring or earlier intervention.

The variability in model performance across countries 
reinforces the importance of developing and validat-
ing country-specific models for increased accuracy and 
more tailored interventions. While this study does not 
introduce new ML algorithms, it highlights the potential 
of applying existing techniques to large-scale datasets in 
LMICs to advance public health objectives.

The strengths of this study include the use of a large, 
nationally representative dataset [25, 26], evaluation of 
multiple machine learning models, and validation using 
a separate testing dataset. While this study provides valu-
able insights, it also has limitations. The models were 
applied to retrospective data and not tested prospectively 

in clinical settings or population settings. Future studies 
should validate these findings in prospective, real-world 
scenarios. Additionally, the study focused solely on pre-
dicting blood pressure status and did not extend to other 
NCD risk factors or blood pressure control over time.

Despite these limitations, this study contributes to the 
literature on using machine learning for chronic disease 
management. Future research should focus on validation 
of these models in clinical settings, developing country-
specific models to improve prediction accuracy, expand-
ing the target to other NCD risk factors and long-term 
blood pressure control, and more broadly, the integra-
tion of ML-based prediction tools into health systems in 
LMICs.

Fig. 2  Using mean decrease in impurity on the global model



Page 20 of 21Bisong et al. BMC Medical Informatics and Decision Making          (2024) 24:234 

Conclusion
This study demonstrates the potential of applying machine 
learning techniques to large-scale health datasets for pre-
dicting blood pressure status in LMICs. The variability in 
model performance across countries underscores the need 
for context-specific approaches in addressing hypertension. 
Policymakers and healthcare providers in LMICs could 
potentially use these models as tools for population-level 
risk stratification and resource allocation, complementing 
rather than replacing direct blood pressure measurements.

By addressing the identified limitations and expanding 
the geographical coverage to include more diverse popu-
lations, researchers can develop more comprehensive and 
reliable models for predicting blood pressure control. The 
integration of such models into clinical practice, coupled 
with further validation and refinement, has the potential to 

revolutionize the management of hypertension and other 
non-communicable diseases in resource-limited settings.

In conclusion, this study lays the foundation for future 
research on the use of machine learning in the context of 
global health and non-communicable disease manage-
ment. The explainable machine learning model developed 
herein serves as a valuable tool for supporting clinical 
decision-making and improving blood pressure control in 
low- and middle-income countries. With continued efforts 
to address the limitations and expand upon this work, the 
application of machine learning in healthcare can contrib-
ute significantly to the achievement of better health out-
comes for populations worldwide.
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