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Abstract 

Background  Generalized Joint Hyper-mobility (GJH) can aid in the diagnosis of Ehlers-Danlos Syndrome (EDS), 
a complex genetic connective tissue disorder with clinical features that can mimic other disease processes. Our study 
focuses on developing a unique image-based goniometry system, the HybridPoseNet, which utilizes a hybrid deep 
learning model.

Objective  The proposed model is designed to provide the most accurate joint angle measurements in EDS apprais-
als. Using a hybrid of CNNs and HyperLSTMs in the pose estimation module of HybridPoseNet offers superior generali-
zation and time consistency properties, setting it apart from existing complex libraries.

Methodology  HybridPoseNet integrates the spatial pattern recognition prowess of MobileNet-V2 with the sequen-
tial data processing capability of HyperLSTM units. The system captures the dynamic nature of joint motion by creat-
ing a model that learns from individual frames and the sequence of movements. The CNN module of HybridPoseNet 
was trained on a large and diverse data set before the fine-tuning of video data involving 50 individuals visiting 
the EDS clinic, focusing on joints that can hyperextend. HyperLSTMs have been incorporated in video frames to avoid 
any time breakage in joint angle estimation in consecutive frames. The model performance was evaluated using 
Spearman’s coefficient correlation versus manual goniometry measurements, as well as by the human labeling 
of joint position, the second validation step.

Outcome  Preliminary findings demonstrate HybridPoseNet achieving a remarkable correlation with manual Gonio-
metric measurements: thumb (rho = 0.847), elbows (rho = 0.822), knees (rho = 0.839), and fifth fingers (rho = 0.896), 
indicating that the newest model is considerably better. The model manifested a consistent performance in all joint 
assessments, hence not requiring selecting a variety of pose-measuring libraries for every joint. The presentation 
of HybridPoseNet contributes to achieving a combined and normalized approach to reviewing the mobility of joints, 
which has an overall enhancement of approximately 20% in accuracy compared to the regular pose estimation 
libraries. This innovation is very valuable to the field of medical diagnostics of connective tissue diseases and a vast 
improvement to its understanding.
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Introduction
Generalized Joint Hypermobility (GJH) is a condition 
in which some or all of an individual’s joints can move 
beyond their daily use limits. Although it can affect a 
large population, unique genotypes are mostly affected 
by this condition. GJH is generally not serious; however, 
any presence of joint pain, joint instability, and other 
additional symptoms, such as systemic manifestations, 
may suggest more severe connective tissue disorders 
like Ehlers-Danlos Syndrome (EDS) [1, 2]. EDS com-
prises a group of inherited heritable connective tissue 
disorders trained by joint hypermobility, skin that can 
easily be stretched, and all skin that tends to bruise.  In 
other words, it is a group of connective tissue diseases 
that present with a wide range of symptoms that involve 
the skin, joints, and other tissues. Some of the typical 
features include atrophic scarring that is characterized 
by thin skin hyperflexibility, which makes the skin abnor-
mally stretchy; joint laxity, which means that the joints 
get to be more mobile than is usual and easily bruise; and 
thin, sunken scars [3, 4].

Individuals with EDS may also develop mollus-
coid  pseudotumors and fleshy  nodules over pres-
sure  points  and experience hyperpigmentation  along 

with other skin abnormalities [5]. These symptoms mani-
fest from defects affecting the body’s collagen, reduc-
ing the strength and flexibility of the connective tissues. 
Diagnosis of EDS is challenging as it presents clinical 
variability and symptoms resembling many other disor-
ders. Timely and correct diagnosis is essential because it 
impacts further treatment and prevention of complicated 
situations. Joint hypermobility is one of the diagnostic 
features of some subtypes of EDS, including hyper-EDS 
(hEDS), which is why assessing joint angles is critical for 
the diagnostic process. Figure  1 illustrates some of the 
most recognizable signs of EDS [6].

Clinical and technological diagnostic research is also 
included in GJH and EDS. These methods entail physical 
examination using a non-movable goniometry to assess 
the joint angles. However, these methods are inexact and 
may need to be revised across clinicians. Some recent 
findings have looked at chronic low back pain through 
techniques such as imaging and biomechanical assess-
ments to attain more accurate information. On that note, 
the following are the gaps that need to be investigated.

It was also established that some of the goniometry 
techniques, namely, the manual ones, as well as others, 
some of the automated ones, are imprecise and erratic. 

Fig. 1  Common signs of EDS
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It is also worth noting that the majority of the available 
approaches are limited to the offline analysis. At the same 
time, in the context of the evaluation of the dynamic joint 
movements, real-time characterization is more suitable. 
Implementing some of the advanced strategies is impos-
sible in clinical settings since they are either very compli-
cated or costly.

Our work introduces a novel goniometric imaging sys-
tem, the HybridPoseNet, which is a unique integration 
of Convolution Neural Network (CNN) and HyperL-
STM approaches [7]. This system is designed to signifi-
cantly improve the accuracy, reliability, and timeliness 
of joint hypermobility assessment and diagnosis. The 
choice of MobileNet-V2 [8]and HyperLSTM for the 
HybridPoseNet is based on their proven effectiveness in 
spatial pattern recognition and sequential information 
handling, respectively. This innovative approach brings 
several advantages, which we will discuss in the following 
sections.

It is possible that HybridPoseNet can generalize across 
two different data sets when two deep neural network 
architectures are applied, which would define better joint 
angles. HyperLSTMs allow for maintaining temporal 
integrity for the dynamics of joint angles, which helps 
describe movement dynamics. MobileNet-V2 is highly 
efficient, making it ideal for mobile applications, mainly 
because they don’t require much computational power. 
The hybrid model’s planning has been founded on the 
following reasons:

	 i.	 Spatial Recognition:MobileNet-V2 is used because 
it performs best in terms of spatial feature extrac-
tion from images. This is attributed to its architec-
ture, which enables it to provide high performance 
while supporting a lightweight model that can be 
implemented in different contexts.

	 ii.	 Sequential Processing:HyperLSTM networks can 
take data sequences as input, making them perfect 
for analyzing video frames to track joint motion 
over time. This sequential processing is impera-
tive to ensure that each frame of joint angle meas-
urements represents a correct estimation of the 
patient’s limb position at that point in time and that 
the measurements of subsequent frames are con-
sistent across frames.

	iii.	 Combined Strengths:The combination of MobileNet-
V2and HyperLSTM optimization is beneficial since 
it leverages the critical features of the two networks 
while constructing a real-time joint angle measure-
ment system.

Thus, the major novelty of the study is the creation and 
evaluation of a HybridPoseNet, a two-streamed deep 

learning (DL) model that can measure joint angles with 
high accuracy. Conventionally, the angle between two 
lines is determined with the help of goniometry. This sys-
tem offers an innovative system of goniometry in which 
spatial and temporal analysis are incorporated into one 
model. Furthermore, the work advances the study of inte-
grating DL strategies [9, 10] with other approaches to 
achieving the best medical diagnostics results.

This study is informed by the need for enhanced, pre-
cise, consistent, and real-time diagnostics of EDS and 
other associative diseases to joint hypermobility. While 
traditional methods are widely used, they are frequently 
less accurate. They can be imprecise in the diagnosis pro-
cess, which may result in either misdiagnosis or delayed 
diagnosis. With the help of HybridPoseNet elaboration, 
we would like to help clinicians improve their diagnostic 
practices, which, in turn, should improve the patient’s 
conditions.It should be noted that the findings of this 
study generalize beyond EDS to any clinical setting in 
which joint angle is an important parameter. Since fus-
ing and aligning individual pose parts concerning EDS, 
HybridPoseNet is highly mobile, making it possible to be 
trained and fine-tuned for different usages, which makes 
its applicability vast in clinical practice.

Related work
The work from [11] was more concerned with evaluating 
features that would distinguish EDS-HT (Hypermobil-
ity Type) from other forms of Heritable Connective Tis-
sue Disorders (HCTDs). EDS-HT is diagnosed by joint 
hypermobility and other connective tissue features that 
influence multiple structures and organs. It is an exclu-
sion diagnosis, as the presence of characteristic features 
of other partially related HCTDs should be ruled out. 
The differential diagnosis of EDS-HT is discussed with 
EDS vascular, EDS classic, and kyphoscoliotic types, 
Loeys-Dietz syndrome, Marfan syndrome, lateral menin-
gocele syndrome, osteogenesisimperfecta, arterial tortu-
osity syndrome, and a diagnostic flow chart is included 
to help differentiate EDS-HT from other entities. Major 
work of [12] presented a groundbreaking approach in 
their research, highlighting the potential of whole-exome 
sequencing in differentiating EDS types and propos-
ing a possibility for precision assessment. Their findings 
suggest  that a more integrated system of DNN, digital 
evaluations, predictive modeling, and genetic testing 
could revolutionize the accuracy of EDS assessment. This 
promising direction in EDS research instills optimism 
and excitement about the future of EDS diagnosis and 
treatment. The core process of [13] undertook a practi-
cal research endeavor, focusing on developing a vision-
based  tool for assessing the motion (specific range) at 
the selected body joints in adults suspected to have EDS. 
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Their work, which involved comparing the ROM as esti-
mated by the vision-based system with the actual ROM 
measurement obtained by clinicians, has direct implica-
tions for clinical practice. The comparison of the ROM 
predicted by the system with that measured by clinicians 
for each joint individually provides valuable insights for 
clinicians, enhancing the precision of EDS diagnosis and 
treatment. The study by [14] focused on the ocular mani-
festations of EDS and various types seen in clinical prac-
tice. The kinds of EDS described in the review include 
Kyphoscoliotic EDS, Periodontal EDS,  Dermatosparaxis 
EDS,  and Classical EDS; the review provides a compre-
hensive account of the genetic mutation, clinical features, 
and ocular manifestations of each of the EDS subtypes. It 
also outlines the effects of EDS on various structures of 
the eye, including the conjunctivae; orbit, ocular adnexa, 
lens, and visual function, stressing that early diagnosis 
can prevent or reduce visual loss. The work of [15], where 
vision-based goniometry calculates the joint angles in 
suspected EDS patients. Participants were asked to per-
form movements, and videos were recorded to study the 
maximum degrees of hyperextension or hyperflexion at 
different joints using several pose-estimation libraries. 

The study showed moderate to high levels of agreement 
between angles obtained from the critical points detected 
through pose tracking and angles obtained from the goni-
ometry test for the knee, elbow, fifth finger, and shoulder 
movements but not for the ankle movements. The librar-
ies used for pose estimation differed for each joint, high-
lighting that libraries should be chosen individually for 
each of the joints of interest.

Working process of HybridPoseNet
The step-by-step handling of the image frames in the 
HybridPoseNet model makes estimating joint angles 
efficient. Figure  2 illustrate the architecture of Hybrid-
PoseNet. First, taking a video as input, its content is 
separated by individual frames in a process like frame 
extraction via the sampling technique [16]. This step is 
significant as it divides the video into successive frames 
and enables analysis of each frame inside the sequence 
or clip.

Afterwards, every extracted frame is passed through 
CNN Processing utilizing the MobileNet-V2 model. 
MobileNet-V2 is preferred for its optimal efficiency 
and ability to extract spatial features of the images 

Fig. 2  Architecture of HybridPoseNet
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successfully. In this phase, the core processes of 
MobileNet-V2 consider the flowing visual data of each 
frame and analyze spatial features in relation to the joints’ 
positions and movements. This step enables the model to 
preserve every detail of the frames precisely in terms of 
joint orientation and position.

These are then passed to the HyperLSTM units for 
Sequence Modeling once they are extracted. They are 
known as HyperLSTM units, and their role is to model 
temporal relations between consecutive frames, an ele-
ment of paramount importance for capturing the kinet-
ics of joints. HyperLSTM units achieve continuity and 
steadiness when analyzing the sequence of the frames; 
this aspect helps maintain a correct angle estimation 
where there is likely to be a quick movement or transition 
between different frames. Thus, when HybridPoseNet 
is implemented with spatial and temporal analysis, the 
technique quickly achieves a high level of joint angle esti-
mations, which are crucial when dealing with conditions 
such as EDS, where the assessment of joint flexibility 
plays a significant role.

Feature descriptions of accumulated dataset
The data provided for this study has been retrieved in 
real-time from different hospitals and clinics that deal 
with EDS patients, which were together accumulated 
from [17] for training and evaluating the model. The 
video recordings depict several signs of EDS, such as 
joint hyper-mobility and hyper-extensible skin, which 
are essential for correctly diagnosing and assessing this 
genetically inherited condition. The data collection pro-
cess was performed with the help of high-resolution 
video equipment in clinical conditions. Each video has a 
480 × 640 pixels resolution to provide high-quality and 
precise video shooting. The videos are shot at the rate of 
1 frame per second, meaning that the stages of movement 

or stretching, as depicted in the videos, are easily recog-
nizable. Each video sample has ten frames to analyze the 
temporal change of joint movements and skin tenseness.

The dataset involves several patients of different ages, 
sexes, and ethnicities. The videos depict many facets of 
joint mobility and skin flexibility, thus giving a full pic-
ture of EDS clinical features. Such a diverse distribution 
improves the dataset for training deep learning models 
to generalize across any given patient population. Table 1 
represents the significant attributes of the collected data-
set that depicts the appropriate values or description 
needed to train any DL model.

Spatial feature analysis
MobileNet-V2 is an improved version of the CNN model 
specifically designed for mobile, low-powered and embed-
ded vision applications. Some of the components include 
Depth-wise Separable Convolutions (DSC), Inverted 
Residuals (IR), and Linear Bottlenecks (LB) [18, 19].

DSC is a convolution process in which the convolu-
tion operation is divided into two: depth-wise convolu-
tion and point-wise convolution. This excludes several 
factors and computation steps, ultimately enhancing fast 
processing at later stages. IRis used to improve the flow 
of information and gradients through the network. LBre-
duces the dimensionality and computational complexity.

Computations of DSC
Depthwise separable convolution consists of two steps 
depth-wise convolution and point-wise convolution. 
From the accumulated preprocessed video dataset, for 
any incoming feature map is assumed as I ∈ R

(C×h×w) 
with appropriate channels C, height h, and weight w 
along with kernel (depth-wise), κ ∈ R

(C×κ×κ) . Thus, the 
core output computation of depth-wise convolution (�d) 
is expressed in Eq. (1).

Table 1  Prominent features of the accumulated dataset

Attribute Value/Description

Age Range 18 to 65 years

Hyper-Extensible Skin 20 samples

Joint Hyper-Mobility 20 samples

Combined Joint Movement 10 samples

Ethnicity Diverse representation across different ethnic groups

Gender Distribution 0.5 ± 0.5

Joint Angles (Joint Hyper-Mobility) -30 degree - 135 degree

Skin Stretch Factors (Hyper-Extensible Skin) 1.0 to 1.5 times the normal length

Joint Types (Joint Hyper-Mobility) Knees, Elbows, Wrists, fifth finger

Movement Sequence (Combined Joint Movement) Sequential arm movements showing various stages of hyperexten-
sion [Hyperextension Stages: Initial, Mild, Neutral, Moderate, Severe, 
and Extreme]

Assessment Conditions Uncomfortableness, Functional Impact, Joint Stability, Skin Conditions
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From (1), a and b denotes the indices for the spatial 
dimension of I, i and j represents the indices of spatial 
dimension of κ. Further, the DCS is computed using �d 
and point-wise convolution kernel,   .

From (2),   signifies the ultimate outcome of the 
DCS.

Computation of IR and LB
Each of the residual blocks with respect to the IR and LB 
is represented as in Eq. (3),

A modified version of the Rectified Linear Unit (ReLU) 
activation function restricts the response values to the 
interval [0, 6] to increase the model’s robustness and per-
formance. Expansion Layer Weights 

(

E
L
ω

)

 are applied to 
increase the number of channels on the input signal.

A depth-wise convolution applies a single filter per input 
channel to the expanded features using the expand features 
layer. This process dramatically minimizes the computa-
tional cost of the framework for tracking and analyzing.

The depth-wise  convolution output, �dκ , is  fed into a 
batch normalization layer. This layer scales the output of the 
previous layer to mean = 0 and standard deviation = 1, which 
contributes to stabilizing and speeding up the training.

Lastly, point-wise convolution  (Eq.  6) is applied with 
reduction layer weights R

L
ω  to  decrease the number 

of output dimensionalities. It takes the combined features 
arising from the �b2

 depthwise convolution and performs 
1 × 1 convolution that essentially collects all these chan-
nels into a linear bottleneck.

Temporal feature analysis
LSTM networks are a significant variant of RNN designed 
for the efficient, correct handling of long-term temporal 
dependencies in the given input, making them suitable 
for sequential data analytic tasks such as video analysis 

(1)�d(a, b, c) =
∑k−1

i=0

∑k−1

j=0
[κ(i, j, c) · I [(i+ a), (j + b), c]]

(2)

(3)Expended feature,�b1 = ReLU6
(

I ,EL
ω

)

(4)�dκ = �d

(

�b1 , κ
)

(5)�b2 = BatchNorm(�dκ )

(6)

in HybridPoseNet. The basic functionality of LSTMs is 
entwined in the control gating system, which ensures 
the proper input flow in the network. The Forget Gate 
aids the network in determining which previous cell 
state information should not be passed to the next time 
step and, therefore, helps eliminate irrelevant data. The 
Input gate decides which input should be passed to the 
cell state, which helps ensure that the network adds only 
the specific features of the current input to the cell state. 
Last, the output gate determines the next hidden state, 
which can be used for prediction or the following pro-
cess. This complex gating helps maintain a relevant con-
text in LSTMs to capture the time dependencies required 
in the HybridPoseNet model for consecutive joint angle 
estimations.

HyperLSTM
It improves upon the existing LSTM structure by adding 
hyper-networks ( ) that produce the weights of the main 
LSTM from the current input and state. This will enable 
the model to be sensitive to the data input by adjusting the 
parameters as the data changes. Equation  (7) represents 
the generic computationally process of HyperLSTM on the 
primary weights of existing LSTM [20].

From (7), It and Ḧ(t−1) denotes the current input and 
previous hidden state, and   signifies the ‘ ’ parameters. 
Thus, the  generates the weights for the primary LSTM 
operations (input, candidate cell, forget, and output 
gates) based on the It , and Ḧ(t−1) . The following compu-
tation exhibits the  weight generation. Figure  3 repre-
sents the overall operational structure of HyperLSTM.

The final output of HybridPoseNet involves estimat-
ing the joint angles from the processed video frames. The 
algorithm in Table 2 outlines the process for estimating 
joint angles using HybridPoseNet, emphasizing the inte-
gration of spatial features extracted by MobileNet-V2 and 
temporal dependencies captured by the HyperLSTM.

Performance assessments and discussions
Specific software and hardware requisites for con-
structing and implementing the HybridPoseNet sys-
tem for valid joint angle evaluation in EDS cannot be 
avoided. On the software side, the system is expected to 
be implemented under the Python programming envi-
ronment, with the best experience being with version 
3.8. It is accompanied by several crucial libraries like 
TensorFlow 2.4, seemingly contemplated as a perfect 
foundation for the deep learning model development—
OpenCV 4.5 libraries involved in working the video 

(7)
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processing  file, and the NumPy library for numeri-
cal computations. Statistical assessment tools such as 
scikit-learn (human pose-estimation libraries), data 
visualization such as Matplotlib, and data management 

like Pandas are also used in the study. The required sys-
tem’s hardware is a potent computing platform with a 
new generation multi-core CPU, 64  GB of RAM, and 
a dedicated NVIDIA GPU (NVIDIA Tesla V100) for 

Fig. 3  Operational structure of HyperLSTM

Table 2  Prominent processes of HybridPoseNet

Input: ft ∈ F

Output:̂�t

1: ∀ frame,ft

  �d = MobileNet − v2(ft) //extraction of spatial features

2: Utilizing �d , Ḧ(t−1) , C(t−1)

    
//temporal dependency modeling

3: Compute ̂�t

  �t =
[

Ḧt ·WM + eM

]

//joint angle estimation

       
//WM and eM denotes weight matrix and bias terms, respectively
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efficient CUDA computing capabilities to update and 
evaluate deep learning models. Data storage involves 
using one Tera-byte capacity to contain large sets of 
data and trained models. In combination, these soft-
ware and hardware requirements provide a solid foun-
dation for building the HybridPoseNet model and its 
swift training with promising joint angle detection in 
clinical practice.

The following hyperparameters, mentioned in Table 3, 
were used in the empirical study to provide joint angle 
accuracy for diagnosing EDS using the HybridPoseNet 
model. These hyperparameters directly affect the per-
formance and accuracy of the joint angle measurements. 
Balancing and tuning these hyperparameters enhances 
the effectiveness of the deep learning models in goniom-
etry for diagnosing EDS. Along with these, 40 samples 
are considered for training and 10 samples are for testing.

Table  4 shows the mean of the goniometric measure-
ments for joint angle assessment, which has initially 
undergone the gold standard. However, the correlation of 
various joint poses has moderate and robust values along 
with the Spearman rho (ρ) value, showing the significant 
relationship of the study for different poses (p < 0.001). 
For the thumb, the measured values of the length and 
width of the hand are slightly positively correlated with 
r = 0.688 (left), 0.796 (right), and 0.746 (both); it is reli-
able as the writers were reasonably accurate but not one 
hundred per cent perfect. Likewise, the same pattern is 
evidenced by the findings of the elbow measurements 
that give perfect positive correlation coefficients of 0.688 
(left), 0.796 (right), and 0.746 (both), which proves the 

overall constant results but at the same time raises some 
concerns about the limitations of the study. A study of 
the size of the knee notions demonstrates that its cor-
relation is somewhat lower and makes 0.649 (left), 0.682 
(right), and 0.661 (both), suggesting that is why it is chal-
lenging to achieve the high distinction between some 
automatic joint positioning and manual measurements of 
them for more complicated shapes. The fifth finger shows 
a slightly more substantial relationship with mean corre-
lation coefficients of 0.749 (left), 0.783 (right), and 0.754 
(both); however, this indicates the existence of some vari-
ation. Downsides associated with the manual measure-
ments, which are evident from these findings, include 
issues to do with inter- and intra-rater variability as well 
as human errors, coupled with the challenge of placing 
the goniometry on joints and aligning it given the irreg-
ular movements involved in some joint mobilizations. 
Such limitations make it necessary to develop automated 

Table 3  Empirical hyperparameters of HybridPoseNet

Component Hyperparameter Optimal Value

MobileNet-V2 Input Shape (224, 224, 3)

Alpha 1.0

Depth Multiplier 1

Dropout Rate 0.2

Dropout Location after every block

Learning Rate 0.001

Optimizer Adam

Batch Size 32

Epochs 100

Weight Decay 0.00004

HyperLSTM Number of Layers 2

Units per Layer 256

Activation Function tanh

Dropout Rate 0.2

Learning Rate 0.001

Batch Size 32

Epochs 50

Table 4  Spearmen’s rank correlation for manual joint 
measurement approaches

Joint Measurement Approach Body Pose ρ p-value

Thumb Manual Left 0.688  < .001

Right 0.796  < .001

Both 0.746  < .001

Elbow Left 0.688  < .001

Right 0.796  < .001

Both 0.746  < .001

Knees Left 0.649  < .001

Right 0.682  < .001

Both 0.661  < .001

Fifth Finger Left 0.749  < .001

Right 0.783  < .001

Both 0.754  < .001

Table 5  Spearmen’s rank correlation for HybridPoseNet joint 
measurement

Joint Measurement Approach Body Pose ρ p-value

Thumb HybridPoseNet Left 0.830  < .001

Right 0.864  < .001

Both 0.847  < .001

Elbow Left 0.810  < .001

Right 0.834  < .001

Both 0.822  < .001

Knees Left 0.820  < .001

Right 0.858  < .001

Both 0.839  < .001

Fifth Finger Left 0.880  < .001

Right 0.912  < .001

Both 0.896  < .001



Page 9 of 14Kudithi et al. BMC Medical Informatics and Decision Making          (2024) 24:196 	

and accurate systems like the HybridPoseNet to evaluate 
positions in different joints and pose more accurately.

The results in Table  5 display the joint angle values 
detected through the HybridPoseNet model across the 
different joints, proving a reliable framework for esti-
mating the joint angles. For the thumb, the Hybrid-
PoseNet achieved Spearman’s rho values of 0.830 
(left), 0.864 (right), and 0.847 (both), indicating that 
the research results have a positive and robust moder-
ate level of association (all with p-values less than 0. 
001). In the same way, the analysis of the length of the 
elbow yielded a high correlation coefficient, with rho 
equal to 0.810 (left), 0.834 (right), and 0.822 (both). In 
evaluations of the knee, the model reached rho values 
of up to 0.820 (left), 0.858 (right), and 0.839 (both) to 
capture joint dynamics with a high degree of reliability. 
The measurements of the fifth fingers showed the most 
robust dependency, which was reflected in relatively 
high rho coefficients equal 0.880 (left), 0.912 (right), 
and 0.896 (both), which still suggests superior accuracy 
compared to statistical methods. These results affirm 
the effectiveness of the HybridPoseNet on interpolative 
generalization for joint representation across joints and 
body poses to produce accurate angle estimation, which 
is crucial for diagnosing EDS and other diseases. The 
correlation coefficients of all the measurements are sig-
nificant at p < 0.001 level of significance, which validates 
the statistical significance of the correlations; thus, the 
model’s usefulness in clinical practices.

Figure  4 compares the elbow joint angles measured 
manually and those calculated using the HybridPoseNet 
model. The plot shows data points for HybridPoseNet 

Left (blue dots) and HybridPoseNet Right (brown 
crosses), as well as manual measurements for left (red 
dots) and right (black crosses), plotted against the ideal 
line representing perfect agreement. The alignment of 
the HybridPoseNet data points along the ideal line indi-
cates a high degree of accuracy and consistency in the 
model’s measurements. For the HybridPoseNet model, 
Spearman’s rho values are 0.810 for the left elbow, 0.834 
for the right elbow, and a combined rho of 0.822, all 
with p-values < 0.001, signifying statistically significant 
correlations and robust model performance. In com-
parison, manual measurements show more variability, 
especially at higher angle values, with Spearman’s rho 
values of 0.688 for the left elbow, 0.796 for the right 
elbow, and a combined rho of 0.746, also with p-val-
ues < 0.001. The higher dispersion and lower correlation 
of the manual measurements highlight the inherent var-
iability and potential inaccuracies in manual goniome-
try. This analysis underscores the superior precision and 
reliability of the HybridPoseNet model in elbow joint 
angle estimation, evidenced by the tighter clustering of 
its data points around the ideal line and higher correla-
tion coefficients.

Figure 5 shows the correlation between the thumb joint 
angles, measured with a goniometry and the thumb joint 
angles obtained by the HybridPoseNet model. Blue dots 
represent the HybridPoseNet Left, and brown crosses 
represent the HybridPoseNet Right; these data points are 
in close proximity to the ideal line, suggesting that the 
model has high accuracy and reliability in terms of meas-
urements. The left (red circle) and right (black cross) 
manual measurements also exhibit a good fit with the 

Fig. 4  Comparative analysis of elbow measurement via HybridPoseNet Vs manual goniometry
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ideal line but are more scattered, especially at a higher 
angle. This could be due to some level of variability when 
taking manual measurements. For the HybridPoseNet 
model, Spearman’s rho values are 0.830 for the left 
thumb, 0.864 for the right thumb, and 0.847 when com-
bined, all with p-values < 0.001, thus signifying a statisti-
cally significant and highly positive relationship between 
the variables.

Conversely, when using manual measurements, rho val-
ues are 0.688 for the left thumb, 0.796 for the right thumb, 
and a combined rho of 0.746; their p-values are less than 

0.001. The higher values of dispersion and lower coeffi-
cients of correlation in the results of manual measurements 
can be explained by possible mistakes and inter-individual 
differences in manual goniometry. This analysis also shows 
that the HybridPoseNet model has a higher accuracy and 
reliability of thumb joint angles than the manual measure-
ments, as indicated by the closer fit of the data points to the 
ideal line and higher correlation coefficients of the model.

Figure  6 compares the Knee Joint Angle calculated 
manually and the Knee Joint Angle calculated using the 
HybridPoseNet model. The position of the obtained 

Fig. 5  Comparative analysis of thumb measurement via HybridPoseNet Vs manual goniometry

Fig. 6  Comparative analysis of knees measurement via HybridPoseNet Vs manual goniometry
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data points regarding HybridPoseNet Left (blue dots) 
and HybridPoseNet Right (brown crosses) on the ideal 
line indicates that the model is accurate and trustworthy 
when estimating knee joint angles. The plots of the man-
ual measurements for left (red circles) and right (black 
crosses) is dispersed around the ideal line wider, mean-
ing there is more variability and possible inaccuracy. Key 
metrics reveal that for the HybridPoseNet model, Spear-
man’s rho values are 0.820 for the left knee, 0.858 for the 
right knee, and 0.839 for both combined, all with p-val-
ues < 0.001, demonstrating significant and strong correla-
tions. Conversely, manual measurements yield lower rho 
values of 0.649 for the left knee, 0.682 for the right knee, 
and 0.661 combined,  with p-values < 0.001, indicating 
weaker correlations and higher measurement inconsist-
encies. This shows that manual goniometry has some dis-
advantages. For example, it is affected by human errors, 
and putting the goniometry in the proper position to get 
the correct measurement is sometimes challenging, espe-
cially for complex joints like the knee. The findings show 
that HybridPoseNet performs better than the manual 
approach due to the high correlation coefficients and the 
small scatter of the data points on the ideal line, making 
it a better tool for accurately estimating knee joint angles.

Figure  7 shows the differences between the angles 
of the fifth finger joints obtained through the manual 
assessment and the HybridPoseNet model. The points 
for HybridPoseNet Left (blue dots) and HybridPoseNet 
Right (brown crosses) are very close to the ideal line; 
hence, the model can predict joint angles with high preci-
sion. Red circles represent manual measurements for the 
left side and black crosses for the right and reveal greater 

scatter around the ideal line, especially at large angles, 
so that manual measurements can be less accurate and 
more variable. For the HybridPoseNet model, Spearman’s 
rho values are impressively high at 0.880 for the left, 
0.912 for the right, and 0.896 for both combined, all with 
p-values < 0.001, signifying strong and statistically signifi-
cant correlations. In contrast, the manual measurements 
yield lower rho values of 0.749 for the left, 0.783 for the 
right, and 0.754 combined,  with p-values < 0.001. These 
values demonstrate the model’s effectiveness compared 
to the traditional manual approach regarding precision 
and reliability. The wider spread and lower correlation 
in manual measurements indicate a problem of variabil-
ity in the measurements due to errors associated with 
human measurements and variation in the placement of 
the goniometry. The distribution of HybridPoseNet data 
points closer to the ideal line further supports the fact 
that it is a valuable tool for estimating joint angles and, 
thereby, helpful in evaluating the mobility of the fifth fin-
ger joint.

Figure 8 shows the HybridPoseNet’s confusion matri-
ces and manual measurements throughout the training 
and testing phases, showing the model’s effectiveness 
and the manual method’s accuracy in identifying EDS. 
Manual measurement in the training phase shows that 
the confusion matrix has 20 TN, 2 FP, 2 FN, and 16 TP, 
giving an accuracy of 90. However, the higher FP and FN 
values suggest lower precision and recall than Hybrid-
PoseNet, which may be caused by variability or manual 
measurement errors. This implies caution when relying 
solely on manual measurements to diagnose EDS. The 
confusion matrix of the manual measurement in the 

Fig. 7  Comparative analysis of fifth finger measurement via HybridPoseNet Vs manual goniometry
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testing phase is 4 TN, 1 FP, 0 FN, and 5 TP, with a testing 
accuracy of 90%. The one FP in manual testing means 
a slight decrease in precision, which is characteristic of 
manual methods as they may involve human errors. For 
the confusion  matrix of HybridPoseNet in the training 
phase, there are 21 TN, 1 FP, 1 FN, and 17 TP, with an 
accuracy of 95%.  The low number of FP and FN shows 
that the proposed model is exact and has a high recall. 
The confusion matrix of  HybridPoseNet  in the testing 
phase shows 5 TN, 0 FP, 0 FN and 5 TP, which indicates 
100% accuracy. The perfect classification in the test-
ing phase shows that the proposed model is reliable for 
diagnosing EDS. HybridPoseNet consistently outper-
forms manual measurements in training and testing sets, 
demonstrating superior precision and recall. This analy-
sis underscores the significant reduction in errors with 
the automated measurements of the model for diagnos-
ing EDS, compared to the manual measurements, which 
exhibit more variability and lower reliability due to the 
high number of FP and FN.

The importance of this work is rooted in its attempts 
to encompass the problem of diagnosing the extent of 
EDS, especially its hypermobility subtypes, more effec-
tively. The work from [11, 12] also stressed on the issues 
underlining the differential diagnosis of EDS from other 
features and genetic studies. However, HybridPoseNet 
fills this gap by giving a strong image-based goniometer 
that uses deep learning methods, where MobileNet-
V2 is used for the spatial feature or HyperLSTM is 
used for temporal sequence determining and high 
joint angle estimation. Unlike other poses where one 
has to use several libraries for different joints, Hybrid-
PoseNet delivers a consolidated method for all joints to 
improve the diagnostics’ precision and reliability. It has 
high relevance to the current body of knowledge as it 
incorporates higher-level assessments with functional 
clinical correlations that allow for enhancing assess-
ment approaches, accuracy, and standardization of 
joint hypermobility elements in EDS patients. Hybrid-
PoseNet’s capability of delivering constant, accurate 

Fig. 8  Confusion matrix assessments for HybridPoseNet and manual measurements in the diagnosis of EDS
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measurements of physical changes within the body can 
help redress a lack of investment in the current diag-
nostic solutions, thereafter enhancing the clinicians’ 
ability to make informed decisions and design appro-
priate treatment plans for patients.

Conclusion and future direction
The suggested image-based goniometry system called 
HybridPoseNet, built with MobileNet-V2 and HyperL-
STM units, significantly advances diagnosing the EDS 
by providing precise joint angle estimations. The pre-
sented model, utilizing hybrid DL techniques and show-
ing better generalization and time-dependency, can be 
used to properly and efficiently assess joint hypermo-
bility. When compared to the goniometric measure-
ments taken by the human operator, the correlation 
coefficients were found to be positive and highly sig-
nificant for the thumb (rho = 0. 847), elbows (rho = 0. 
822), knees (rho = 0. 839) and fifth fingers (rho = 0. 896) 
which justifies the reliability and accuracy of the device 
for various joints. These correlation coefficients and 
the results of HybridPoseNet indicate a 20% improve-
ment over the traditional pose estimation, thus making 
HybridPoseNet a good candidate for standardized EDS 
evaluation.

With the successful  application  of the HybridPoseNet 
system in EDS diagnosis, there is a promising oppor-
tunity to extend its use to other clinical disorders. By 
fine-tuning the model with a larger and more diverse 
dataset, we plan to enhance its accuracy and generaliza-
tion ability. Additionally, optimizing the feedback speed 
and constructing user-friendly interfaces could signifi-
cantly improve the system’s clinical usefulness, offering 
a hopeful prospect for future advancements in medical 
technology.
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