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Introduction
Coronaviruses are enveloped by positive, single-stranded 
giant RNA viruses. This kind of disease initially infects 
animals and then adapts to infect humans [1]. A recently 
distinguished coronavirus, SARS-CoV-2, has caused 
a widespread global epidemic of the respiratory ail-
ment called COVID-19. More than 768,187,000 cases of 
COVID-19 were recorded until June 2023, with a total 
death count of 6,945,714 worldwide [2, 3]. The danger 
of the Covid-19 virus is its ability to spread easily and 
quickly among humans. Based on the study, the primary 
reproduction number (R0) estimation has declined to 
0.9, compared to its previous value of 1.2 by the end of 
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Abstract
With the outbreak of COVID-19 in 2020, countries worldwide faced significant concerns and challenges. Various 
studies have emerged utilizing Artificial Intelligence (AI) and Data Science techniques for disease detection. 
Although COVID-19 cases have declined, there are still cases and deaths around the world. Therefore, early 
detection of COVID-19 before the onset of symptoms has become crucial in reducing its extensive impact. 
Fortunately, wearable devices such as smartwatches have proven to be valuable sources of physiological data, 
including Heart Rate (HR) and sleep quality, enabling the detection of inflammatory diseases. In this study, we 
utilize an already-existing dataset that includes individual step counts and heart rate data to predict the probability 
of COVID-19 infection before the onset of symptoms. We train three main model architectures: the Gradient 
Boosting classifier (GB), CatBoost trees, and TabNet classifier to analyze the physiological data and compare their 
respective performances. We also add an interpretability layer to our best-performing model, which clarifies 
prediction results and allows a detailed assessment of effectiveness. Moreover, we created a private dataset by 
gathering physiological data from Fitbit devices to guarantee reliability and avoid bias.

The identical set of models was then applied to this private dataset using the same pre-trained models, and 
the results were documented. Using the CatBoost tree-based method, our best-performing model outperformed 
previous studies with an accuracy rate of 85% on the publicly available dataset. Furthermore, this identical pre-
trained CatBoost model produced an accuracy of 81% when applied to the private dataset. You will find the source 
code in the link: https://github.com/OpenUAE-LAB/Covid-19-detection-using-Wearable-data.git.
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2022. However, 0.9 is still a high number, which means 
there is a good chance that one infected person will infect 
another [4].

The primary issue that drives our research is identi-
fying COVID-19 infections in the early stages, ideally 
before the onset of clinical signs. Identifying sick people 
as soon as possible is critical to protect their health and 
stop the spread of the disease within communities.

Traditional COVID-19 diagnostic techniques, like anti-
gen testing and Polymerase Chain Reaction (PCR), have 
shown efficiency in validating infections; however, these 
techniques failed in preventing the disease from spread-
ing since they can’t detect the disease in its early stages 
[5]. That was the reason behind the extensive research 
from researchers worldwide to find strategies to act 
before symptoms appear. As a result, Different COVID-
19 detection methods have been studied, including bio-
metric data, chest X-ray imaging, and blood biomarkers 
tests for early COVID-19 infection diagnosis and death 
prediction [6, 7].

Wearable devices and biometric data have recently 
become essential to solving many medical and physi-
ological problems [8, 9]. Unlike conventional testing, the 
use of wearable devices offers continuous access to real-
time physiological data, which can be used in the early 
detection of asymptomatic and pre-symptomatic cases 
of COVID-19 [10–12]. More than 100,000 Fitbit users 
across the US and Canada have joined a study launched 
by Fitbit to build an algorithm that detects COVID-19 
before symptoms appear. The study produced findings 
that ensure the credibility and possibility of using physi-
ological data to detect COVID-19 early, helping to lower 
infection rates [13, 14]. The study finds that an infected 
person’s resting heart rate consistently increases an aver-
age of five to seven days before the onset of the symp-
toms. In addition, the person’s breathing rate ordinarily 
crests on day two of symptom onset but generally stays 
higher than usual for up to three weeks after symptom 
onset.

According to [14], there is a well-established correla-
tion between Heart rate variability (HRV) and inflam-
matory conditions, where dramatic reductions in HRV 
were linked with subsequent rises in C-Reactive Protein 
(CRP) [15]. On the other hand, many studies show that 
CRP, a nonspecific inflammatory marker, has an adverse 
connection with HRV; hence, it can be used as a prog-
nostic indicator to predict the onset of an inflammatory 
response associated with Covid-19 [16]. Also, according 
to studies, sleep disturbances are a common symptom 
for individuals with an acute COVID-19 infection [17]. 
Where 45% of COVID-19 patients suffer from depres-
sion, 47% suffer from anxiety, and 34% suffer from sleep 
difficulties, according to [18, 19]. Moreover, sleep dis-
turbances such as insomnia have been related to an 

increased risk of depression and inflammation [20]. Steps 
count and physical activities, in general, are affected by 
this disease. Given the clinical traits of COVID-19 [21], 
infected individuals required to stay in bed cannot carry 
out regular physical exercise or engage in routine daily 
tasks. The above studies show helpful links between 
Covid-19 infection and simple physiological metrics such 
as HR, step count, and Sleep quality to detect different 
diseases, including COVID-19.

Looking into the solutions proposed by the previous 
work to detect Covid-19, we found that most of these 
solutions lack at least one of the following features, 
detecting the disease in the early stages at least one or 
two days before the symptoms appear. And model gener-
alization means testing the model on external data other 
than the one we trained it on. Those two features will 
make the model reliable, accurate, and ready to go into 
the industry.

Building on this foundation, our goal is to extend the 
applicability of our model beyond a single dataset to 
increase its reliability by introducing a strategy that uses 
the concept of transfer leaning to train the AI model on 
one extensive dataset and then test the same model on 
another external dataset. This method will increase the 
model generalization. To identify the disease in its early 
stages and eliminate its spreading, we decided to use bio-
metric data, considering that it will be the first to change 
even before the symptom’s onset. Our research critically 
examines the relationships that exist between COVID-
19 infection and the steps count and heart rate (HR) 
using cross-evaluation techniques to test the model on 
an external dataset. These correlations offer crucial new 
information about the early identification of COVID-19.

Furthermore, an advanced and cutting-edge approach 
known as explainable AI (XAI) was employed to provide 
transparent and interpretable insights into the decision-
making process of AI systems. This encompassed factors 
such as the quantity and significance of features, tech-
niques for preprocessing data, the influence of diverse 
models, and the overall effects that these factors exerted 
on the outputs of the models. Offering explanations and 
justifications for the outcomes will add trust to the AI 
model from both the developer’s and end user’s points of 
view.

Our approach combines Explainable Artificial Intel-
ligence (XAI) technology with physiological data to 
implement the early detection of COVID-19 and over-
come the delay problem caused by other traditional test-
ing techniques. What highlights our work from prior 
studies is that we introduce the concept of cross-evalu-
ation through transfer learning techniques, enabling the 
model’s adaptability and consistent performance across 
multiple datasets. The model is trained using DNN Tab-
Net and custom CatBoost classifiers on a public dataset 
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during this process. To test the model’s reliability and 
generalization ability, we validated the model using a pri-
vate dataset different from the training data. Additionally, 
our solution incorporates XAI technology to improve the 
system’s transparency and reliability.

The rest of our paper is structured as follows: In the 
next section, we discuss the related work done in the 
same field, and later we discuss the data preparation and 
resources. Section four sets out our methodology, includ-
ing each model’s overall method and implementation 
design. Section five discusses our experimental approach 
and results. Finally, in section six, we conclude our work 
with a summary and a discussion of future work.

Related work
Even though the pandemic started more than two years 
ago, vaccination rates still differ significantly between 
nations since some countries find it challenging to get 
enough vaccine doses. Unfortunately, there is currently 
no confirmed treatment for Covid-19, which emphasizes 
how crucial it is to continue detecting disease cases and 
eliminating its spreading.

In this section, we’ll look more closely at the various 
applications of AI technology for controlling and locating 
viruses. By utilizing multiple data sources, such as blood 
test samples, clinical data, physiological data, and medi-
cal imaging, scientists and specialists are experimenting 
with several approaches to detect COVID-19 early.

A detailed overview was done by the authors in [22] 
that discusses the different data types in COVID-19 
detection using deep learning and machine learning. 
They have included the used data processing and the 
methodology for each study. They have also discussed 
the available dataset for this specific task. Many types 
of inputs were included in the review, such as CT scans, 
X-rays, cough sounds, MRIs, ultrasound, and clinical 
markers.

Image-based solutions
Medical imaging such as X-ray and CT scans have been 
widely used to detect the coronavirus. Authors in [23–
38]and [39] have used x-ray image data to predict and 
diagnose COVID-19.

Ozdemir et al. [23] proposed using Electrocardiogram 
(ECG) data to diagnose Covid-19 automatically using 
deep learning techniques. Hexaxial mapping pictures 
are produced, and features are extracted using the Gray-
Level Co-Occurrence Matrix (GLCM) approach. Their 
approach achieved 96.20% accuracy and an f-score of 
96.30%.

The research conducted by Kaya & Gürsoy [38] used a 
3616-sample dataset for detecting covid-19 using X-ray 
images. They proposed a novel fine-tuning mechanism 
for COVID-19 infection detection and applied it to a 

deep transfer learning model. Their best model with the 
novel fine-tuning approach achieved 97.61% accuracy 
and reduced more than 81.92% of the total fine-tuning 
operations.

In [40], the authors used a CNN model with 17 con-
volution layers that achieved 98.08% accuracy for binary 
classification and 87.02% for multi-class classification. 
They used a dataset developed by Cohen JP composed 
of images shared by researchers with different illnesses. 
When the study was written, there were 127 x-ray images 
of patients diagnosed with COVID-19 in the database.

The authors in [25] used a public dataset of chest 
images divided into three classes: normal, pneumonia-
infected, and COVID-19-infected. They used two CNN 
layers and five max-pooling layers to train their model. 
They obtained three sets of results: one based on the 
original dataset, one with a dataset restructured using the 
Fuzzy technique, and one with a dataset combined using 
the Stacking technique. COVID-19 data were classified 
with 100% accuracy, whereas Normal and Pneumonia 
photos were classified with 99.27% accuracy.

The reference authors [26] used a public access data-
set with 5,216 images. They used an Inception Recurrent 
Residual Neural Network (IRRCNN) and a NABLA-3 
network model for classification and segmentation tasks. 
They used x-ray and CT images to achieve COVID-19 
testing accuracy of 84.67% and 98.78%, respectively.

The authors in [41] use a convolution neural network 
with a strong structure that fits the dataset and the pur-
pose of the model. They combine five publicly available 
data repositories to source their x-ray datasets, ending 
with 13,975 CXR images. They obtained 93% accuracy 
using the COVID-Net model.

Duong et al. [35] used the EfficientNet and MixNet 
algorithms to detect Covid-19 using X-ray images and 
CT- scans. They have also used transfer learning to make 
the approach more efficient. Their algorithm obtained 
more than 95% accuracy with all the experiments.

Similarly, authors in [36] used an optimization tech-
nique called Particle Swarm to automatically fine-tune 
the deep learning network. Their approach yields an 
accuracy of 93.9%.

Although X-ray data shows good performance and very 
accurate results in detecting the lung disorders caused by 
Corona virus, it still has many drawbacks. The imaging 
solution is inefficient for long-term tracking and moni-
toring and impractical for early diagnosis. Moreover, 
obtaining the required imaging equipment in numerous 
healthcare facilities can be challenging, and conducting 
a tomographic study can be pretty costly. Furthermore, 
the equipment exposes patients to relatively high levels 
of ionizing radiation. The disinfection process for the 
CT equipment and the examination room typically takes 
around 15 min between patients [42].
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Physiological data based solutions
Another AI-based solution has emerged using Blood 
test samples, gene data, and clinical data, including 
symptoms, age, etc. Authors in [43] and [44] used blood 
samples to detect the disease. Their approach gets an 
F1-score of 78%, and they have also explained their 
results. Similarly, Yagin et al. [45] have used classical 
machine learning methods with gene expression data to 
detect corona virus in individuals. They have used LAME 
and SHAP to explain their results.

On the other hand, authors in [46, 47], and [48] have 
used symptom data to detect the virus. Thet used various 
AI algorithms to obtain the results. IoT technology has 
also been used to remotely detect COVID-19 cases and 
engage in early warnings, such as in papers [49, 50], and 
[51].

The authors in the paper [49] used real-time symp-
tom data from users of wearable device sensors to detect 
COVID-19 in the early stages. With the help of the 
Internet of Things and machine learning techniques, 
the authors could identify potential cases of COVID-19 
with over 90% accuracy. The paper proposed a complete 
detection system using a dataset of 14,251 confirmed 
COVID-19 cases from the COVID-19 Open Research 
Dataset (CORD-19) repository, from data collection and 
processing to develop the machine learning models and 
AI. They compared the performance of five different ML 
models.

R. et al. [52] also suggested using IoT technology with 
data from wearable sensors to predict the occurrence 
of COVID-19. They collected 238 data samples through 
wearable sensors and IoT technology. All data was 
received through a cloud server, with 30 samples labeled 
as outliers and eliminated, and the remaining 208 sam-
ples were used for the research. The data included many 
biometric parameters to detect the disease, including 
temperature sensors, heart rate monitors, and respiratory 
rates. The sensors analyzed the physiological information 
and transmitted the signals to an ARDUINO control-
ler, which sent the data from the wearable sensor to the 
cloud server.

In this paper [53], the authors used wearable device 
data from Stanford University labs to build a model using 
deep neural network techniques. LSTM algorithm has 
been used to construct the model. They considered 25 
patients with COVID-19 and 11 patients with other ill-
nesses. They preprocess the data using a window of size 
8. They achieved an average precision score of 0·91, a 
recall score of 0·36, and an F-beta score of 0·79.

Miller et al. [54] suggested a way to detect the SARS-
CoV-2 virus before the onset of the symptoms using 
respiratory rate reading. They collected Respiratory 
rate, resting heart rate (RHR), and heart rate variability 
(HRV) using the WHOOP strap for 271 individuals. They 

have trained a gradient-boosting classifier model. Their 
approach correctly detected 20% of COVID-19-positive 
individuals before the onset of symptoms and 80% of 
COVID-19-positive cases by the third day of symptoms.

In a study conducted by M. Gadaleta et al. [55] between 
March 25, 2020, and April 3, 2021, to show the rela-
tionship between heart rate variability and COVID-19, 
38,911 individuals enrolled and shared their physiological 
data. The authors claimed to obtain an AUC of 0.78 when 
they excluded self-reported symptoms. They used deci-
sion trees to prove the concept [55].

Similarly, authors [56] have concluded that prediction 
using dynamic physiological data may be advantageous 
for early infection outbreak warning; however, it has 
some limitations. The authors used a massive dataset col-
lected using Huami devices. The data set includes RHR, 
activity, and sleep length [56].

Abir et al. [57] also used physiological data from wear-
able devices, including heart rate and step count, to 
detect Covid-19. The authors used a Long Short-term 
Memory Variational Autoencoder (LSTM-VAE)-based 
anomaly detection framework. Their system predicts 25 
out of 25 patients during the infectious period and 80% of 
the participants during the pre-symptomatic stage [57]. 
Similarly, authors in [58] and [59] have used body tem-
perature readings to detect Covid-19 and track the dis-
ease severity.

Natarajan et al. [60] have also used physiological data 
such as respiration rate, heart rate, and HRV. Their 
approach obtained an AUC of 0.77.

In [61], the authors focus on the statistical aspects 
of the collected data. In the first part of the paper, the 
authors describe the data they collect using smart-
watches from 5262 users. They focus on the participants 
who wear Fitbit devices.

Many papers use XAI with biosensor data for differ-
ent applications. In [62], authors use SHAPLY values to 
elucidate the models’ predictions and explore the impact 
varying features exert on the models’ outputs. Similarly, 
Mankodiya et al. [63] use LIME explainable AI models 
for fall detection applications on wearable devices. Raza 
et al. [64] also use XAI with federated learning incorpo-
rated into the heart health monitoring system.

Previous research primarily focused on using image 
data for COVID-19 detection, which proved impracti-
cal for early-stage diagnosis. Notably, Otoom et al. [49] 
achieved a good accuracy of 92%, but their results were 
solely based on symptomatic data, lacking numerical 
or biosensor information. Consequently, detecting the 
disease after symptom onset fails to address the crucial 
issue of controlling its spread. In contrast, our proposed 
method directly addresses early diagnosis of COVID-
19 to mitigate transmission rates. Given the widespread 
usage of wearable devices, such as smartwatches, in the 
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community, our methodology holds practical implemen-
tation potential. On the other hand, as mentioned earlier, 
many studies have used wearable data to detect COVID-
19 disease, proving the data’s significance in promptly 
detecting the virus [51–57].

Previous studies have covered the detection of covid-19 
using various data types and inputs. Many studies have 
used a combination of chest X-ray and CT scans, deep 
learning, and CNN neural networks. On the other hand, 
some research also considered using different types of 
data such as blood samples, genome, and symptom data 
that the patients themselves record. Related to our proj-
ect, some researchers also considered using physiological 
data from wearable devices and IoT sensors.

However, looking into these studies, researchers 
face many challenges, especially in the data prepara-
tion. When using medical images such as X-rays and 
CT scans, noise and incompleteness are the leading 
challenges [22]. When it comes to genome data usage, 
because the accuracy of existing tests relies on specific 
sections of the genome, the rapid mutation rate that hap-
pened to the genome presents hurdles for diagnostic pro-
cedures. Since diagnostic procedures rely on the analysis 

of genetic changes that frequently alter as the infection 
develops, mutations raise the possibility of false-negative 
results [22].

However, our proposed solution is based on the physi-
ological data from accurate wearable devices, with no 
noise and incompleteness. Moreover, we are using cross 
evaluation method to double-check our model after the 
training is done using an external dataset. Our model will 
be ready for external testing on similar data from differ-
ent devices in this case. Opposite to the recent studies, 
our solution proposes detecting COVID-19 early based 
on the provided physiological data and an explainable AI 
approach.

Table 1 compares the most closely related studies con-
sidering different parameters and characteristics, includ-
ing evaluating their data, model-building techniques, 
targeted tasks, and their model interpretation and valida-
tion efforts. This table is a valuable resource to highlight 
our research project’s achievements and how it addresses 
existing gaps to overcome recent limitations.

Looking at the table, we noticed a few critical find-
ings that serve our study. Notably, cross-validation was 
not used in the earlier research to confirm the model’s 

Table 1  Comparison table of related work: Techniques, Datatype, Tasks, and General information
Ref Datatype Task Technique Early 

detection
Ex-
plain-
able 
AI

Cross-Evaluation Gen-
eralize 
the 
model

 [44] Blood test Samples COVID-19 diagnosis Classical ML ✖ ✓ ✖ ✖
 [31] X-ray images COVID-19 diagnosis CNN + SVM ✖ ✖ ✖ ✖
 [45] gene expressions identifying COVID-19 

gene biomarkers
XGBoost ✖ ✓ ✖ ✖

 [47] Symptoms and basic 
information

COVID-19 diagnosis CNN-LSTM ✖ ✓ ✖ ✖

 [33] X-ray images COVID-19 diagnosis CNN + SVM ✖ ✖ ✖ ✖
 [34] X-Ray images and CT 

scan
COVID-19 Multi-Class 
Classifier

Transfer Learning (DenseNet-121, 
VGG-16 and ResNet18.)

✖ ✖ ✖ ✖

 [38] X-ray images COVID-19 diagnosis Deep Transfer Learning ✖ ✖ ✖ ✖
 [23] Electrocardiogram 

(ECG) data
COVID-19 diagnosis Deep Learning ✖ ✖ ✖ ✖

 [48] Temperature and heart 
rate readings

COVID-19 diagnosis NA ✓ ✖ ✖ ✖

 [43] blood test samples Rapid COVID-19 diagnosis gradient boosting decision tree 
(GBDT)

✖ ✓ ✖ ✖

 [49] Symptoms dataset COVID-19 diagnosis Decision Table algorithms ✓ ✖ ✖ ✖
 [53] Wearable Device data COVID-19 Early diagnosis Long Short-Term Memory Net-

works-based autoencoder (LAAD)
✓ ✖ ✖ ✖

 [54] respiratory rate 
readings

COVID-19 Early diagnosis NA ✓ ✖ ✖ ✖

 [55] Wearable Device data COVID-19 Early diagnosis Gradient boosting ✓ ✓ ✖ ✖
 [57] Wearable Device data COVID-19 Early diagnosis PCovNet, a Long Short-term 

Memory Variational Autoencoder 
(LSTM-VAE)

✓ ✖ ✖ ✖

 [60] Wearable Device data COVID-19 Early diagnosis Neural Network ✓ ✖ ✖ ✖
Our 
work

Wearable Device data COVID-19 Early diagnosis Tree-Based model with LIME 
explainable technique

✓ ✓ ✓ ✓
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dependability following the training and testing stages. A 
primary restriction of this is recognized in works like the 
ones in references [45, 53], and [47]. Furthermore, while 
most studies employed Explainable Artificial Intelligence 
(XAI) to explain their findings using medical images as 
inputs, the authors in [55] diverged by utilizing a stan-
dard feature selection method to demonstrate feature 
importance.

Another important finding from Table  1 is that most 
studies relied on blood tests and X-rays taken after the 
disease was confirmed, indicating that their primary 
focus was on diagnosing COVID-19 after symptoms 
appeared, such as [31, 33, 34]. On the other hand, studies 
[53–55], and [57] have adopted a different strategy and 
focused on the early diagnosis of SARS-CoV-2, which 
represents a clear departure in methodology and empha-
sis from the field’s general tendency.

In contrast to the above-mentioned studies, our 
research introduces an approach of cross-evaluation, uti-
lizing transfer learning techniques to create a generalized 
model that can be tested on diverse data sources. The pri-
mary goal of this research is to identify the most effective 
model characterized by the highest scores in evaluation 
matrices. which aims to create a detection system capa-
ble of determining the Covid-19 disease during its initial 
phases, preventing the uncontrolled transmission of the 
disease before symptoms manifest.

This study contributes in the following ways:

 	• We propose an approach utilizing Deep Learning 
and tree-based machine learning techniques to 
detect SARS-CoV-2 (COVID-19) at least two days 
before symptom manifestation.

 	• Employing transfer learning to generalize the model 
and ensure its reliability across various biosensor 
datasets from different sources is a primary 
limitation in most related work.

 	• We built a new dataset for COVID-19 detection 
based on wearable data using Fitbit smartwatches to 
validate our model.

 	• We incorporate Explainable AI technologies 
to elucidate the model’s behavior and highlight 
important information about the overall data.

Methodology
Dataset
In this study, we use two datasets; one is a public data-
base collected by Stanford University labs [65]. The other 
is a private dataset we collected from Covid-19 patients 
to validate our model and test its reliability. Many fea-
ture extraction techniques have been introduced in this 
article [66]; however, feature extraction is not an essential 
step in our methodology since our data is simple tabular 

data obtained from smart watches and biometric sensors. 
On the other hand, the procedure for obtaining the read-
ings from the sensors is explained in detail in the dataset 
section.

Public dataset
A study was conducted by the research group from Stan-
ford University Genetics Department [67] on a cohort 
of participants who completed questionnaires about the 
symptoms, diagnosis, and severity of respiratory diseases. 
The study included information from 4642 smartwatch 
participants, 3325 of whom are Fitbit users. However, 
only 32 COVID-19-infected Fitbit users had data avail-
able throughout their symptoms and diagnosis period 
[67]. The Stanford dataset, accessed publicly in [68], 
includes 73 healthy persons, 15 patients with various 
respiratory disorders, and 32 participants with COVID-
19 infection. A specific ID recognizes each of them dur-
ing the data collection. Only data on COVID-19-positive 
participants were included in this research project, con-
centrating on the pre-symptomatic detection of COVID-
19 infection [53]. Heart rate and step counts are provided 
for these participants and information on sleep stage and 
duration.

Stanford dataset consists of three groups. The first 
group included participants whose reading was abnormal 
during the symptom onset. The second group included 
ten participants for whom researchers from Stanford 
University detected the disease within 28 days of symp-
tom onset. Group three had six users whose infection 
periods could not be easily seen using the researcher’s 
algorithm.

In our work, we used information from 11 participants 
from the first group to build our dataset since these par-
ticipants have complete and consistent data. The final 
dataset consists of 427,866 data readings divided into 
two classes: 214,022 normal readings and 213,843 abnor-
mal readings. The reading includes heart rate (HR), step 
count, and sleep data.

Private dataset
A team of researchers led by the University of Sharjah in 
collaboration with the University of Coimbra (Portugal), 
Arab American University, and Palestine Ahliya Univer-
sity, conducted a longitudinal study. The study involved 
28 individuals (with ongoing recruitment efforts) who 
were asked to wear Fitbit-Versa 2 smartwatches to gather 
data such as Heart Rate (HR), physical activity (e.g., step 
count), and sleep patterns. The primary objective was to 
employ Artificial Intelligence techniques to analyze their 
physiological and physical activity data for early detec-
tion and monitoring of COVID-19 infection, poten-
tially before the onset of symptoms. To ensure ethical 
compliance, the research group strictly adhered to the 
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University of Sharjah’s ethical committee’s guidelines for 
non-invasive data collection from human subjects, which 
were fully met. The initial step involved contacting volun-
teers through email, personal networks, and social media 
posts, followed by obtaining their consent, which speci-
fied that the collected data would be used exclusively for 
research purposes and would not be shared or sold to any 
third party for commercial reasons.

The study hosting platform was created by Dublin 
City University (AthenaCX, DCU). This private platform 
enables researchers to quickly create and deploy mobile 
experience sampling apps (iOS and Android), wearable 
data collection devices, and integrated consenting. The 
participants were instructed to download the Athena 
CX platform, where our application (WeDetect) was 
made available. They were then instructed to synchronize 
their Fitbit smartwatches with the Athena CX platform. 
WeDetect included two types of subjective question-
naires: the first collected demographic information, vac-
cination history, and disease history (if applicable), while 
the second was a time-triggered survey with questions 
related to symptoms and self-assessment. Additionally, 
the application recorded the wear time of the wearable 
devices and the response time to the questions. Notably, 
the study also obtained binary results (positive/negative) 

of COVID-19 PCR or Antigen rapid tests, along with 
their respective dates.

Figure  1, the process of data collection, is explained 
in detail. Firstly, the participants will be asked to down-
load the AthenaCX application, where they find the 
WeDetect study. Subsequently, their data is transmitted 
from the Fitbit app through the AthenaCX servers. This 
data retrieval process occurs on a weekly basis, with the 
acquired data being stored in our local servers located at 
UOS.

A balanced dataset was constructed by integrating 
data from 11 participants into a single file. The dataset 
had 106,847 readings, including heart rate (HR), steps, 
and sleep data, classified as 50,596 abnormal and 56,251 
normal readings. Figure 2 shows How each participant’s 
data is distributed among the two labels, the healthy and 
infected patients 9J4JJ9, 9FLHL2, 9J4QLN, 9FLMLP, 
9FLK8F, 9FLDY4, 9FLNW7, including both readings 
before and during they got infected with Covid-19. In 
contrast, patients 9FLNW8, 9FLNPK, 9FL9 × 7, and 
9FLFRM have readings only during the Covid-19 sick-
ness period.

In our work, we used the private dataset to test the 
model reliability and observe how it would perform in an 
external dataset other than the training data.

Fig. 2  Participants’ reading information for the private dataset

 

Fig. 1  Data acquisition process
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Data preprocessing
We applied data processing and feature engineering tech-
niques to both datasets to conduct training and testing, 
streamlining the learning process and enhancing per-
formance. The data is initially collected in the shape of 
a timestamp column along with the heart rate and step 
count features, and in our case, we need to work with the 
data in the time domain, not the frequency domain; that’s 
why there was no need to use any type of signal transfor-
mations technique such as Fast Fourier Transform (FFT).

As depicted in Fig. 3, the initial steps involve inspecting 
data consistency and formatting. Subsequently, we com-
puted the individual heart baseline values for each par-
ticipant. Following that, we examined our sample pool 
for missing data and, if identified, as well as removed any 
outliers. In the final stages, we expanded the feature set 
through feature engineering.

Dataset consistency
The biometric dataset Stanford lab provided is not syn-
chronous regarding the timestamp for the heart rate and 
the step count. To solve this issue, we ensured that each 
minute’s heart rate data and the matching step count data 
shared a common timestamp field.

We also checked for missing or NaN (Not-a-Number) 
values to preserve the data quality. Although the percent-
age was not high, we eliminated them with less than 1% 
missing values from the dataset.

Heart rate baseline
The heart rate baseline varies among individuals and is 
influenced by gender, age, and activity levels.

A couple of steps were applied to find the heart rate 
baseline for each participant in the study. This baseline 
reading is the reference point for determining a threshold 
value that defines a normal heart rate reading.

We gather data by averaging heart rate readings taken 
during five typical days to compute the heart rate base-
line. These readings are collected explicitly during day-
time hours, shortly after the participant awakens, from 
10:00 am to 10:00 pm. This process allows us to establish 
a personalized baseline for each participant, crucial for 
accurate heart rate analysis and anomaly detection [69].

Removing outliers by filtering and resampling
Wearable device data is usually produced as one-minute 
interval readings, including heart rate and step count 
measures throughout the monitoring session. When we 
studied this data, we saw abnormalities that lasted for 

just a minute or two, following which the data resumed 
a steady trend for the rest of the day. Based on the study 
[70], a high heart rate with a value of more than 100 beats 
per minute (bpm) or a low value with less than 30 bpm 
that lasts for one or two minutes are considered outliers 
and can be removed, especially when this sudden read-
ing comes in the normal period. According to the study 
[71], any value that falls outside the 60–100 bpm range is 
defined as an outlier.

Two distinct methods were used to reduce the effects 
of these sudden variations:

a.	 Rolling Averages: We computed a rolling average for 
each hour to transform the dataset into an hourly-
based format. Because the numbers are averaging 
over an hour, this method reduces the impact of 
outliers and sudden variations.

b.	 Filtering for Normal Labels: We removed readings 
from the date when a normal label was determined 
within the healthy period when both the step count 
and heart rate values were higher than specific levels. 
We did not include observations when the heart 
rate exceeded 100 and the step count was zero. This 
choice is consistent with a study cited in [70], which 
states that the range of resting heart rates for all ages 
is 30 to 100 beats per minute.

Data normalization
To enhance our data’s consistency and prepare it for anal-
ysis, we normalized it using the StandardScaler method, 
which was determined to be the most suitable choice 
after conducting multiple experiments. Normalizing the 
data yielded substantial enhancements in the model’s 
performance and led to a notable increase in accuracy 
scores.

The StandardScaler method is a standardization tech-
nique provided by Scikit to learn how to standardize the 
data, which ensures that the variables have a mean of 
roughly 0 and a standard deviation of approximately 1. 
Standardizing the data in general and using Standard-
Scaler enhances the model performance, according to the 
following study [72].

Feature engineering
To enhance the performance of our model, we imple-
mented a final step involving the refinement of the pro-
vided datasets. This process involved the expansion of 

Fig. 3  Data processing steps for both datasets
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two additional features beyond the existing heart rate and 
step count measurements. Specifically, we introduced:

 	• Heart Rate Variability (HRV): Heart rate variability 
(HRV) is the difference in time between successive 
heartbeats, and it’s measured in milliseconds [73]. 
The autonomic nervous system, a basic nervous 
system component, controls this variation (ANS) 
[74]. It operates in the background, automatically 
controlling essential functions like respiration, 
digestion, blood pressure, and heart rate. It’s also 
known as RR-Interval. We derive this feature from 
the HR using the formula: RR-interval = 60/HR.

 	• Heart rate difference (HRD): This feature is based on 
an individual’s heart rate baseline. HRD is calculated 
by taking the absolute difference between the 
heart rate reading at each minute and the baseline 
threshold specific to the user. The baseline threshold 
is computed as the average heart rate over five days 
when the individual was in a healthy state during the 
morning period, characterized by zero steps. The 
HRD value is calculated using Eq. 1.

	 HRD = |HRt −HRBaseline| � (1)

Equation 1 Heart Rate difference formula.
By introducing these additional features, we aimed 

to enrich the dataset and provide our model with more 
information for improved performance. HRV captures 
heart rate variations, while HRD reflects deviations from 
the individual’s heart rate baseline, which are valuable in 
analyzing and detecting anomalies in heart rate patterns.

Artificial intelligence models
There are many AI models in this paper that we consider 
using due to their high performance on our data and due 
to their algorithm and structure. Since we are dealing 
with tabular data such as heart rate and step count, we 
decided to use two strong tree-based models since they 
outperform classical machine learning and deep learn-
ing on normal numerical datasets [75]. On the other 
hand, we have also used a deep learning algorithm struc-
tured for tabular and numerical data, and we decided to 
include its results.

CatBoost classifier
An improved version of XGBoost, categorical boosting, 
or CatBoost, is used in our research to implement the 
classification task. CatBoost is a beneficial tree-based 
model recognized for its precision, quickness, and ease 
of handling complicated data [76]. Reference [77] empha-
sizes that some of the best methods for handling tabu-
lar data and its complexities are generally boosting tree 

algorithms. Effective handling of categorical features 
is one of CatBoost’s main advantages. It processes cat-
egorical data directly using a method known as “ordered 
boosting,” which expedites training and enhances model 
performance. To accomplish this, we encode the categor-
ical features while maintaining the categories’ inherent 
ordering.

CatBoost seeks to learn a function F(x) that predicts 
the target variable y given a training dataset including 
N samples and M features, where each sample is repre-
sented as (x_i, y_i). X_i is a vector of M features, while y_i 
is the corresponding target variable. Equation 2 describes 
the math behind the CatBoost algorithms:

	
F (X) = F0 (X) +

M∑

m=1

N∑

i=1

fm (Xi)� (2)

Equation  2 The prediction formula for the CatBoost 
classifier.

Where:
 

F(X) is the final predicted output.
F0(X) is the baseline prediction.
M is the total number of trees in the structure.
N is the total number of samples in the dataset.
Fm(Xi) represents the prediction of the mth tree for the 

ith training sample.
According to the equation, the initial guess F0(x) and 

the forecasts of each tree fm(xi) for each training sample 
are added up to get the overall prediction F(x). The sum-
ming process is done for every tree (m) and every train-
ing sample (i).

 
TabNet
TabNet, on the other hand, is one of the most robust 
structures for tabular data, and it uses a deep neural net-
work. TabNet was developed by researchers at Google 
Cloud AI, and in this study, Pytorch implementation 
was used [78]. The model employs a sequential atten-
tion mechanism to decide which features to consider at 
each decision point [79]. This model is especially good at 
handling structured data with many features, making it 
helpful in predicting prices, classifying items, or making 
business decisions. It is a suitable compactor for the tree-
based structured data models [80].

Figure 4 shows the full architecture of the TabNet algo-
rithm, including the encoder and decoder, as well as the 
feature transformer and the attentive transformer.

TabNet classifier consist of two parts, encoder and 
decoder. The encoder consists of a feature transformer, 
an attentive transformer, and feature masking. The fea-
ture selection mask offers understandable details about 
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the model’s functioning for every step, and the masks can 
be combined to produce global feature important attri-
bution [78].

On the other hand, the decoder consists of a feature 
transformer block at each step [78].

Gradient boosting
The last model used in our research is gradient Boost-
ing. The Gradient Boosting model is a powerful machine 
learning technique that builds a robust predictive model 
by combining the predictions of multiple weak models. 
It does this by iteratively correcting errors made by the 
previous models, resulting in an accurate final prediction 
[81].

The algorithm is based on Eq. 3, which represents the 
predicting process to minimize the loss L:

	
F0 (x) = argmin

n∑

i=1

L(yi, γ)� (3)

Equation 3 Gradient Boosting algorithmic formula.
Where argmin means we are searching for the value γ 

that minimizes ΣL(yi,γ), our loss function.

XAI techniques
Explainable Artificial Intelligence (XAI) aims to make 
AI systems more transparent and intelligible to humans. 
Its primary objective is to develop AI models and algo-
rithms that explain how and why they arrived at their 
conclusions [82]. In this work, we utilized XAI to analyze 
local points and ascertain the significance of each attri-
bute for each prediction. We used the Local Interpretable 
Model-Agnostic Explanations (LIME) to characterize our 
models.

The LIME algorithm, or “Local Interpretable Model-
Agnostic Explanations,” is a technique for decomposing 
complex machine learning models [83]. To do this, it esti-
mates how a model produces predictions for a specific 
instance (such as a single data point) and provides a con-
cise, intelligible explanation for those predictions. Please 
find Eq.  4, which represents the LIME formula used to 
explain the predictions:

	 ξ = argming∈GL (f, g, πx) + Ω (g)� (4)

Equation 4 The explanation term for a specific prediction 
made by a complex machine learning model.

Using the provided equations, LIME tries to find the 
best interpretable function, g, that minimizes this loss 
while considering the regularization term Ω(g) [84]. This 
interpretable function, g, provides a simple and under-
standable explanation for the complex model’s prediction 
for a specific data point [84].

Implementation design
Our experiment is based on cross-evaluation using the 
transfer learning concept to test the model’s reliability 
by testing it on a different dataset. Different tuning tech-
niques were applied to initialize the model, which we will 
discuss in detail later in this section.

All experiments were performed with a 70%, 15%, 
and 15% ratio of training, testing, and validation for 
the Stanford dataset. In contrast, we used the full pri-
vate dataset to test the models after fully training them 
and get the checkpoints. An early stopping callback was 
implemented using the validation data with a patience 
parameter of 10 epochs. So, the training will automati-
cally terminate when the validation loss does not improve 

Fig. 4  TabNet Architecture from the official TabNet paper [78]
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after ten epochs. K- fold Cross-validation was used with 
k equal to ten, where K is the number of groups in which 
the data will be split [85]. Fine-tuning was applied to the 
parameters for each algorithm, which is explained in 
detail in the next paragraph.

Figure  5 explains the methodology followed in this 
research paper. As a first step, model training, and initial 
testing were done using the public dataset from Stanford 
labs. An explainable AI technique was used to analyze 
the model predictions and highlight the important infor-
mation from the input data. The checkpoints were saved 
and reused for testing purposes on the private dataset.

Since our main focus is to build a strong tree-based 
model to predict the event of Covid-19 from the basic 
physiological data, the CatBoost model is used without 
any time-series model. Find below Fig. 6, which explains 
our methodology focus:

As shown in the above figure, the model will be capable 
of predicting the event of Covid-19 using only the physi-
ological parameters without the need for the timestamp 
feature, which makes the model practical and reliable. 
Since in a real-life scenario, only physiological data will 
be provided without looking at the time flow.

Parameters tuning
Before using the models, we try to fine-tune the param-
eters for each model to optimize model performance by 

finding the right balance between underfitting and over-
fitting. It systematically adjusts model parameters, learn-
ing rates, and architecture to enhance generalization to 
unseen data.

The CatBoost produced good results, and we found it 
an excellent approach to dealing with large-scale tabular 
data. In the successful experiment, we set the learning 
rate to 0.3 and the depth to 8. We choose the value after 
many initial trials and observe the result in each run. We 
iterated 350 times to get the best result. We set the evalu-
ation matrix to AUC and obtained the confusion matrix 
parameters [86, 87].

For the TabNet implementation, we set the learning 
rate to 2e-2 with the Adam optimizer. We set the maxi-
mum epochs to 80 while considering the early stop func-
tion with patience equal to 15.

The grid search optimizer is applied to dynamically find 
the optimal parameters to train the classifier for the Gra-
dient Boosting implementation.

Table 2 presents the parameters that require fine-tun-
ing, each associated with a specific range of values. These 
values from Table 2 are then utilized as inputs for the grid 
search optimizer, facilitating the discovery of the optimal 
combination of values that results in the highest model 
performance.

Among the parameter choices outlined in Table  2, 
the following values were determined as optimal for 

Fig. 6  Tree-based model methodology

 

Fig. 5  Overall methodology diagram
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boosting: ‘n_estimators’: 200, ‘learning rate’: 0.1, ‘max 
depth’: 8, and ‘min_samples_split’: 1000.

Models testing and validation
We employed a transfer learning approach to validate our 
research and assess its reliability. This process involved 
saving the weights of the four models after successfully 
training using the Stanford dataset. Subsequently, these 
saved model checkpoints and weights were utilized in a 
separate experiment involving a private dataset collected 
by UOS University. The fundamental idea behind trans-
fer learning is to leverage the knowledge gained during 
the training on the Stanford data and apply it to predict 
results for a completely new dataset.

The workflow encompassed several key steps:
To confirm the reliability of our findings, we employed 

a transfer learning approach. After the four models were 
successfully trained on the Stanford dataset, their weights 
were saved as an h5 file. After that, these model check-
points and weights were used in a separate experiment 
using a unique dataset obtained by UOS University. The 
fundamental idea behind transfer learning is using the 
skills learned during training on the Stanford dataset to 
predict outcomes for a completely new dataset.

The procedure comprised several important steps:

Training and model saving
We kept the model checkpoints and their associated 
weights after finishing the models’ first training on the 
Stanford dataset. The information learned throughout 
the training process was contained in these preserved 
models.

Preparing the private dataset
We preprocessed the private dataset that UOS collected 
to guarantee compatibility and promote a smooth trans-
fer of information. The data had to be shaped to fit the 
Stanford dataset’s feature pool and format.

Loading pre-trained models
The pre-trained models were put into the experimental 
setup with their saved checkpoints and weights. With the 
new dataset, these models were prepared for prediction 
tasks.

Testing with new dataset
The loaded pre-trained models were then employed to 
predict outcomes for the UOS University’s private data-
set. This testing process aimed to evaluate how well the 
knowledge gained from the Stanford dataset could be 
transferred to a distinct dataset. The results of this testing 
phase were crucial in assessing our models’ reliability and 
generalization capabilities to detect COVID-19 based on 
physiological data.

Next, the pre-trained models were loaded and used to 
forecast results for the private dataset owned by UOS 
University. This testing procedure aimed to determine 
how successfully the knowledge achieved by the Stanford 
dataset might be applied to a different dataset. In evaluat-
ing the dependability and generalizability of our models 
to identify COVID-19 based on physiological data, the 
testing phase findings were critical.

In conclusion, transfer learning enabled us to effec-
tively use the knowledge we had gained from training on 
one dataset to generate predictions on an entirely differ-
ent dataset, demonstrating the resilience and adaptability 
of our models in the context of COVID-19 identification.

Experiment setup and results
Our approach focuses on applying deep learning and 
boosting tree models, specifically GB and CatBoost from 
boosting trees and TabNet from deep learning. The Stan-
ford dataset, which provides a large amount of patient 
data, was used to train and evaluate these models. We 
used transfer learning by utilizing computed weights for 
predictions to guarantee the models’ applicability to a 
wider range of physiological data outside the training set.

For this research, we conducted our experiments on a 
computing system and software environment equipped 
with the following specifications:

 	• GPU: NVIDIA GeForce RTX 2070 Super with 
Max-Q Design.

 	• RAM: 64 GB DDR4.
 	• Processor: Intel(R) Xeon(R) W-10,855 M CPU @ 

2.80 GHz 2.81 GHz.
 	• Operating System: Windows 10.
 	• Programming Language: Python 3.8.
 	• Machine Learning Frameworks: [TensorFlow, Scikit-

learn]

Models performance
Table  3 presents the results of the evaluation metrics—
accuracy, precision, recall, and F-score—using three dif-
ferent models. The table is separated into two sections: 
the first part displays the findings from the public data-
set used for training and testing, and the second part 

Table 2  Parameters range for the GC optimizer
Parameter Values range
Number of estimators [50, 100, 200, 300, 400]
Learning Rate [1.0, 0.5, 0.1, 0.01]
Max depth  [6, 8]
Minimum sample split [500, 1000]
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displays the results from the private dataset’s validation 
procedure.

Most models did well when testing with the Stanford 
dataset. The main challenge was obtaining close evalua-
tion scores when testing the model on the private dataset, 
as it was not part of the training process.

Discussion
The applied algorithm has merits and demerits concern-
ing performance, complexity, and model reliability. High 
detection accuracy and early disease detection are two 
important advantages of the provided approach. We also 
introduced a clear explanation for our models, ensur-
ing their reliability and model interpretability. The use of 
wearable device data makes the approach user-friendly, 
as obtaining this data type is relatively easy and inexpen-
sive compared to other data types, such as X-ray images, 
CT scans, genetic data, etc.

On the other hand, the model’s performance might be 
impacted by concerns about the security of data from 
wearable devices. Moreover, the lack of physiological 
matrices such as SPO2, breath rate, and skin temperature 
makes the model less unfailing. Having access to this data 
will increase the performance.

In Fig. 7, we can see a big difference between the per-
formance of the public and private datasets using the 
TabNet algorithm, with an accuracy of 78% and 47%, 
respectively. Same with Gradient Boosting, with around a 
33% difference in accuracy between the private and pub-
lic datasets. On the other hand, the Catboost algorithm 
obtained relatively excellent results on both datasets with 
less than a 7% difference between both accuracies. This 
makes it the most reliable model as it reaches the experi-
ment’s primary objective.

To prove the above discussion, T-tests were applied 
to compare the performance of each model among the 
two datasets and ensure the significance of the Cat-
Boost model among the three suggested models since it 
performs well on both datasets. T-tests are a statistical 
analysis used to compare the means of two groups and 
ascertain whether any observed differences are statisti-
cally significant or simply due to chance.

Table 4 provides the results of T-tests with a 0.05 sig-
nificance level conducted to determine if there is a sta-
tistically significant difference in the performance of the 
models between the two experiments.

As shown in the table, the test failed to reject the 
null hypothesis for both models, TabNet and Gradient 

Table 3  Result for the public and private datasets using the four 
algorithms
Dataset Models Accuracy Precision Recall F-score
Public 
Dataset

TabNet 0.78 0.62 0.91 0.73
CatBoost 0.85 0.83 0.81 0.81
Gradient 
Boosting

0.81 0.83 0.81 0.81

Private 
Dataset

TabNet 0.47 0.99 0.54 0.69
CatBoost 0.81 0.79 0.77 0.78
Gradient 
Boosting

0.48 0.60 0.51 0.55

Fig. 7  Comparison between accuracies for the two datasets using the four models
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Boosting; this proves that there is a difference in perfor-
mance between applying the results on the public and the 
private data; however, the test rejected the null hypoth-
esis for the CatBoost model. Assuming that the null 
hypothesis is that there is a difference in performance 
between the public dataset and the private dataset using 
the same model,

The confusion matrix below in Fig.  8 shows the dis-
tribution of the false and true predictions regarding one 
reading instance using the Stanford Laba dataset. We can 
see that most of the wrongly predicted data points fall 
under the false negative, which means the model predicts 
19% of the instances as healthy, given that these instances 
were infected.

Figure  9 represents the confusion matrix that shows 
how the model performed after loading it to test it on an 
external dataset that was not trained on.

The confusion matrix shows that the pre-trained model 
performs well after testing it with private data.

Figure 10 shows how the heart rate readings were dis-
tributed among the two classes. At first, we can see from 
the plots that the actual and predicted output have the 

same heart distribution among classes, which assures the 
model’s reliability. Looking into the second plot, we can 
observe that the model put a threshold on the heart rate 
reading.

In Table  5, we present a comparative analysis of our 
research alongside existing methods for COVID-19 
detection. This table summarizes key findings from 
related papers. It specifies the data used for each article, 
their technique to build their model, the overall accuracy 
and F-score, and the XAI method used to explain the 
model outcome.

Compared to the above-summarized research papers, 
our study focuses on physiological data. It utilizes the 
CatBoost technique to detect COVID-19 early, achiev-
ing an accuracy of 85% and an F-score of 0.81. What sets 
our research apart is the application of transfer learning 
for model generalization and the adoption of the LIME 
XAI method to explain our model’s outcomes. This com-
bination of techniques and methodologies demonstrates 
our unique approach to COVID-19 detection, allow-
ing for robust results and Interpretability in our model’s 
predictions.

The researchers in [31, 33, 35, 36, 38, 43, 47], and [49] 
utilize both images and symptoms data, indicating their 
emphasis on diagnosing COVID-19 after the onset of 
symptoms. This is evident from their reliance on symp-
tom data and X-ray images obtained post-confirmation 
of the disease. This finding explains their high results. 

Table 4  T-test results for the models to prove the difference in 
performance between the two experiments
Model p-value Result
TabNet 0.640 Fail to reject the null hypothesis
CatBoost 0.001 Reject null hypothesis
Gradient Boosting 0.071 Fail to reject the null hypothesis

Fig. 8  Confusion matrix for the CatBoost model using the public dataset
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Table 5  Comparative analysis of our results against existing methods
Paper Data type Technique Accuracy F-score Early Detection XAI method
 [31] X-ray image CNN 0.99 0.98 ✖ ✖
 [33] X-ray image CNN 0.99 NA ✖ ✖
 [38] X-ray image MobileNet-based CNN 0.97 0.97 ✖ ✖
 [43] images Ensemble learning 0.80 NA ✖ LIME
 [35] CT images Deep Neural Network 0.95 0.938 ✖ ✖
 [36] images PSO + CNN 0.93 0.93 ✖ Grad-CAM
 [47] Symptoms data CNN-LSTM 0.85 0.85 ✖ LIME
 [49] Symptoms data SVM 0.92 0.93 ✖ NA
 [53] Physiological Data LSTM NA 0.79 ✖ NA
 [55] Physiological Data Gradient Boosting 0.78 NA ✖ SHAP
 [57] Physiological Data LSTM NA 0.89 ✖ NA
 [60] Physiological Data Logistic Regression Model 0.77 NA ✓ ✖
Our Physiological Data CatBoost 0.85 0.81 ✓ LIME

Fig. 10  Heart rate reading distribution among labels

 

Fig. 9  Confusion matrix for the CatBoost model using the private dataset
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However, detecting the disease in its early stages is more 
crucial than diagnosing it.

Moreover, our method stands out as the top-per-
forming approach when compared to other studies that 
utilized physiological data to early detect Covid-19;. 
However, authors in [57] obtained an f-score of 0.81, on 
the other hand, the recall on their work is 0.3, signifying 
a substantial number of false negatives – instances where 
the model failed to correctly identify actual positive 
cases. In contrast, our method achieved a notably higher 
recall of 0.81, indicating that we successfully captured a 
larger proportion of the actual positive cases, resulting in 
fewer false negatives.

Explainable AI discussion
Utilizing the LIME method, we gained insights into the 
model’s behavior at a local level, allowing us to under-
stand the specific features contributing to both correct 
and incorrect predictions. Figure  11 presents four dis-
tinct test cases representing true-positives, true-nega-
tives, false-positives, and false-negatives, respectively.

Subfigure (a) in Fig. 9 denotes a true positive, meaning 
that the model correctly predicted and identified an indi-
vidual as having COVID-19. The strong confidence of the 
model is shown in the high probability of 0.99 assigned 
to this prediction. Decision rules considered steps, heart 
rate (HR), and heart rate variability (HRV); the HR was 
63.00, the steps were larger than 0.00, and the HRV was 
less than or equal to 0.73. Together, these guidelines 
allowed for accurately identifying a COVID-19 case using 

the individual’s physiological data. Similarly, with a high 
probability of 0.93, the model accurately predicted the 
lack of COVID-19 in the subject, as shown in subfigure 
(b).

In the False negative (d), the model incorrectly pre-
dicted that a person did not have COVID-19 when they 
did. The predicted probability was moderate at 0.57. The 
decision rules involved steps less than or equal to 0.00, 
HR greater than 82.00, and HRV less than or equal to 
0.73. Despite the incorrect prediction, the probability 
was not exceptionally high, similar to the false positive (c) 
scenario.

To conclude this experiment, we can say that the high 
prediction probabilities in True Positives and True Nega-
tives indicate robust and accurate predictions. However, 
the model’s performance is not flawless, as the False Posi-
tives and False Negatives demonstrated.

These cases highlight instances where the model made 
incorrect predictions, possibly leading to unnecessary 
concerns (False Positives) or missed diagnoses (False 
Negatives), which is happening due to the absence of 
SPO2 and oxygen saturation features, which we acknowl-
edge as a limitation in our study, as discussed in the fol-
lowing section.

The lower probabilities in these cases reflect the mod-
el’s reduced confidence. Therefore, while the model excels 
in many instances, there is room for improvement, espe-
cially in reducing the False Positives and False Negatives 
rate to enhance its overall accuracy and reliability.

Fig. 11  LIME output for four prediction cases, True positive, Tru negative, False positive, and False negative represented as a, b, c, d, respectively
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Conclusion and future work
The primary goal of this research is to identify the most 
effective model characterized by the highest scores in 
evaluation matrices. This aims to create a detection sys-
tem capable of determining the Covid-19 disease during 
its initial phases, preventing the uncontrolled transmis-
sion of the disease before symptoms manifest.

Transfer learning gives our model extra value since 
it could be tested and validated on any external data-
set coming from wearable devices, making it a powerful 
solution for research and experimentation. AI models, 
including Deep Neural Network and Tree-Based mod-
els, were implemented to achieve the project target, 
and results were recorded and compared. Our classi-
fier is based on deep neural networks designed through 
experimentation.

The comparison concludes that Tree-based models 
outperform Deep learning models, with accuracies of 
0.78, 0.85, and 0.81 using TabNet, CatBoost, and Gradi-
ent Boosting, respectively. Using XAI, we were able to 
highlight the critical features of each label and analyze 
the individual predictions to give better insight into the 
model. Our methodology was verified on a private data-
base that we collected using the same smartwatch devices 
to avoid bias, and it resulted in a comparable perfor-
mance when using the CatBoost algorithm. Moreover, 
the XAI technique was also introduced to ensure model 
reliability and explain the results.

Oxygen saturation and SPO2 levels were not accessible 
to developers from the Fitbit application; we consider 
this a limitation since those two features are significant 
to detect COVID-19, and adding them will significantly 
improve the work.

More related features could be added to the feature 
set, such as oxygen saturation, breath rate, and skin tem-
perature, to increase the model’s reliability. The approach 
could be implemented and studied in various disease 
detection since our features are very general and could 
be used for any disease diagnosis. Moreover, time series 
techniques and deep learning techniques will be consid-
ered for further exploration along with the traditional 
machine learning techniques. Furthermore, new methods 
will be introduced to enhance accuracy and performance.

Conducting classical statistical methods to explain the 
models instead of using XAI techniques will also be an 
excellent point to have as a baseline.
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