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Abstract

Objective Suicide is a complex and multifactorial public health problem. Understanding and addressing the various
factors associated with suicide is crucial for prevention and intervention efforts. Machine learning (ML) could enhance
the prediction of suicide attempts.

Method A systematic review was performed using PubMed, Scopus, Web of Science and SID databases. We aim

to evaluate the performance of ML algorithms and summarize their effects, gather relevant and reliable information
to synthesize existing evidence, identify knowledge gaps, and provide a comprehensive list of the suicide risk factors
using mixed method approach.

Results Forty-one studies published between 2011 and 2022, which matched inclusion criteria, were chosen as suit-
able. We included studies aimed at predicting the suicide risk by machine learning algorithms except natural lan-
guage processing (NLP) and image processing.

The neural network (NN) algorithm exhibited the lowest accuracy at 0.70, whereas the random forest demonstrated
the highest accuracy, reaching 0.94. The study assessed the COX and random forest models and observed a mini-
mum area under the curve (AUC) value of 0.54. In contrast, the XGBoost classifier yielded the highest AUC value,
reaching 0.97. These specific AUC values emphasize the algorithm-specific performance in capturing the trade-off
between sensitivity and specificity for suicide risk prediction.

Furthermore, our investigation identified several common suicide risk factors, including age, gender, substance abuse,
depression, anxiety, alcohol consumption, marital status, income, education, and occupation. This comprehensive
analysis contributes valuable insights into the multifaceted nature of suicide risk, providing a foundation for targeted
preventive strategies and intervention efforts.

Conclusions The effectiveness of ML algorithms and their application in predicting suicide risk has been controver-
sial. There is a need for more studies on these algorithms in clinical settings, and the related ethical concerns require
further clarification.
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Highlights

- Understanding various factors associated with suicide is crucial for prevention and intervention efforts.
- Machine learning (ML) could enhance the prediction of suicide attempts.

- The neural network (NN) algorithm exhibited the lowest accuracy of 0.70.

- The random forest demonstrated the highest accuracy for suicide prediction.

Keywords Machine learning, Risk prediction, Suicide prevention, Meta-analysis, Meta-synthesis

Introduction

Suicide is a global concern recognized by the World
Health Organization (WHO), with a life lost to suicide
every 40 s, making suicide prevention a pressing prior-
ity worldwide [1]. This form of violent death not only
brings personal tragedy but also poses a significant threat
to communities’ socio-psychological well-being and
stability [2]. While suicide is a complex phenomenon
influenced by multiple factors, behavioral, lifestyle, and
clinical, can significantly contribute to an elevated risk
of suicide [3]. For example, substance use can be con-
sidered a significant factor for suicide within the behav-
ioral category [4]. Job and financial problems serve as
important examples of lifestyle-related suicide risk [5].
Additionally, mental disorders are crucial clinical fac-
tors associated with suicide risk [6]. Early identification
of risk factors is crucial in predicting suicide [7, 8]. The
prevalence of suicide is exceptionally high among adoles-
cents and young adults, specifically those aged 15 to 44,
it is not a universal phenomenon [9]. Research indicates
that, in some countries the lower risk of suicide among
older individuals may be due to their enhanced resilience
and greater capacity to cope with adversity, potentially
reducing the likelihood of suicidal behavior [10, 11]. The
other common factor can be gender. Some studies have
revealed that gender differences in suicide rates indicate
that men are more likely to die by suicide. However, this
remains controversial because each gender is influenced
by many other biological and environmental factors [12].
Suicide imposes financial burden on the healthcare sys-
tem. For example, in Canada, New Zealand, and Ireland,
the estimated direct and indirect costs of each suicide
are approximately 443,000, 1.1 million, and 1.4 million
pounds, respectively [13—-15]. A comprehensive review
of the works by these authors leads us to the conclusion
that suicide is a global issue. Consequently, it is impera-
tive for countries worldwide to collaborate in addressing
this concern [1]. There is a growing interest in utilizing
machine learning (ML) techniques for predicting suicide
risk to address the issue. ML is a combination of statisti-
cal and computational models that can learn from data
and improve through experience [16]. It is categorized
into two main types: supervised and unsupervised. In

supervised learning, the model is trained on labelled
databases; however, in unsupervised learning, the model
relies on unlabeled databases [17]. Both supervised and
unsupervised algorithms can be utilized for suicide pre-
diction depending on the type of database and the nature
of the prediction.

Research by Walsh, Ribeiro, and Franklin (2017) dem-
onstrated the superior performance of ML over conven-
tional methods in accurately identifying suicide attempts
[9]. ML methods have gained prominence due to their
ability to extract valuable insights from diverse datasets
and organize data efficiently [10, 11]. While ML shows
promise in predicting suicide events, it is vital to con-
sider the varied outcomes produced by different ML
algorithms. The study conducted by various research-
ers suggests that while there have been notable scientific
advancements in leveraging digital technologies, such as
ML algorithms to prevent suicide attempts and identify
at-risk individuals, there are still limitations in terms of
training, knowledge, and the integration of databases
[18-20]. Current suicide risk assessment methods heav-
ily rely on subjective questioning, limiting their accuracy
and predictive value [21]. As such, this study aims to sys-
tematically review previous research that has applied ML
methods to predict suicide attempts and identify patients
at high risk of suicide. The primary objectives are to eval-
uate the performance of various ML algorithms and sum-
marize their effects on suicide. Additionally, the study
aims to identify significant variables that serve as more
effective suicide risk factors.

Materials and methods

Search strategy and study selection

We adhered to the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines to
systematically identify, select, and assess relevant studies
for inclusion in our review. Our search strategy focused
on PubMed, Scopus, Web of Science and SID databases,
and there were no limitations on the publication date,
ensuring comprehensive coverage of the literature. The
project was initiated on June 1, 2022, and concluded on
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August 8, 2023, with a focus on two domains: machine
learning (ML) and suicide.

To capture relevant studies, our search strategy incorporated
keywords such as “self-harm’; “self-injury’; “self-destruction’
“self-poisoning’, “self-mutilation; “self-cutting’; “self-burning’,
“suicid*” Additionally, we explored using artificial intelligence
and ML techniques to predict suicidal attempts by employing
“AND” and “OR” operators. The management of literature was
facilitated through Endnote X7.

The study encompassed two primary outcomes: first,
identifying the most effective ML algorithms based on
their outcome measures, and second, identifying influ-
ential risk factors for predicting suicide. These outcomes
were instrumental in achieving a comprehensive under-
standing of the field and informing our research objectives.

Inclusion & exclusion criteria
Inclusion criteria were applied to identify relevant studies
for our review. The following criteria were considered:

1. Population: Studies that included participants from
various age groups, including pediatrics, geriatrics,
and all-age populations, were included.

2. Language: Only studies published in the English lan-
guage were included.

3. Methods: Studies employing ML methods to predict
suicide were included.

4. Publication format: Studies published as journal arti-
cles, theses, and dissertations were included.

5. Study design: Various study designs, including pro-
spective, retrospective, retrospective cohort, case-
cohort, case-control, cohort, diagnostic/prognostic,
longitudinal, longitudinal cohort, longitudinal pro-
spective, prognostic, prospective cohort, retrospec-
tive, retrospective cohort, and randomized control
trial studies, were considered for inclusion.

Exclusion criteria were applied to select relevant stud-
ies for our analysis. Studies were excluded if they met the
following criteria:

1. Population: Studies focusing specifically on military
personnel and veterans were excluded. Including
military personnel and veterans in our analysis could
introduce unique variables and considerations related
to their distinct healthcare needs, access to services,
and experiences. For example, military personnel and
veterans often have specific healthcare requirements
stemming from their service-related experiences.
These may encompass a range of issues, including
physical injuries sustained during deployment, expo-
sure to hazardous environments leading to unique

(2024) 24:138

Page 3 of 29

health challenges, and complex medical histories
shaped by their military service.

Moreover, their access to healthcare services can dif-
fer significantly from that of the general population.
To maintain the homogeneity of our study popula-
tion and to ensure the relevance and applicability of
our findings to the specific context of hospitals, we
have opted to exclude this subgroup.

2. Social media-based studies: Studies aiming to predict
suicide attempts using ML among adults who posted
or searched content related to suicide on internet
platforms such as Twitter, Instagram, and Google
were excluded.

3. Natural language processing (NLP) and image pro-
cessing methods: Studies utilizing NLP and image
processing techniques for predicting suicide attempts
were excluded.

4. Publication type: Conference papers, reviews, letters
to editors, book chapters, and commentary papers
were excluded from the analysis.

By applying these inclusion and exclusion criteria, we
aimed to select studies that align with the objectives and
focus of our research.

Data collection process

Data extraction was conducted using Microsoft Excel 2016
spreadsheet. The following information was extracted from
each included study:

1. Study title: The title of the research article.
Authors: The names of the authors involved in the
study.

3. Year of publication: The year in which the study
was published.

4. Country of study: The geographical location where
the study was conducted.

5. Population: The target population or participants
involved in the study.

6. Type of study: The research design employed in the

study.

7. Sample size: The number of participants included
in the study.

8. Study objective: The main objective or aim of the
study.

9. Suicide risk factors: Factors or variables considered
in predicting suicide risk.

10. ML models: The specific ML models used in the
study.

11. Outcome measures: Various performance metrics
used to evaluate the models, including area under
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the curve (AUC), sensitivity, specificity, accuracy,
false negative rate, false positive rate, true positive
rate, negative predictive value, positive predictive
value, precision, and recall.

Quality assessment

The quality of the included articles was assessed using
the Mixed Methods Appraisal Tool (MMAT 2018) fol-
lowing the search process. We adopted MMAT’s five sets
of criteria to evaluate the quality of each type of study
included in our analysis, namely qualitative, randomized
controlled, nonrandomized, quantitative descriptive,
and mixed methods studies [8]. This rigorous assess-
ment process allowed us to evaluate the included studies’
methodological quality and ensure our findings’ reliabil-
ity and validity.

Data analysis methods

During the quantitative phase, the extracted data were
analyzed using STATA 14.1 statistical software to con-
duct meta-analytic procedures. We applied the Free-
man-Tukey double arcsine transformation to estimate
the pooled prevalence of study outcomes and their cor-
responding 95% confidence intervals (CI). This trans-
formation was also utilized to stabilize variances when
generating the Cls. A random-effects model based on
DerSimonian and Laird’s method was employed in the
pooled data collection to account for between-study vari-
ability. This model incorporated the variability using the
inverse-variance fixed-effect model [22, 23].

In the qualitative phase, the extracted data was
imported into MAXQDA 20 software to facilitate meta-
synthesis procedures. This critical stage involved cod-
ing the suicide risk factors from our final studies based
on various themes or categories, such as demographic
(demographic factors, such as age, gender, marital sta-
tus), clinical and behavioral (certain behaviors, like
impulsivity, self-harm, or aggression, and clinical factors
involve mental health diagnoses and conditions), lifestyle
(encompass aspects of an individual’s daily life, including
habits and routines), laboratory and biomarkers (these
could include genetic markers, hormonal imbalances),
and questionnaires (the use of standardized scales and
questionnaires helps quantify and measure psychological
factors associated with suicide risk). Through this pro-
cess, we aggregated the coded data to identify common
suicide risk factors across all the studies, allowing for a
comprehensive understanding of the topic.

Publication bias
We researched various languages and databases to
address study, citation and database biases. We enhanced
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our search strategy, resulting in the identification of 7529
publications. This abundance of sources highlights the
prevalence of multiple-citation publications within our
dataset. Given the common occurrence of publishing
study results in similar or consecutive articles, we utilized
EndNote software to identify duplicates and mitigate the
risk of multiple publications and bias.

Results

Figure 1 presents the PRISMA flow chart, which provides
a concise review process overview. The initial search
yielded 7,529 published studies. After removing 569
duplicate records, we screened the titles and abstracts
of the remaining 6,624 papers. Based on this screen-
ing, 5,624 papers were excluded as they did not meet
the inclusion criteria. Subsequently, the full texts of the
remaining 369 studies were thoroughly assessed to deter-
mine their eligibility for inclusion in the analysis. Among
these, 328 studies were deemed ineligible as they did not
meet the predetermined criteria. Ultimately, 41 studies
were selected for the meta-analysis and meta-synthesis,
meeting the quality assessment criteria. Overall, the
selected studies demonstrated satisfactory quality.

The included studies had sample sizes ranging from 159
to 13,980,570, as reported in previous research [24, 25]. The
mean sample size of (Mean=549,944.51) refers to the aver-
age number of participants across the studies included in
our analysis. This value is important as it indicates the gen-
eralizability of the findings. Larger sample sizes contribute
to more robust and reliable results, allowing for broader
applicability of our conclusions.

Standard deviation of (SD=2,242,858.719), reflects
the variability in sample sizes observed across the indi-
vidual studies. Some studies may have significantly larger
or smaller sample sizes compared to the mean, resulting
in a wide dispersion of values. This variability influences
the heterogeneity of the overall findings and underscores
the need to consider the diversity in sample sizes when
interpreting the results. The median of sample size, rep-
resenting the central value, is 13,420. Most of these stud-
ies were conducted in the United States and South Korea,
with cohort and case-control designs being the most
employed study designs. The participants in these studies
predominantly represented the general population. The
outcome measurement criteria of the data collection pro-
cess and its results are presented below.

Pooled prevalence of ML outcomes

Additional details of the studies included can be found
in Table 1 (after reference section). Note that the statis-
tical analysis revealed that the negative predictive value
and the false positive rate did not show a significant
difference, with a p-value greater than 0.05. To identify
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Fig. 1 PRISMA flow diagram for the selection of studies on ML algorithms used for the purpose of suicide prediction

single study influence on the overall meta-analysis, a
sensitivity analysis was performed using a random-
effects model and the result showed there was no evi-
dence for the effect of single study influence on the
overall meta-analysis.

Accuracy

Page 5 of 29

Accuracy refers to the ability of ML models to differenti-
ate between health and patient groups [56] correctly. Out
of the 41 final studies, 13 studies reported information on
accuracy. The reported accuracy rates varied across the
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Author (year)

Delgado-Gomez, 2011
Delgado-Gomez, 2012
Barros, 2017 ¢

Bhak, 2019

Hill, 2019

Cho, 2020 *
Ge, 2020

Rongxin Zhu, 2020
Cho, 2021 ¢
Choi, 2021 *
Kim, 2021

Edgcomb, 2022 *
Haroz, 2022 ¢

Overall (I*2=99.99%, p = oﬁ>
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Prevalence% (95% CI)

—-

0.80 (77.41, 82.79)
0.83 (80.97, 85.96)
0.85 (0.31, 1.84)

*— 0.89 (83.54, 93.16)

——

. 0.78 (77.22, 79.56)

0.77 (0.74, 0.80)
- 0.70 (67.99, 72.14)
—*—  0.84(77.61, 89.20)

0.83 (0.75, 0.92)
0.94 (0.87, 1.01)

* 0.94 (93.40, 94.47)
0.84 (0.79, 0.89)

0.81 (0.67, 0.98)
37.51 (26.45,49.27)

[ I
-50 0
Fig. 2 Panel A. Accuracy of the machine learning models; N studies = 13

studies as indicated in Panel A of Fig. 2, with the lowest
being 0.70 for NN in the study conducted in [30], and the
highest being 0.94 for the random forest in the study con-
ducted in [32]. The overall pooled prevalence of accuracy
was 0.78 ((I? = 56.32%; 95% CI: 0.73, 0.84), Table 2.

AUC

The area under the curve (AUC) as a metric used in this
study to compare the performance of multiple classifiers
[26]. In our analysis, a total of thirty-two studies reported
AUC values as indicated in Fig. 3, Panel B. Balbuena
et al’s (2022) study reported the lowest AUC of 0.54,
based on the COX and random forest models. On the
other hand, Choi et al’s (2021) reported the highest AUC
of 0.97, using the XGBoost classifier. The pooled preva-
lence of AUC across the studies was estimated to be 0.77
(I = 95.86%; 95% CI: 0.74, 0.80), Table 2.

Precision

Precision is a measure that determines the number of
true positives divided by the sum of true positives and
false positives [27]. In our analysis, three studies reported
precision values as depicted in Fig. 4, Panel C. Two stud-
ies reported the highest precision rate of 0.93. The first
study, conducted by Choi et al., utilized the XGBoost

50

100 150

classifier, and the second study, by Kim et al. (2021),
employed a random forest model. On the other hand,
the lowest precision rate of 0.86 was documented in the
Delgado-Gomez et al. (2016) study, which used a deci-
sion tree model. The pooled prevalence of positive pre-
dictive value was estimated to be 0.91 (12 = 0.001%; 95%
CI: 0.85, 0.98), Table 2.

Positive predictive value

Positive predictive value (PPV) represents the proportion
of true positive cases among all positive predictions [27].
Among the studies included in our analysis, six studies
reported PPV values as depicted in Fig. 5, Panel D. The
PPV varied across the studies, ranging from 0.01 in Cho
et al’s study conducted in 2020 and 2021, which utilized
a random forest model, to 0.62 in Navarro’s (2021) study,
also employing a random forest model. The pooled prev-
alence of PPV was estimated to be 0.10 (12 = 97.02%; 95%
CI: 0.03, 0.21), Table 2.

True positive rate

The true positive rate (TPR), also known as sensitivity,
represents the proportion of actual positive cases cor-
rectly identified by the model [27]. In our analysis, only
one study conducted by Ballester et al. (2021), utilized
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Table 2 The list of different ML outcomes, along with the pooled estimates for those outcomes that have sufficient records

ML performances References Pooled % (95% Cl)

AUC 32 studies: (Setoyama et al,, 2016; Barak-Corren et al., 2017, 2020; Etter et al, 2017; Choi et al,, 2018, 2021, 0.77 (0.74, 0.80)
2021: Melhem et al., 2019; McKernan et al,, 2019; Cho et al,, 2020, 2021; Forkmann et al,, 2020; Ge et al., 2020;
Machado et al,, 2020; Zheng et al., 2020; Van Mensa et al,, 2020; Su et al,, 2020; Alexopoulos et al.,, 2021; Bai
etal, 2021; Coley et al, 2021; Kim et al,, 2021; Adams et al, 2021; Berkelmans et al,, 2021; Gradus et al, 2021,
Jiang et al, 2021, Harman et al,, 2021; Navarro et al, 2021, Balbuena et al,, 2022; Beni Edgcomb et al,, 2022,
2022: Haroz, E. E. et al,, 2022; Miranda et al., 2022)

Accuracy 13 studies: (Delgado-Gomez et al., 2011, 2012; Barros et al,, 2017; Bhak et al,, 2019; Hill et al, 2019, Choetal, — 0.78 (0.73, 0.84)
2020,2021; Ge et al, 2020; Zhu et al, 2020; Choi et al,, 2021; Kim et al,, 2021, Beni Edgcomb et al,, 2022; Haroz,
E Eetal,2022)

Sensitivity 15 studies: (Delgado-Gomez et al, 2012, 2016; Barak-Corren et al., 2017, Barros et al,, 2017; DelPozo-Banos 0.69 (0.60, 0.78)
etal, 2018; Hill et al, 2019; Melhem et al,, 2019; Cho et al., 2020, 2021; Ge et al,, 2020; Machado et al., 2020;
Choietal, 2021; Navarro et al,, 2021; Beni Edgcomb et al, 2022; Haroz, E. E. et al,, 2022)

Specificity 15 studies: (Delgado-Gomez et al, 2012, 2016; Barak-Corren et al,, 2017; Barros et al, 2017; DelPozo-Banos 0.81(0.77, 0.86)

etal, 2018; Hill et al,, 2019; Melhem et al,, 2019; Cho et al., 2020, 2021; Ge et al., 2020; Machado et al., 2020;
Choietal, 2021; Navarro et al,, 2021; Beni Edgcomb et al.,, 2022; Haroz, E. E. et al,, 2022)

Positive predictive value 6 studies: (Cho et al, 2020, Machado et al., 2020; Van Mensa et al,, 2020; Cho et al, 2021, Navarro et al, 2021;  0.10 (0.04, 0.19)
Haroz, E. E. et al, 2022)

Recall 3 studies: (McKernan et al, 2019; Choi et al, 2021; Kim et al, 2021) 0.58 (0.15,1.29)
Precision 3 studies: (Delgado-Gomez et al, 2016; Choi et al,, 2021; Kim et al,, 2021) 0.91 (0.85, 0.98)
False negative rate 2 studies: (Cho et al, 2020; Haroz, E. E. et al,, 2022) 0.26 (0.24, 0.28)
True positive rate 1 study: (Ballester et al.2021) 0.77 (0.40, 1.34)
Author (year) Prevalence% (95% CI)
Daikli(Setoyama, 2016 . 0.88 (0.18, 2.56
Barak-Corren, 2017 .77 (0.76, 0.78
Etter, 2017 ’ 0.84 (0.50, 1.33
Choi, 2018 ® 0.69 (0.67, 0.71
Nadine M. Melhem, 2019 i 0.75 (0.25,1.75
DR. Lindsey C. McKernan, 2019 . 0.81 (0.64, 1.02
}gh(i(,l 2020 2020 * 0.83 (0.80, 0.86
orkmann, 0.65 (0.08, 2.33
Ge, 2020 "~ B 0.78 (0.44, 1.29
Cristiane dos Santos Machado, 2020 0.89 (0.83, 0.96
Le Zheng, 2020 % 0.78 (0.75, 0.82
Kasper van Mensa, 2020 0.83 (0.55,1.19
Chang Su, 2020 e 0.86 (0.77, 0.95
Barak-Corren, 2020 > 0.73 (0.72, 0.74
Alexopoulos, 2021 — 0.80 (0.10, 2.87
Bai, 2021 e 0.63 (0.02, 3.45
Cho, 2021 0.82 (0.74, 0.90
Chot, 2021 = 0.97 (0.90, 1.04
gh?i, 2% 21 - 0.88 (0.78, 0.99
oley, 1 0.82 (0.82, 0.83
Kim. 2021 =— 0.84 (0.65, 1.07
Adams, 2021 o 0.81 (0.68, 0.97
. Berkelmans, 2021 . 0.77 (0.75, 0.79
Gradus, 2021 0.90 (0.87, 0.94
.Il{lang, 2022 %) . e 0.73 (0.60, 0.88
arman, . 0.77 (0.62, 0.95
Marie C. Navarro, 2021 0.68 (0.34,1.21
Balbuena, 2022 * 0.54 (0.50, 0.57
Edgcomb, 2022 0.86 (0.72,1.02
Edgcomb, 2022 * 0.72 (0.68, 0.77
Haroz, 2022 0.84 (0.69, 1.01
Oshin Miranda, 2022 Q-.- 0.93 (0.84,1.03
Overall (I"2 =96.03%, p = 0.00) : 0.77(0.74, 0.80
M T T T ]
-2 0 2 4 6

Fig. 3 Panel B. AUC of the machine learning models; N studies = 32
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Author (year)

Delgado-Gomez, 2016

Choi, 2021

.

Kim, 2021

Overall (I°2 = 99.95%, p =

-

(2024) 24:138
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Prevalence% (95% CI)
~*0.86 (84.07, 88.64)
0.93 (0.86, 0.99)

0.93 (0.73, 1.17)

19.81 (2.74, 47.07)

f T
-50 0

Fig.4 Panel C. Precision of the machine learning models; N studies = 3
Author (year)

.

Cho, 2020

Cristiane dos Santos Machado, 2

50

100 150

Prevalence% (95% CI)

0.01 (0.00, 0.01)

0.07 (0.06, 0.10)

Kasper van Mensa, 2020

L

Cho, 2021

0.51 (0.30, 0.81)

0.01 (0.00, 0.02)

%0
Marie C. Navarro, 2021 E

——

Haroz, 2022 '

Overall (12 =97.68%, p = o.ﬁ>

0.62 (0.30, 1.13)
0.10 (0.06, 0.17)

0.10 (0.03, 0.21)

T T
-5 0

the gradient tree boosting model, reported the TPR as
depicted in Fig. 6, Panel E. The pooled prevalence of TPR
in this study was estimated to be 0.77 (95% CI: 0.40, 1.34),
Table 2.

Sensitivity

Sensitivity, also known as the true positive rate, measures
the proportion of actual positive cases correctly identi-
fied by the model (specified patient cases) [28]. In our
analysis, fifteen studies provided data on sensitivity as
illustrated in Fig. 7, Panel F. The sensitivity ranged from
0.43 in Navarro’s (2021) random forest study to 0.87 in

5
Fig. 5 Panel D. Positive predictive value of the machine learning models; N studies = 6

Delgado-Gomez et al’s (2016) decision tree study. The
pooled prevalence of sensitivity was estimated to be 0.69
(I? = 95.94%; 95% CI: 0.60, 0.78), Table 2.

Specificity

Specificity is a measure that identifies the proportion of
actual negative cases correctly identified by the model
[28]. In our analysis, fifteen studies reported specific-
ity rates as illustrated in Fig. 8, Panel G. The specific-
ity ranged from 0.63 in Melhem et al’s (2019) study
using logistic regression, to 0.90 in Barak-Corren et al’s
(2017) study using Naive Bayesian classifier. The pooled
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Author (year) ‘ Prevalence% (95% CI)

Ballester, 2021 t 0.77 (0.40, 1.34)

| T T : T T T

-5 0 5 1 15 2

Fig. 6 Panel E.True positive rate of the machine learning models; N studies = 1
Author (year) Prevalence% (95% CI)
Delgado-Gomez, 2012 E -~ 0.78 (75.39, 80.94)
Delgado-Gomez, 2016 E " 0.87 (85.01, 89.46)
Barak-Corren, 2017 * | 0.54 (0.53, 0.55)
Barros, 2017 * ! 0.71 (0.23, 1.64)
DelPozo-Banos, 2018 E ¢ 0.65 (64.17, 64.97)
Hill, 2019 : * 0.80 (79.05, 81.32)
Nadine M. Melhem, 2019 ! ™ 0.87 (84.56, 89.77)
Cho, 2020 . 0.74 (0.71, 0.77)
Ge, 2020 | - 0.70 (68.57, 72.70)
Cristiane dos Santos Machado, 2020 | 0.76 (0.70, 0.82)
Cho, 2021 ¢ - 0.60 (0.53, 0.67)
Choi, 2021 . ¢ 0.76 (75.83, 76.77)
Marie C. Navarro, 202 | 0.43 (0.17, 0.89)
Edgcomb, 2022 ! ¢ 0.78 (78.14, 78.56)
Haroz, 2022 ¢ | 0.75 (0.61, 0.91)
Overall (12 = 100.00%, p = m 33.46 (15.76, 53.99)

| T ' | T |

-50 0 50 100 150

Fig. 7 Panel F. Sensitivity of the machine learning models; N studies = 15

prevalence of specificity was estimated to be 0.81
(I = 80.31%:95% CI: 0.77, 0.86), Table 2.

Recall

Recall is a measure that determines the proportion of true
positive cases correctly identified by the model [27]. In
our analysis, three studies reported recall rates as depicted
in Fig. 9, Panel H, ranging from 0.11 in McKernan et al’s
(2019) study using bootstrapped L-1 penalized regression

to 0.95 in Kim et al’s (2021) study using random forest.
The pooled prevalence of recall was estimated to be 0.58
(12 = 98.43%;95% CI: 0.15, 1.29), Table 2.

False negative rate

False negative rate represents the proportion of actual
negative cases incorrectly identified by the model [29].
Two studies provided data on false negative rates,
with rates that were similar to each other as shown in
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Author (year) Prevalence% (95% CI)

Delgado-Gomez, 2012 ! ™ 0.87(84.58, 89.13)
Delgado-Gomez, 2016 0.86 (83.48, 88.13)
Barak-Corren, 2017 * | 0.90 (0.89, 0.91)
Barros, 2017 * ! 0.85 (0.31, 1.84)
DelPozo-Banos, 2018 i 0.82 (81.53, 82.18)
Hill, 2019 0.78 (77.11, 79.45)
Nadine M. Melhem, 2019 I 0.63 (59.25, 66.73)
Cho, 2020 * ! 0.77 (0.74, 0.80)

Ge, 2020 0.67 (64.91, 69.17)
Cristiane dos Santos Machado, 2020 I 0.88 (0.81, 0.94)
Cho, 2021 ¢ ! 0.83 (0.75, 0.92)
Choi, 2021 0.83 (82.98, 83.81)
Marie C. Navarro, 202" | 0.80 (0.43, 1.37)
Edgcomb, 2022 : 0.83 (82.95, 83.34)
Haroz, 2022 y : 0.82 (0.67, 0.99)
Overall (I"2=100.00%, p = m 34.54 (15.46, 56.67)

T T : T ]
-50 0 100 150
Fig. 8 Panel G. Specificity of the machine learning models; N studies = 15

Author (year) Prevalence% (95% CI)
DR. Lindsey C. McKernan, 2019~ i 0.11 (0.05, 0.21)
Choi, 2021 | 0.94 (0.87, 1.01)
Kim, 2021 L T 0.95(0.74, 1.19)
Overall (I*2 = 98.42%, p = 0.00) 58 (0.15,1.29)

[ T : 1

-1 0 2

Fig. 9 Panel H. Recall of the machine learning models; N studies = 3

Fig. 10, Panel I. These studies utilized the random for-
est and binary logistic regression models. The pooled
prevalence of the false negative rate was estimated to
be 0.26 (I = 0.001%:95% CI: 0.24, 0.28), Table 2.

Suicide risk factors

In our meta-synthesis analysis, we studied 41 studies in
which we identified 261 suicide risk factors. We imple-
mented a rigorous extraction process to identify the
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Author (year) Prevalence% (95% CI)
Cho, 2020 _ 0.26 (0.25, 0.28)
Haroz, 2022 i 0.25 (0.18, 0.35)
Overall (I*2=0.00%, p =0.00) @ 0.26 (0.24, 0.28)
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Fig. 10 Panel I. False negative rate of the machine learning models; N studies = 2

most significant risk factors. While some studies pre-
sented vast datasets with over 2500 entries of potential
risk factors, the focus was on extracting those factors
consistently cited as common and important indicators
of suicide risk across multiple studies [30, 31]. To ensure
robustness, we excluded risk factors reported less than
three times, resulting in the compilation of 55 frequently
occurring risk factors. We aimed to focus on more preva-
lent risk factors in the database to enhance the general-
izability of the findings to the broader population. Some
factors with lower frequencies can introduce noise in
the analysis, making it more challenging to identify true
patterns. The minimum threshold helped us filter out
less relevant factors. This decision was based on a focus
group session that included two psychiatrists and one
emergency physician. The focus group selected the most
common variables that were repeated more than three
times based on their scientific knowledge and experience.
These factors were categorized into five distinct catego-
ries in our study, as outlined in Table 3.

Discussion

This study employed a systematic review, meta-analysis,
and meta-synthesis approach to examine the pooled
prevalence of ML outcomes for predicting suicide and
provide a comprehensive list of suicide risk factors. The
intricate nature of suicide as a behavior is underscored
by a diverse array of risk factors, spanning clinical vari-
ables to lifestyle influences [32]. Our study adopted a
comprehensive approach, employing both qualitative
and quantitative methods. Additionally, the study was
limited to studies with prospective, retrospective, retro-
spective cohort, case cohort, case-control, cohort, diag-
nostic/prognostic, longitudinal, longitudinal cohort,

longitudinal prospective, prognostic, prospective cohort,
retrospective, retrospective cohort, and randomized
control trial designs due to the large number of studies
in the final stage, and to ensure methodological rigor.
Ultimately, 41 studies were selected for the meta-analy-
sis and meta-synthesis, meeting the quality assessment
criteria. Results revealed the neural network (NN) algo-
rithm with the lowest accuracy at 0.70, contrasting with
the random forest exhibiting the highest accuracy at 0.94.
Furthermore, the XGBoost classifier demonstrated the
highest Area Under the Curve (AUC) value, reaching an
impressive 0.97. These findings not only contribute to our
understanding of suicide risk factors but also highlight
the significance of methodological considerations and
algorithmic performance in predictive models.

The findings of this study are consistent with previ-
ous research conducted by [33, 34] which suggested
that ML algorithms and the identification of innovative
indicators play a valuable role in predicting suicide and
detecting mental health issues. However, these findings
contradict the results of [35], which indicated insuffi-
cient evidence to support the superior performance of
ML over logistic regression in clinical prediction mod-
els. The studies included in the analysis that used ML
techniques to predict suicidal attempts demonstrated
overall good performance on the most commonly used
algorithms, namely XGBoost. For example, the AUC
values reported in these studies were consistently high,
ranging approximately between 0.65 and 0.97. An AUC
value of 0.5 indicates a random prediction, while a
value of 1 represents a perfect prediction. The AUC val-
ues in the range of 0.97 for XGBoost model suggest that
the ML models had a high degree of accuracy in clas-
sifying individuals with respect to their risk of suicidal



Ehtemam et al. BMC Medical Informatics and Decision Making (2024) 24:138 Page 25 of 29
Table 3 Frequently occurring suicide categories and risk factors Table 3 (continued)
Category Suicide risk factor Frequency Category Suicide risk factor Frequency
Demographic Age 30 Self-esteem 3
Sex 26 Entrapment 3
Marital Status 12 Cerebrovascular Disease 3
Education 10 AIDS 3
Occupation 10
ADHD 3
Income 10
Race 9 Endocrine 3
Parents' Psychological State 5 Fear 3
Parental status 4 The numbers highlighted in bold indicate suicide factors that occur with higher
Insurance 4 frequency and have a more pronounced impact
Family or Friends'History 4
Ofsu_'c"de attempts. The findings of this study are consistent with
Ethh'c‘ty ¢ previous research conducted by [36] which confirmed
Social Support Status 3 acceptable performance of XGBoost algorithm in cog-
i _ 'm_m‘?rént - _ 3 nition of patients with major depressive disorder. This
Laboratory & Biomarkers Egzapysws it ML;C_rOSCOp'C i result may be due to the fact that XGBoost is an ensem-
regnancy Lrine ble model that constructs various models to reduce
Glucose 5 . . . . .
classification errors on each iteration. According to
LDL 3 . )
Cholesterd! X [37], certain ML algorithms, such as support vector
olestero . P
o ceride ; machines (SVM) and decision trees (DT), are preferred
I I . . .
o , , over others due to their superior performance in pre-
Scales Hamilton Depression Rating Scale 3 Lo . .
) - dicting suicide risk. Furthermore [38], confirmed that
Patient Health Questionnaire 3 K . R
(PHQ)-9 the application of ML techniques to analyze large data-
Lifestyle Substance Abuse 26 bases holds great potential for facilitating the predic-
Alcohol 12 tion of suicide, offering promising avenues for future
Activation 3 research. The results of this study align with the find-
Physical activity 3 ings of [39], which highlighted the ability of ML to
Clinical &Behavioral Depression 21 enhance suicide prediction models by incorporating a
Anxiety 13 larger number of suicide risk factors. Applicability of
Mental Disorders 8 these methods in specific patient groups is invaluable.
Antidepressant 3 For example [40], indicated that predicting whether
Bipolar 7 a person has a mental illness itself poses a significant
Other Drug 7 challenge. Therefore, if machine learning can offer a
Personality Disorders 4 new avenue of hope for clinicians, it is commendable.
Psychotic Disorders 6 However [41], discovered that although these models
Impulsivity 6 have demonstrated accuracy in the overall classifica-
Diseases of the Nervous System 5 tion, their ability to predict future events remains lim-
Injury s ited in the context of suicide prediction models.
" s Consequently, it is important to note that the perfor-
Mania . mance of ML algorithms can vary depending on vari-
ous factors, including the quality and size of the dataset,
Open wound 4 i i A
Mood Disorder . the specific features used as input, the preprocessing
o steps applied, and the hyperparameters selected for the
Poisoning 4 .
. . algorithms. Therefore, the overall performance of these
ress . . . . o e . . .
algorithms in predicting suicide showed strong discrimi-
Schizophrenia 4 . e c 1 T
natory power in distinguishing between individuals who
Hopelessness 3

are at risk of suicidal attempts and those who are not.
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Future research should continue exploring and refin-
ing ML approaches for suicide prediction, considering
these factors to improve the accuracy and reliability of
predictions.

The findings of our study revealed that various factors,
such as age, sex, substance abuse, depression, anxiety,
alcohol consumption, marital status, income, education,
low-density lipoprotein (LDL) and occupation, were
identified as the most prevalent risk factors based on the
analysis of included studies. Age plays a complex role in
suicide, with several studies indicating a higher incidence
of suicide among middle-aged and older adults. However,
it is important to note that age is not the sole factor con-
tributing to suicidal behavior [42, 43]. The prevalence of
suicide is exceptionally high among young adults, specifi-
cally those aged 15 to 19 as it is a fourth cause of death
in the world [44]. Sex is a significant risk factor for sui-
cide. In general, men are more likely to die by suicide
than women, but women attempt suicide more often
than men. This may be because men are more likely to
use lethal methods [42, 45, 46].

According to the meta-synthesis results, there appears
to be a significant correlation between substance abuse
and depression with suicide. This correlation may be
because substance abuse can impair judgment and
increase impulsivity. On the other hand, a person who is
depressed may experience feelings of hopelessness, help-
lessness, and despair, which can lead to suicidal thoughts
or behaviors. These findings align with the study con-
ducted by [47, 48]. Anxiety as a mental health condi-
tion can lead to various negative outcomes, including an
increased risk of suicide [49]. Alcohol use can increase
impulsivity and decrease inhibitions, leading to risky
behaviors such as self-harm or suicide attempts [50, 51].
found that the consumption of alcohol while feeling sad
or depressed could indicate suicidal behavior in adoles-
cents who had not previously reported having thoughts
of suicide before attempting it.

Marital status is a common suicide risk factor.
Researchers have found that married individuals have
lower suicide rates than their unmarried counterparts.
This trend is observed in both men and women across
different age groups and cultures [52]. Low income has
been associated with an increased risk of suicide. The
reasons for this link are complex and multifactorial, but
some possible explanations include limited access to
healthcare and mental health services, financial strain,
and social isolation [53]. Lower education levels are also
associated with higher suicide rates. This may be because
lower education-level individuals have fewer job oppor-
tunities and may experience more financial stress [53].
In addition to the clinical and demographic factors dis-
cussed, it is crucial to recognize the significant role that
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certain biomarkers and laboratory factors play in the vul-
nerability to suicide. One notable example is the impact
of low serum cholesterol levels, which have been found to
significantly heighten the risk of suicide [54]. Some stud-
ies have shown that LDL level is an important factor in
the incidence of suicide [55]. Moreover, some studies have
indicated thatindividuals who have committed suicide had
higher levels of LDL compared to non-attempters [56].

Machine learning (ML) techniques are suitable for pre-
dicting suicide risk, overcoming the constraints of tra-
ditional methods. However, ML requires sufficient and
relevant data to train and validate the early identification
of risk factors and suicide prediction. We acknowledge
the importance of anticipating and addressing immedi-
ate concerns related to suicide in a clinical setting. Due to
this, some studies have focused on utilizing certain scales
in psychiatric outpatients [57]. However, reliance solely
on these scales may instill an unwarranted sense of assur-
ance among healthcare providers. Hence, it is crucial to
factor in data availability and the computational demands
of handling extensive datasets and intricate models. Our
evaluation underscores the proficiency of ML algorithms
in uncovering concealed relationships and delivering pre-
cise predictions of suicide risk, contingent upon the judi-
cious selection and meticulous evaluation of algorithms.
This underscores the indispensable role of ML algorithms
in exhaustively analyzing data and pinpointing crucial
risk factors, thereby advocating for further exploration in
the field. This methodological breadth mirrors the mul-
tifaceted nature of suicide risk prediction, enhancing the
generalizability of our findings. However, our study may
be susceptible to limitations arising from the included
studies and the meta-analysis methodology. Addition-
ally, reliance on published literature may introduce pub-
lication bias, favoring studies with statistically significant
results and potentially skewing overall findings. Further-
more, it is suggested to report 1> and the Q-statistic in
future studies to assess heterogeneity. Despite these chal-
lenges, our study offers valuable insights into the role of
machine learning algorithms in predicting suicide risk
and sheds light on important risk factors associated with
suicidal behavior. Future research endeavors will con-
tinue to tackle these methodological hurdles, striving
for enhanced standardization and transparency in study
reporting to fortify the reliability and reproducibility of
findings in this crucial domain of inquiry.

Ethical considerations in the use of ML for suicide
prediction

Machine learning (ML) for suicide prediction requires
the implementation of ethical considerations as the well-
being and rights of individuals and the privacy and con-
fidentiality of individuals’ data are crucial. Participants
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should be fully informed about the study’s purpose,
potential risks, and benefits and have the right to with-
draw their consent at any time. Understanding and inter-
preting the factors and variables that contribute to the
predictions is important. This transparency is required
to gain the trust of both individuals at risk and health-
care professionals. Ensuring that ML algorithms cannot
be replaced by human intervention and clinical judgment
is important. Human oversight is critical in interpreting
and acting upon the predictions made by the algorithms.
Healthcare professionals should make informed deci-
sions based on ML predictions, considering the individu-
al’s unique circumstances and context [58].

Conclusion

Suicide is a complex and multifaceted public health issue
with significant implications for individuals and commu-
nities. Our study examined the application of ML tech-
niques for predicting suicide risk. Our research findings
highlight the diverse performance of ML algorithms in
predicting suicide, indicating the need for further inves-
tigation and refinement.

Our analysis identified several general risk factors
contributing to an individual’s heightened risk of sui-
cide. These factors include age, sex, substance abuse,
depression, anxiety, alcohol consumption, marital status,
income, education, and occupation. Recognizing that
these risk factors interact in complex ways is important,
and their presence does not guarantee suicidal behav-
iour. Nonetheless, understanding and addressing these
risk factors can aid in developing targeted prevention and
intervention strategies.

While ML algorithms have shown promise in predict-
ing suicide risk, their performance can vary depending
on the specific dataset and risk factors being considered.
Further studies are warranted to explore using ML algo-
rithms across diverse databases encompassing various
risk factors. This would allow for a more comprehensive
understanding of the predictive capabilities of ML in dif-
ferent contexts and populations.

Moreover, future research should focus on enhanc-
ing the interpretability and explainability of ML mod-
els in suicide prediction. Understanding the underlying
mechanisms and variables contributing to predictions is
essential for effective intervention and decision-making.
Additionally, rigorous validation and evaluation of ML
algorithms should be conducted to assess their accuracy,
generalizability, and potential biases.

To advance the field of suicide prediction using ML,
collaboration between researchers, clinicians, and poli-
cymakers is crucial. This interdisciplinary approach can
foster the development of comprehensive and ethical
frameworks for implementing ML algorithms in suicide
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prevention efforts. Ensuring that ML techniques are used
responsibly, prioritizing patient well-being, privacy, and
equitable outcomes is imperative.

In conclusion, our study sheds light on the potential
of ML algorithms in predicting suicide risk. However,
further research is needed to refine and validate these
algorithms across different datasets and risk factors. By
understanding the complexities of suicide and leverag-
ing the power of ML, we can work towards more effective
strategies for suicide prevention and intervention.
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