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Abstract 

Objective  Clinical deep phenotyping and phenotype annotation play a critical role in both the diagnosis of patients 
with rare disorders as well as in building computationally-tractable knowledge in the rare disorders field. These 
processes rely on using ontology concepts, often from the Human Phenotype Ontology, in conjunction with a phe-
notype concept recognition task (supported usually by machine learning methods) to curate patient profiles or exist-
ing scientific literature. With the significant shift in the use of large language models (LLMs) for most NLP tasks, we 
examine the performance of the latest Generative Pre-trained Transformer (GPT) models underpinning ChatGPT 
as a foundation for the tasks of clinical phenotyping and phenotype annotation.

Materials and methods  The experimental setup of the study included seven prompts of various levels of specificity, 
two GPT models (gpt-3.5-turbo and gpt-4.0) and two established gold standard corpora for phenotype recognition, 
one consisting of publication abstracts and the other clinical observations.

Results  The best run, using in-context learning, achieved 0.58 document-level F1 score on publication abstracts 
and 0.75 document-level F1 score on clinical observations, as well as a mention-level F1 score of 0.7, which surpasses 
the current best in class tool. Without in-context learning, however, performance is significantly below the existing 
approaches.

Conclusion  Our experiments show that gpt-4.0 surpasses the state of the art performance if the task is constrained 
to a subset of the target ontology where there is prior knowledge of the terms that are expected to be matched. 
While the results are promising, the non-deterministic nature of the outcomes, the high cost and the lack of con-
cordance between different runs using the same prompt and input make the use of these LLMs challenging for this 
particular task.

Keywords  Large language models, Generative pretrained transformer, Artificial intelligence, Phenotype concept 
recognition, Human Phenotype Ontology

*Correspondence:
Tudor Groza
tudor.groza@health.wa.gov.au
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-024-02439-w&domain=pdf


Page 2 of 12Groza et al. BMC Medical Informatics and Decision Making           (2024) 24:30 

Introduction
Over the past decade, clinical deep phenotyping—i.e., 
the comprehensive documentation of abnormal physical 
characteristics and traits in a computationally-tractable 
manner—has evolved into a common procedure for indi-
viduals who are either suspected of having or have been 
diagnosed with a rare disease. Similarly, the development 
and continuous enrichment of knowledge bases in the 
rare disease domain has become standard practice. Con-
ceptually, both tasks rely on ontologies that are developed 
and updated by the medical community. Such ontologies 
facilitate the description of a patient’s unique phenotype, 
as well as the characterisation of the phenotypic mani-
festations of gene mutations using ontological terms and 
concepts. The utility of using ontology-coded knowledge 
in rare diseases has been showcased repeatedly over the 
years in data sharing [1–3] and clinical variant prioritiza-
tion and interpretation [4–6].

The Human Phenotype Ontology (HPO) [7, 8] provides 
the most comprehensive resource for computational 

deep phenotyping and has become the de facto stand-
ard for encoding phenotypes in the rare disease domain, 
for both disease definitions as well as patient profiles to 
aid genomic diagnostics. The ontology, maintained by 
the Monarch Initiative [9], provides a set of more than 
16,500 terms describing human phenotypic abnormali-
ties, arranged as a hierarchy with the most specific terms 
furthest from the root, as depicted in Fig. 1.

In addition to underpinning complex diagnostic tasks 
(e.g., clinical interpretation of an exome/genome) [10] or 
building care coordination plans, ontology-coded phe-
notypes often represent also a communication channel 
between practitioners and patients and, subsequently, 
between patients and other stakeholders—e.g., education, 
disability or welfare workers. Moreover, concepts grounded 
in HPO provide the explainability required to improve the 
transparency of the decision-making process, which can 
then support communication and documentation.

Manual curation of phenotype profiles – and manual 
annotation as a general task – is, however, tedious and 

Fig. 1  Simplified example of Human Phenotype Ontology concepts and their structural arrangement in the hierarchy. Solid lines denote direct 
parent–child relationships, while dotted lines denote ancestor–descendant relationships
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has represented the main blocker to wide-spread uptake 
of computational deep phenotyping on the clinical side 
and to keeping rare disease knowledge bases up to date. 
(Semi-) automated methods that rely on natural language 
processing (NLP) have been introduced to remove this 
blocker and have gradually become the standard modus 
operandi. Such methods, the latest built using convolu-
tional neural networks [11] or transformer-based archi-
tectures [12], are also addressing a variety of challenges 
associated with phenotype concept recognition (CR) 
such as ambiguity, use of metaphorical expressions, as 
well as negation and complex or nested structures.

Lately, the focus has shifted to large language models 
(LLMs) for most NLP tasks. LLMs-a class of transformer-
based models trained on trillions of words of diverse 
texts [13]-showcased superior capabilities in application 
domains such as chatbots and text prediction [14]. Their 
main advantage also stems from having the ability to use 
in-context learning to perform specific tasks, without 
the need for further training or fine-tuning [15], which 
replaces the “traditional” task-driven training of machine 
learning models [16]. gpt-3.5 and gpt-4.0 are examples 
of such LLMs that have witnessed a rapid general user 
adoption via the ChatGPT application, a chatbot fine-
tuned for conversation-based interactions with humans. 
A user can “prompt” ChatGPT to perform a variety of 
tasks, with or without the need to provide examples to 
support them.

In the biomedical domain, several domain-specific 
models have been published-BioBERT [15], PubMed-
BERT [17] or BioGPT [18] – and shown to perform well 
on NLP tasks including relationship extraction (e.g., drug-
drug interactions or drug-target interactions) and ques-
tion answering. The experimental results also included 
comparisons against GPT-2.0, a predecessor of the cur-
rent models powering ChatGPT. Lately, several studies 
have been published on the utility of using GPT models 
for annotation (in general) [19, 20] and few discussed the 
efficiency of such models on concept recognition tasks, 
in particular phenotype concept recognition. Note that 
ontology-based concept recognition implies a joint task 
of named entity recognition (i.e., finding entities on inter-
est in a text and their corresponding boundaries) and 
entity linking (i.e., aligning the entities found in the text 
to concepts defined in a given ontology). Experiments 
documenting the accuracy on named entity recognition—
with a focus on diseases and chemical entities—were 
documented by Chen et al. [21], with gpt-4.0 (+ one-shot 
learning) achieving a performance poorer than a fine-
tuned PubmedBERT, yet significantly better that gpt-3.5.

This paper examines the ability of gpt-3.5 and gpt-4.0 
to perform phenotype concept recognition using HPO 

as a background ontology. Three different approaches 
are used to generate prompts to gain a deeper under-
standing of the limitations in various scenarios. Spe-
cifically, the experimental setup targets direct concept 
recognition – i.e., named entity recognition followed 
by an alignment to HPO concepts and in-context 
learning.

Materials and methods
The study uses two gold standard corpora available 
in the literature for phenotype concept recognition: 
(i) a corpus of 228 scientific abstracts collected from 
PubMed, initially annotated and published by Groza 
et al. [22], and subsequently refined by Lobo et al. [23] 
(named HPO-GS from here on); and (ii) the dev com-
ponent of the corpus made available through Track 3 
of BioCreative VIII (454 entries), focusing on extrac-
tion and normalization of phenotypes resulting from 
genetic diseases, based on dysmorphology physical 
examination [24] (named BIOC-GS from here on). An 
example of an entry is: “ABDOMEN: Small umbilical 
hernia. Mild distention. Soft.”

All experiments were conducted using these two cor-
pora. HPO-GS covers 2,773 HPO term mentions and 
a total of 497 unique HPO IDs, with the minimum size 
of a document being 138 characters, the maximum size 
2,417 characters and the average being ~ 500 characters. 
BIOC-GS covers 783 HPO term mentions and a total 
of 358 unique HPO IDs, with the minimum size of an 
entry being 13 characters, the maximum 225 characters 
and the average ~ 56 characters. Note that we chose the 
dev component of Track 3 because of its similarity in the 
number of unique HPO IDs and its profile (described 
below) to HPO-GS. We were unable to download the test 
component of Track 3 and hence the results reported 
here are not comparable to the results published by the 
Track’s organisers.

The complexity of the lexical representations of the 
HPO concepts can be partially assessed based on their 
length (presented in Fig.  2) and structural placement in 
the ontology. The latter is depicted in Fig.  3 using the 
children of the Phenotypic abnormality concept as major 
categories and the values representing the proportion 
of terms belonging to each category (as also depicted 
in Fig.  1). It can be observed that the large majority of 
concepts in both corpora (~ 88%) have low to moderate 
lexical complexity, with a label length of 4 words or less, 
and are placed predominantly in the nervous and mus-
culoskeletal system (including here also head and neck 
and limbs)—i.e., denoting finger, toe, face, arm and leg 
abnormalities.
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Prompt generation approaches
Conversational models such as gpt-3.5-turbo and gpt-
4.0 take inputs in the form of prompts. These prompts 
can include—in addition to a target content—explicit 
instructions or examples of the desired output. This 
is sometimes referred to as “prompt engineering”. 

A task, such as concept recognition, can be defined 
via prompts in various ways, with the behaviour and 
hence the output of the model being heavily influenced 
by smallest differences in these definitions. In this 
study, we used three types of prompts to investigate 
the models’ efficiency to perform phenotype concept 

Fig. 2  Label length distribution of the HPO concepts present in the gold standard corpus

Fig. 3  Top-level overview of the gold standard corpus using the children of ‘Phenotype abnormality’ as major categories
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recognition. Two remarks are worth noting about our 
selection strategy:

•	 We opted for well-known, low-barrier prompts that 
do not require significant prompt engineering knowl-
edge and skills

•	 We were aware of the HPO ID hallucinations as a 
result of aiming for concept recognition – instead of 
a chain of entity recognition, external entity linking 
and LLM-based validation, however, as presented 
later in our experiments, this did not materialise as a 
real concern.

Instructional (directed) phenotype concept recognition
Prompts in this category aimed to capture the impact 
of the wording used to define ‘phenotypes’ on the CR 
task. They are instructional (directed) because the 
model is asked explicitly to perform a certain task. 
The four prompts defined in this category are listed 
below; the key instructions are underlined for easier 
comprehension.

•	 Prompt 1: Analyze the text below delimited by triple 
backticks and extract phenotypes and clinical abnor-
malities. Align the phenotypes and clinical abnor-
malities found to Human Phenotype Ontology IDs. 
List the results in a JSON format using the following 
structure.

•	 Prompt 2: Analyze the text below delimited by tri-
ple backticks, extract phenotypes and align them to 
Human Phenotype Ontology IDs. List the results in a 
JSON format using the following structure. Where you 
cannot find a direct Human Phenotype Ontology ID, 
leave the “hpoId” field empty.

•	 Prompt 3: Analyze the text below delimited by triple 
backticks and extract Human Phenotype Ontology 
terms. List the HPO IDs together with the start and 
end offsets.

•	 Prompt 4: You will be provided with a text in triple 
backticks. The task is to perform automated concept 
recognition using the Human Phenotype Ontology 
and extract all Human Phenotype Ontology concepts 
found in the text. Include the HPO ID of the concepts 
you find in the result.

The first three prompts direct the model to ‘extract’ 
artefacts from the provided text. Prompt 2 is a variation 
of Prompt 1 (‘phenotypes’ vs ‘phenotypes and clinical 
abnormalities’), while Prompt 3 refers directly to HPO 
terms. Prompt 4 explicitly names the task requested to 
be performed by the model—i.e., ‘automated concept 
recognition’.

Instructional (directed) named entity recognition followed 
by instructional (directed) entity alignment
The prompts in the first category target directly concept 
recognition by requesting HPO IDs. As a task, concept 
recognition can also be modelled as named entity rec-
ognition (used to detect entity boundaries in the text) 
followed by entity alignment (used to match the candi-
dates extracted from the text to ontology concepts / IDs). 
Prompt sets 5 and 6 below explicitly perform this two-
step process by first asking the model to extract pheno-
types, then using this output as input to align the text to 
HPO IDs. Prompt set 6 is a subset of Prompt set 5 – ‘phe-
notypes’ vs ‘phenotypes and clinical abnormalities’.

•	 Prompt set 5:

◦ Step 1: Analyze the text below delimited by triple 
backticks and extract phenotypes and clinical abnor-
malities. List them together with the start and end 
offsets.
◦ Step 2: You will be provided with text delimited by 
triple backticks. Align the text below to Human Phe-
notype Ontology labels. List only the HPO concepts 
found.

•	 Prompt set 6:

◦ Step 1: Analyze the text below delimited by triple 
backticks and extract phenotypes. List them together 
with the start and end offsets in the text.
◦ Step 2: You will be provided with text delimited by 
triple backticks. Align the text below to Human Phe-
notype Ontology labels. List only the HPO concepts 
found.

In‑context learning using a subset of HPO
The final category (prompt set 7) attempts to aid the 
model by providing examples of the concepts targeted for 
extraction. The prompt used a standard two-part tem-
plate, as below:

•	 Part 1: Examples: The Human Phenotype Ontology 
defines phenotype concepts using the following label 
– HPO ID associations: Hypospadias // HP:0000047.

•	 Part 2: Task: Using the list above, find Human Phe-
notype Ontology concepts in the following text and 
return their associated IDs for every appearance in 
the text.

Part 1 was completed by adding the pairs of label—
HPO ID for all HPO concepts present in the gold 
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standard corpus. Attempts were made to include the 
entire ontology, or to include the labels and all synonyms 
for the desired HPO concepts, however they failed due 
to the model limitations on the size of the input content. 
We do, however, demonstrate the impact of using various 
sets of concepts to underpin the in-context learning task. 
A complete example of prompt 7 is provided in Appen-
dix 1 in the Supplementary material.

Experimental setup
Experiments were conducted by calling the GPT mod-
els using the OpenAI API (https://​platf​orm.​openai.​com/​
docs/​api-​refer​ence). The specific models (as per https://​
platf​orm.​openai.​com/​docs/​models/​conti​nuous-​model-​
upgra​des) and parameters used in our experiments were:

•	 gpt-3.5-turbo-16k – with training data “up to Sep 
2021” and context window of 16,385 tokens

•	 gpt-4-1106-preview – with training data “up to Apr 
2023” and context window of 128,000 tokens

•	 Temperature: 0
•	 Max tokens: default – as permitted by the model 

(note that the combination of the context window 
and default max tokens enabled us to experiment 
with Prompt 7)

Each call used one of the seven prompts discussed 
above and the text corresponding to each abstract or 
examination entry, individually, as user input. The 
results were stored individually and HPO concepts were 
extracted and associated with the PMID / entry ID cor-
responding to the text used as input. The code used to 
annotate the corpora and perform the evaluation is avail-
able at: https://​github.​com/​tudor​groza/​code-​for-​papers.

The standard evaluation procedure for concept recog-
nition covers two aspects: (i) boundary detection—i.e., 
a correct alignment of the boundaries of the concepts in 
text, usually by matching the offsets of the corresponding 
text span to the offsets found by the system being evalu-
ated; and (ii) concept mapping—i.e., a correct matching 
of the ID of the concept against that provided by the gold 
standard. The boundary detection step proved to be chal-
lenging to evaluate accurately with the results produced 
by the OpenAI GPT models – an aspect documented 
also by Chen et  al. [19]. Consequently, given our focus 
on understanding the utility of these models to support 
manual phenotype annotation / curation, we relaxed the 
evaluation procedure to include only the second step—
i.e., concept mapping. A correct match was, therefore, 
counted if the HPO ID present in the gold standard was 
found at least once by the LLM.

The evaluation metrics used in this experiment are the 
standard for the task: precision, recall and F1. These were 

computed at both document and mention levels. The 
document-level defines a true positive when a desired 
HPO ID is found at least once by the LLM, while the 
mention-level keeps track of all encounters of the HPO 
ID in a particular abstract and defines a true positive 
when each individual encounter is found by the LLM.

The experimental results produced by the models are 
compared against five well-established phenotype con-
cept recognition tools:

•	 Doc2HPO [25] – dictionary-based – API docu-
mented at https://​github.​com/​storm​liuco​ng/​doc2h​po

•	 ClinPheno [26] – dictionary-based – MacOS down-
load version available on the 10th of August 2022 
from http://​bejer​ano.​stanf​ord.​edu/​clinp​hen/

•	 NCBO Annotator [27] – dictionary-based – API doc-
umented at https://​biopo​rtal.​bioon​tology.​org/​annot​
ator (default parameters)

•	 Monarch Annotator [9] – dictionary-based – API 
documented at https://​monar​chini​tiati​ve.​org/ (default 
parameters; match over 5 characters long)

•	 PhenoTagger [12] – hybrid method combining diction-
ary tagging with a BioBERT-based tagger – release v1.1 
downloaded from https://​github.​com/​ncbi-​nlp/​Pheno​
Tagger with models v1.1 downloaded from https://​ftp.​
ncbi.​nlm.​nih.​gov/​pub/​lu/​Pheno​Tagger/​models_​v1.1.​zip 
(executed with default parameters)

Results
Experimental results
Tables 1 and 2 list the experimental results achieved by 
both models across all seven prompts on HPO-GS and 
BIOC-GS respectively, while Table  3 lists the results of 
the state of the art methods for phenotype concept rec-
ognition. Below we discuss the main findings emerging 
from these results:

•	 The in-context learning strategy achieves results com-
parable or better than the state of the art. Phenotype 
concept recognition is known to be a difficult task—
as showcased by the F1 scores listed in Table 3, which 
are roughly 0.2 lower that other domain-specific con-
cept recognition tasks, such as gene or drug names. 
The GPT models perform significantly lower that 
the state of the art in most cases, with the mention-
level evaluation F1 scores being half the values of 
tools such as PhenoTagger or the Monarch Annota-
tor (which does not rely on a BERT-based or a LLM-
based on neural network-based architecture). The 
in-context learning strategy, however, performs well; 
HPO-GS the results are comparable to the state of 
the art, on BIOC-GS gpt-4.0 surpasses the best in 
class with a significant margin – almost 0.1 (0.7 F1 

https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/api-reference
https://platform.openai.com/docs/models/continuous-model-upgrades
https://platform.openai.com/docs/models/continuous-model-upgrades
https://platform.openai.com/docs/models/continuous-model-upgrades
https://github.com/tudorgroza/code-for-papers
https://github.com/stormliucong/doc2hpo
http://bejerano.stanford.edu/clinphen/
https://bioportal.bioontology.org/annotator
https://bioportal.bioontology.org/annotator
https://monarchinitiative.org/
https://github.com/ncbi-nlp/PhenoTagger
https://github.com/ncbi-nlp/PhenoTagger
https://ftp.ncbi.nlm.nih.gov/pub/lu/PhenoTagger/models_v1.1.zip
https://ftp.ncbi.nlm.nih.gov/pub/lu/PhenoTagger/models_v1.1.zip
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Table 1  Document and mention-level evaluation results across both models and all seven prompts on HPO-GS

GPT version Prompt Precision Recall F1 Precision Recall F1
Document-level Mention-level

3.5 1 0.45 0.21 0.29 0.39 0.14 0.20

2 0.51 0.12 0.19 0.46 0.08 0.13

3 0.12 0.25 0.16 0.05 0.15 0.07

4 0.12 0.28 0.16 0.07 0.17 0.10

5 0.14 0.09 0.11 0.14 0.06 0.08

6 0.3 0.13 0.18 0.29 0.08 0.12

7 0.41 0.41 0.41 0.28 0.25 0.26
4 1 0.41 0.34 0.37 0.36 0.21 0.26

2 0.41 0.34 0.37 0.36 0.21 0.26

3 0.37 0.31 0.33 0.34 0.19 0.24

4 0.34 0.38 0.35 0.32 0.23 0.27
5 0.31 0.22 0.25 0.26 0.13 0.17

6 0.35 0.17 0.22 0.29 0.10 0.15

7 0.75 0.47 0.58 0.73 0.3 0.43

Table 2  Document and mention-level evaluation results across both models and all seven prompts on BIOC-GS

GPT version Prompt Precision Recall F1 Precision Recall F1
Document-level Mention-level

3.5 1 0.51 0.12 0.19 0.5 0.11 0.18

2 0.68 0.05 0.09 0.68 0.05 0.09

3 0.27 0.29 0.28 0.26 0.25 0.25

4 0.26 0.33 0.29 0.22 0.29 0.25

5 0.31 0.2 0.24 0.3 0.17 0.22

6 0.31 0.2 0.24 0.3 0.17 0.22

7 0.56 0.56 0.56 0.54 0.49 0.51
4 1 0.46 0.44 0.45 0.45 0.39 0.42

2 0.44 0.44 0.44 0.43 0.38 0.4

3 0.47 0.43 0.45 0.47 0.37 0.41

4 0.43 0.53 0.47 0.43 0.46 0.44

5 0.44 0.27 0.33 0.43 0.24 0.31

6 0.44 0.27 0.33 0.43 0.24 0.31

7 0.78 0.73 0.75 0.77 0.64 0.7

Table 3  Mention-level evaluation results of the state-of-the-art methods for phenotype concept recognition and for reference 
purposes the results of the best-performing GPT models

HPO-GS BioC-GS

Tool Precision Recall F1 Precision Recall F1

PhenoTagger [12] 0.77 0.68 0.72 0.74 0.52 0.61
ClinPheno [26] 0.73 0.36 0.48 0.47 0.57 0.52

Doc2HPO [25] 0.81 0.50 0.62 0.84 0.29 0.43

Monarch Annotator [9] 0.82 0.50 0.62 0.47 0.46 0.46

NCBO Annotator [27] 0.66 0.49 0.56 0.78 0.41 0.54

Best non in-contex learning gpt (gpt-4, Prompt 4) 0.32 0.23 0.27 0.43 0.46 0.44

Best gpt-4 (Prompt 7; in-context learning) 0.73 0.3 0.43 0.77 0.64 0.7
Best gpt-3.5 (Prompt 7; in-context learning) 0.28 0.25 0.26 0.54 0.49 0.51
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on mention-level evaluation compared to 0.61 F1 
for PhenoTagger). Although this strategy would not 
serve phenotype concept recognition in general, it 
would support manual annotation in a clearly defined 
domain—e.g., cardiovascular diseases.

•	 Both models have a consistent behaviour across 
prompts. Prompts 1 and 2—defining the task as an 
extraction of phenotypes and clinical abnormali-
ties, followed by an alignment to HPO IDs—achieve 
the best precision, with Prompt 2 leading to better 
results when using gpt-3.5 (although not gpt-4.0). 
Similarly, Prompt 7 (in-context learning) achieved the 
best recall, which was expected since the examples 
included all concepts present in the gold standard.

•	 Document and mention-level evaluation results show 
significant discrepancies. The mention-level experi-
mental results were surprisingly lower than the 
document-level results on HPO-GS. This could be 
attributed to the variability of the lexical representa-
tions of the concepts in text—e.g., Brachydactyly C vs 
Brachydactyly, type C. This outcome does not hold 
on BIOC-GS, which seems to be more uniform.

LLAMA2‑70B experimental results
To provide a reference comparison against a second large 
language model, we performed a full set of experiments 
using the freely available LLAMA2-70B model, provided 
by Meta (https://​huggi​ngface.​co/​docs/​trans​forme​rs/​model_​
doc/​llama2). An inference endpoint was setup via Anyscale 
(https://​app.​endpo​ints.​anysc​ale.​com/) and all prompts were 
executed on both corpora using the same values for the 

temperature (0) and max tokens (default) parameters. In-
context learning strategy (Prompt 7) could not be used with 
LLAMA2-70B since the context window was significantly 
smaller (4096 tokens). The raw outcomes of the experiments 
are available at https://​github.​com/​tudor​groza/​code-​for-​
papers/​tree/​main/​gpt-​pheno-​cr/​exper​iments/​llama2-​70B.

The performance of LLAMA2-70B was poor, with 
efficiency metrics (at both document and mention lev-
els) ranging between 0 and 0.01. Remarkably, the model 
returned a mixture of terminologies (HPO IDs, UMLS 
CUIs, and ICD codes). We can, hence, conclude that 
LLAMA2 is not currently fit for HPO-based phenotype 
recognition without more in-depth analysis of complex 
prompting techniques.

Hallucinations
Our experiments defined standard, community-accepted 
phenotype concept recognition tasks and the evaluation 
targeted HPO IDs extracted by the models. Hence, in 
terms of hallucinations.

(inaccurate, nonsensical, or irrelevant output given 
the given context), the expectation was to find non-
existing HPO IDs in the output produced by the models. 
We observed an insignificant number of hallucinations 
(Table  4), and as such, hallucinations do not pose a 
challenge for this task. Some examples of hallucina-
tions include: HP:0020115, HP:0025111, HP:0023656, 
HP:0031966, HP:0020019, HP:0040060. A second obser-
vation can be made with respect to Prompts 3 and 4 
(instructing the model to perform the task by its name): 
these prompts are very prolific on HPO-GS (7780 HPO 
IDs found, and 6698, respectively), which leads to an 
increased recall and a lower precision.

Table 4  Overview of number of HPO IDs found in all experiments and associated hallucinations

Model Prompt Total found Unique Hall’s Hall’s (%) Total found Unique Hall’s Hall’s (%)

BASE 2,773 497 783 358

  3.5 1 978 408 0 0 167 126 0 0

2 460 237 0 0 53 45 0 0

3 7780 1546 11 1 755 432 0 0

4 6698 1980 14 1 996 484 0 0

5 1095 841 3 0 351 242 0 0

6 771 491 4 1 442 316 0 0

7 2551 681 2 0 709 319 1 0

  4 1 1617 634 1 0 666 390 0 0

2 1605 633 2 0 699 397 0 0

3 1534 728 2 0 625 366 1 0

4 2003 855 7 1 839 479 3 1

5 1408 636 4 1 1287 648 3 0

6 977 483 4 1 432 288 2 1

7 3469 938 0 0 676 313 1 0

https://huggingface.co/docs/transformers/model_doc/llama2
https://huggingface.co/docs/transformers/model_doc/llama2
https://app.endpoints.anyscale.com/
https://github.com/tudorgroza/code-for-papers/tree/main/gpt-pheno-cr/experiments/llama2-70B
https://github.com/tudorgroza/code-for-papers/tree/main/gpt-pheno-cr/experiments/llama2-70B
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False positives produced by the model are measured via 
precision in Tables 1 and 2, and could also be considered 
hallucinations. Given the nature of the underpinning 
task, however, a complex challenge emerges in distin-
guishing “real” false positives from hallucinations. A 
metric addressing this specific need could be devised, for 
example, by measuring the semantic distance between 
the correct HPO ID and the one found by the model.

In‑context learning with different sets of concepts
The results for Prompt 7 above relied on the same set of 
concepts as those present in the gold standard. To test the 
impact of this set on the results (which in a standard set-
ting would be expected, since the entire ontology would 
be considered), we performed three additional experi-
ments using gpt-4.0 and Prompt 7. Firstly, we used the 
concepts covered by HPO-GS to do in-context learning 
for BIOC-GS. The results were significantly lower, with 
the model achieving document-level precision, recall and 
F1 of 0.25, 0.23, 0.24 respectively and mention-level met-
rics of 0.23, 0.2, 0.21.

Secondly, we used the top-level profile of the two cor-
pora (depicted in Fig. 3; i.e., the majority of the concepts 
describing musculo-skeletal abnormalities) to generate 
a random set of ~ 1,000 concepts. This resulted in a set 
comprising 1,165 HPO concepts (~ 43KB in size with 
labels and ~ 7% of the entire ontology) and the follow-
ing overlaps with the two gold standard corpora: (i) 160 
concepts overlap with BIOC-GS – i.e., 45% of BIOC-GS 
and 14% of the learning set; (ii) 138 concepts overlap with 
HPO-GS – i.e., 30% of HPO-GS and 12% of the learning 
set. We re-ran Prompt 7 on gpt-4.0 on both corpora and 
the results – as shown in Table 5 – are encouraging.

These results support our assumption that gpt-4.0 
would be useful for annotation purposes in a domain-
specific setting, without the need to use the entire set of 
concepts describing the domain to perform in-context 
learning.

Concordance across prompts
A complete overview of the pairwise concordance 
of the outcomes across both models and all prompts 
is provided in Appendices  2 and 3 in the Supplemen-
tary material. We recorded the percentage of com-
mon correct and incorrect HPO IDs when considering 

one model output as base reference. For example, on 
HPO-GS 51% of the correct HPO IDs extracted by gpt-
3.5 Prompt 1 are in common with the correct HPO 
IDs extracted by gpt-3.5 Prompt 2, with this common 
set representing 93% of the total correct HPO IDs 
extracted by the latter.

Overall, the results vary significantly and there is 
no combination of model—prompt that achieved a 
high level of agreement on both correctly and incor-
rectly extracted HPO IDs. A stand-out is perhaps gpt-
3.5 Prompt 2 that achieves a rather consistent level of 
agreement with most of the other prompts on both 
corpora: (i) on HPO-GS—93% correct in common with 
Prompt 1—which is expected because Prompt 2 targets 
conceptually a subset of Prompt 1, 87% with Prompt 
7, 84% with gpt-4.0 Prompt 1; (ii) on BIOC-GS – 97% 
correct in common with Prompt 1, 81% with Prompt 
7 and over 80% with all gpt-4.0 experiments except for 
Prompts 5 and 6.

Appendix  4 in the Supplementary material lists the 
top 5 incorrectly extracted HPO IDs across all experi-
ments. These HPO IDs are fairly consistent within the 
context of a model and completely divergent across 
models. For example, the most common errors of 
gpt-3.5 are: Decreased body weight (HP:0004325), 
Intellectual disability, profound (HP:0002187), Joint 
hypermobility (HP:0001382), Abnormality of the nerv-
ous system (HP:0000707), while those of gpt-4.0 are: 
Poor wound healing (HP:0001058), Cerebral hamar-
toma (HP:0009731).

It is interesting to note the nature of failures in con-
cept mapping. For example, gpt-3.5 tags the text ‘Angel-
man’s syndrome’ (a disease not present in HPO) with 
Decreased body weight (HP:0004325 – shown in Fig. 1), 
and ‘Prader-Willi syndrome’ (another disease not pre-
sent in HPO), ‘bilateral acoustic neuromas’ or ‘Neurofi-
bromatosis type 2’ with Intellectual disability, profound 
(HP:0002187), while gpt-4.0 tags, consistently, the 
same text spans, e.g., ‘Angelman’s syndrome’, with Poor 
wound healing (HP:0001058) or ‘Neurofibromatosis 
type 2’ with Cerebral hamartoma (HP:0009731).

Same model and prompt concordance
A final experiment was performed to understand the 
concordance across different runs of the same model and 

Table 5  Experimental results on using a random set of concepts for in-context learning

Document-level Mention-level

Precision Recall F1 Precision Recall F1

HPO-GS 0.63 0.29 0.4 0.6 0.19 0.29

BIOC-GS 0.55 0.42 0.48 0.5 0.37 0.43
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prompt. We ran five times the annotation experiment 
using gpt-4.0 Prompt 1. Overall, all runs achieved the 
same precision and recall, with very minor differences 
(± 0.01). The concordance in the results produced by the 
runs was, however, surprisingly low. Across all runs, we 
found the common set of: 75.82% of all correctly identi-
fied HPO IDs; 28.09% of all incorrectly identified HPO 
IDs, and 86.6% of all concepts not found by the models. 
This shows a high level of divergence in concept map-
ping errors produced by the individual runs.

Limitations
A summary of the limitations derived from the experi-
ments discussed above is listed below:

•	 The in-context learning strategy adopted in our 
experiments, while surpassing the state of the art in 
some cases, differs from the task of open phenotype 
concept recognition. Due to limitations in the size of 
the input data, we restricted the examples to only the 
concepts present in the gold standard. In a real-world 
scenario, this set of concepts is unknown. However, 
a retrieval augmented generation (RAG) approach 
would be feasible to provide the model with the most 
relevant HPO terms as context. Further, our experi-
ments did, however, show that ontology stratifica-
tion strategies could be employed as an alternative 
to using the entire ontology – e.g., domain-specific 
selection. Cost is still a prohibitive factor for this 
approach. For example, the in-context learning 
experiments on BIOC-GS costed USD $50, which 
used only 454 entries with an average length of 56 
characters + the learning component of 358 unique 
ontology concepts (~ 12KB)

•	 The performance of the model is non-deterministic. 
Executing the same prompt over the same input leads 
to slightly different results. This is particularly chal-
lenging as it hinders the establishment of an accurate 
ground truth and leaves a degree of uncertainty in 
completeness always associated with the outcomes.

•	 The choice of wording in the prompt influences the 
results. While this is expected (hence the need for 
iterative prompt engineering), it is also remarkably 
challenging when considering the lack of concord-
ance between the outcomes—as shown in Appen-
dices 2 and 3 in the Supplementary material (e.g., 
prompts that have been iterated on produce HPO 
IDs that are not found by subsequent prompts)

Our study has its limitations as well. Firstly, the variety 
of prompts included in the experiments is limited. As dis-
cussed in the experimental setup, we covered low-barrier 

prompts, showcasing the trade-off between approaches at 
the lower end of the cost scale and the context in which 
they can produce reasonable results. Secondly, LLMs are 
trained using publicly available data, which could include 
the HPO_GS, since it was initially published in 2015 and in 
turn could lead to a test data leakage. While this is indeed 
a realistic scenario, the expectations associated with it do 
not seem to be met by the poor results listed in Table  1 
for Prompts 1–6 (we exclude Prompt 7 since it addresses 
directly in-context learning). Moreover, the same scenario 
does not hold for BIOC-GS (since it was not publicly avail-
able at the time of our experiments) and yet the results 
are significantly better. We argue that test data leakage 
is unlikely for scenarios similar to the ones presented in 
this paper because of the boost in efficiency provided by 
in-context learning. The F1 scores achieved on Prompt 7 
are significantly better than all others, and hence we argue 
that the gap between results would have been smaller if the 
LLM would have just memorized the answers to the task 
(and hence the examples provided in Prompt 7 would not 
have helped as much).

Conclusion
This paper presents a study that assesses the capabilities of 
the GPT models underpinning ChatGPT to perform phe-
notype concept recognition, using concepts grounded in 
the Human Phenotype Ontology, assuming a need for man-
ual curation / annotation of publications or clinical records. 
The experimental setup covered both gpt-3.5 and gpt-4.0 
and a series of seven prompts ranging from direct instruc-
tions to perform the task by name to chains of named entity 
recognition followed by concept mapping and to in-context 
learning. LLMs learn ontologies imperfectly. In-context 
approaches get around imperfect training. Providing entire 
ontologies in-context produces the desired outcomes in 
principle but is impractical. Ontologies are frequently big-
ger than the context windows supported by current LLMs, 
hence needing a priori knowledge of the target area of the 
ontology to be pre-filtered for the desired terms. However, 
a retrieval augmented generation (RAG) approach might 
be feasible in future work to provide a benefit similar to 
providing the entire ontology. Our results show that using 
in-context learning with the pre-filtered terms leads to 
these models surpassing the best-in-class tools, which are 
either using BERT-based architectures or more classical 
natural language processing pipelines.

The main challenges to a direct adoption of these 
models, document by our error analysis include the 
non-deterministic outputs of the models, the lack of 
concordance between different prompt outputs, as well 
as between different runs with the same prompt. Unlike 
other use cases, hallucinations do not affect the task we 
have focused on.
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