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Abstract 

Background: Knowledge graphs (KGs), especially medical knowledge graphs, are often significantly incomplete, so 
it necessitating a demand for medical knowledge graph completion (MedKGC). MedKGC can find new facts based 
on the existed knowledge in the KGs. The path-based knowledge reasoning algorithm is one of the most important 
approaches to this task. This type of method has received great attention in recent years because of its high perfor-
mance and interpretability. In fact, traditional methods such as path ranking algorithm take the paths between an 
entity pair as atomic features. However, the medical KGs are very sparse, which makes it difficult to model effective 
semantic representation for extremely sparse path features. The sparsity in the medical KGs is mainly reflected in the 
long-tailed distribution of entities and paths. Previous methods merely consider the context structure in the paths of 
knowledge graph and ignore the textual semantics of the symbols in the path. Therefore, their performance cannot 
be further improved due to the two aspects of entity sparseness and path sparseness.

Methods: To address the above issues, this paper proposes two novel path-based reasoning methods to solve the 
sparsity issues of entity and path respectively, which adopts the textual semantic information of entities and paths 
for MedKGC. By using the pre-trained model BERT, combining the textual semantic representations of the entities 
and the relationships, we model the task of symbolic reasoning in the medical KG as a numerical computing issue in 
textual semantic representation.

Results: Experiments results on the publicly authoritative Chinese symptom knowledge graph demonstrated that 
the proposed method is significantly better than the state-of-the-art path-based knowledge graph reasoning meth-
ods, and the average performance is improved by 5.83% for all relations.

Conclusions: In this paper, we propose two new knowledge graph reasoning algorithms, which adopt textual 
semantic information of entities and paths and can effectively alleviate the sparsity problem of entities and paths in 
the MedKGC. As far as we know, it is the first method to use pre-trained language models and text path representa-
tions for medical knowledge reasoning. Our method can complete the impaired symptom knowledge graph in an 
interpretable way, and it outperforms the state-of-the-art path-based reasoning methods.
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Background
With the advent of the medical big data era, knowledge 
interconnection has received extensive attention [1]. 
How to extract useful medical knowledge from massive 
amounts of data is the key to medical big data analysis. 
Knowledge graph (KG) related technology provides one 
way to extract structured knowledge from massive texts 
and images. In fact, the combination of knowledge graph, 
big data, and deep learning technology is the core driv-
ing force for the development of artificial intelligence. KG 
technology has also broad application prospects in the 
medical field [2], such as medical knowledge retrieval, 
auxiliary diagnosis, and treatment, electronic medical 
records, etc. The application research of this technology 
in the medical field will play an important role in solving 
the contradiction between the insufficient supply of med-
ical resources and the continuous increase in demand 
for medical services. KG is a graph that takes entities as 
labeled edges, and relations between entities as labeled-
edges, which is usually stored in the form of inter-con-
necter triples (also called facts), and one triple usually 
represent as (head entity, relation, tail entity).

However, the widespread incompleteness of the KG 
greatly limited the effect of its application [3], and the 
downstream tasks such as question answering cannot 
be effectively supported due to the lack of a large num-
ber of facts. For this reason, a large number of knowledge 
graph completion (KGC) technologies have been pro-
posed, which are trying to learn the reasoning model and 
infer new facts through the existed fact triples. KGC is an 
important task to solve the problem of the incompleteness 
of knowledge graphs. At present, knowledge reasoning 
methods mainly include the following three categories: 
(1) Embedding based methods translate entities and rela-
tions into a low-dimensional space, such as TransE [4], 
RESCAL [5], ComplEx [6], ANALOGY [7]. They achieve 
good results, but they only focus on the direct relations 
between entities and neglect the presence of indirect 
paths among entities in graphs; (2) Knowledge reasoning 
is a statistical relationship learning model that combines 
the probability graph model with the first-order predi-
cate logic, such as Markov logic network and its variants 
[8–10]. Its core idea is to bind weights to rules, which is 
able to soften the rigid constraints in the first-order predi-
cate logic; (3) Path-based knowledge reasoning is a classi-
fier model that learns the target relationship by taking the 
paths of entities as features, such as, PRA [11], Path-RNN 
[12], Single-Model [13], Att-Model [14], etc.

Path-based knowledge reasoning methods have the 
advantages of good performance and interpretability, and 
at the same time, there is no need to add additional logic 
rules. This article mainly focuses on this type of method 
and is committed to improving the current path-based 
knowledge reasoning performance on medical knowl-
edge graphs (MedKGs). In the knowledge graph, multiple 
triples can be connected through intermediate entities, 
and a path is usually defined as a sequence of entities and 
relationships. For example, as shown in Fig.  1, <肺静脉
畸形引流(anomalous pulmonaryvenous drainage), 相关
状(disease-related symptoms), 呼吸窘迫(respiratory dis-
tress)> and <呼吸窘迫(respiratory distress), 状相关科室
(symptom-related departments), 呼吸内科(respiratory 
medicine)> form a path through the associated inter-
mediate node “呼吸窘迫(respiratory distress)” . Based 
on this path, it can be inferred that there is a “相关科室
(disease-related departments)” relationship between “肺
静脉畸形引流(anomalous pulmonaryvenous drainage)” 
and “呼吸内科(respiratory medicine)” with paths such as 
“肺静脉畸形引流(anomalous pulmonaryvenous drain-
age)→相关状(disease-related symptoms)→鼓棰指(club-
bing digits)→状相关状(symptom-related symptoms)→
肺淋巴管肌瘤(pulmonary lymphangiomyomatosis)→
状相关科室(symptom-related departments)→呼吸内科
(respiratory medicine)” and “肺静脉畸形引流(anoma-
lous pulmonaryvenous drainage)→相关状(disease-related 
symptoms)→呼吸窘迫(respiratory distress)→状相关
(symptom-related disease)→血气胸(hemopneumotho-
rax)→相关科室 (disease-related departments)→呼吸内科
(respiratory medicine)”.

However, the typical methods have some shortcom-
ings. First of all, the previous method uses each path as 
an atomic feature [11], which results in a very large fea-
ture space that is difficult to train effectively. Secondly, 
previous methods take the paths as independent features 
and ignore their relationships of different atomic fea-
tures. It can be seen from the Fig. 1, that inferring rela-
tionships often need to rely on multiple paths between 
an entity pair, and different relations may have simi-
lar semantics, such as “状相关科室(symptom-related 
departments)” and “相关科室(disease-related depart-
ments)”. Thirdly, previous methods only consider t the 
structural information for reasoning [12], without using 
the textual semantic information of the symbols. Even 
different paths may have similar semantics, for example,“
肺静脉畸形引流(anomalous pulmonaryvenous drain-
age)→相关状(disease-related symptoms)→呼吸窘迫
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(respiratory distress)→状相关(symptom-related dis-
ease)→血气胸(hemopneumothorax)→相关科室(disease-
related departments)→呼吸内科(respiratory medicine)” 
and “肺静脉畸形引流(anomalous pulmonaryvenous 
drainage)→相关状(disease-related symptoms)→呼吸窘
迫(respiratory distress)→状相关科室(symptom-related 
departments)→呼吸内科(respiratory medicine)” own 
very close semantics.

Affected by the sparsity of the MedKG, it hinders the 
further improvement of the performance of traditional 
methods [3]. As shown in Fig. 2, the paths and entities 

in the knowledge graph are very sparse and are distrib-
uted with long tails, and 35.56% of entities and 41.84% 
of paths only appeared once. Some recent studies [13, 
14] began to combine multiple paths and incorporate 
entity information to enrich knowledge representation. 
However, they only considered the type information of 
the entity, in fact, an entity may contains multiple types 
and entities represent different types in different con-
texts. On the other hand, the textual information of 
entities and relationship also has rich semantic features, 
and it does not make full use of the syntax, grammatical 

Fig. 1 A subgraph in the Chinese symptom knowledge graph. The rectangles represent entities, the solid edges between entities represent the 
relationship between the entities connected in the path, and the dotted edges represent the relationship that combines the information on 
multiple paths to determine whether there is a relationship

Fig. 2 Long-tailed distribution of entities and paths in Chinese symptom knowledge graph
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patterns, and semantic features of large-scale text data, 
so the performance cannot be further improved due to 
the two aspects of entity sparseness and path sparse-
ness. The entities and relationships in the MedKG usu-
ally have names and labels in natural language, which 
can be combined into sentences. Therefore, an effective 
method to alleviate the above-mentioned sparsity prob-
lem is to use the textual semantic features of entities 
and relationships.

In fact, in the past two years, with the introduction of 
pre-trained language models such as ELMo [15], BERT 
[16], RoBERTa [17], XLNET [18], and GPT-3 [19], the 
semantic representation capabilities in general natural 
language processing (NLP) tasks have made great pro-
gress. These models can learn a high-quality contex-
tual representation of words and sentences from a large 
amount of unstructured text data, and achieve state-of-
the-art performance in many NLP tasks. Among them, 
the most representative method is BERT, which can 
capture rich semantic information in model parameters. 
BERT uses the bidirectional transformer encoder for pre-
training through masked language modeling (MLM) and 
next sentence prediction (NSP) tasks. For any natural 
language, pre-trained models such as BERT can supply 
numerical semantic representations with good generali-
zation performance.

Therefore, based on the above observations, in order 
to solve the shortcomings of traditional path-based 
knowledge reasoning methods and make full use of the 
semantic representation capabilities of pre-trained lan-
guage models, this paper proposes two new knowledge 
graph reasoning algorithms based on the textual seman-
tic representation of paths. Given an entity pair and a 
set of paths between the entity pairs, we model the task 
of symbolic reasoning in the medical KG as a numerical 
computing issue in textual semantic representation and 
using BERT encoding the statements of paths and entities 
text for capturing semantic features. We utilize the atten-
tion mechanism to learn the combined representation 
of multiple features, and then use the classifier model to 
predict whether there is a certain relationship between 
the entity pairs. The experimental results demonstrated 
that our method is 10.74% higher than the traditional 
PRA method on the public medical KG, and 5.83% higher 
than the state-of-the-art path-based knowledge reason-
ing method.

Methods
In this section, we first introduce pre-training language 
model and the overall framework of our models, and 
then introduces the details of the proposed algorithms. 
Some symbols we may use in the algorithms: the entity 

pair to be queried is (es, et), δ represents the query 
relationship, and the bold symbols denote the corre-
sponding vector or matrix. P(es ,et ) = {π1,π2,π3 . . . πm} 
represents the collection of paths between the entity pair 
(es, et),π = {w1,w2,w3 . . .wl} represents a sequence of 
path textual statements, which is composed of the names 
and descriptions of the relationships and entities con-
tained in the path.

Language model pre‑training
The standard language model is to input a natural lan-
guage text sequence by W = [w1,w1, . . . ,wn] , and then 
output a probability about this sequence. Different from 
the traditional feature-based language model [20, 21], 
fine-tuning approaches used the pre-trained model archi-
tecture and its parameters as a starting point for specific 
NLP tasks. The pre-trained models capture rich seman-
tic patterns from free text and achieve the best perfor-
mance in many downstream tasks. Recently, pre-trained 
language models have also been explored in the context 
of KG. Wang et  al. [22] learned the contextual embed-
dings on entity-relation chains (sentences) generated 
from random walks in KG, then used the embeddings as 
initialization of KG embeddings models like TransE [4]. 
Zhang et al. [23] incorporated informative entities in KG 
to enhance BERT language representation. By adding the 
names and descriptions of entities and relationships as 
input, Yao et al. [24] directly fine-tune BERT to calculate 
plausibility scores of triples without using the rich path 
information in the knowledge graph.

Overall model framework
On the basis of research [13, 14], this paper proposes two 
novel path-based reasoning methods and the overall frame-
work shown in the Figs. 3 and 4. Recently, there has also been 
researching on how to represent knowledge as natural lan-
guage [25–27]. On this basis, we use templates to represent 
entities and paths in CSKG into a textual statement, for exam-
ple, the entity textual statement of entity “枣树皮” (Jujube 
Bark) is “枣树皮, 药品, 中药.” (Jujube Bark, drug, traditional 
Chinese medicine.), and the path “肺静脉畸形引流(anoma-
lous pulmonaryvenous drainage)→ 疾病相关症状(disease-
related symptoms)→ 呼吸窘迫(respiratory distress)→ 症
状相关科室(symptom-related departments)→ 呼吸内科
(respiratory medicine)” can be represented as “肺静脉畸形
引流疾病的相关症状是呼吸窘迫, 呼吸窘迫症状的相关科
室是呼吸内科. (The related symptom of anomalous pulmo-
naryvenous drainage is respiratory distress, and the related 
department of respiratory distress is respiratory medicine.)”. 
To make full use of the contextual representation with rich 
semantic information, we use BERT to encode entity textual 
statements for enhancing the embedding of entities. Because 
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the path can be seen as a sequence of entities and relation-
ships, we followed Single-Model [13] and employ an RNN 
architecture to generate a vector representation for each path. 
In the second method, we use BERT to encode path textual 
statements for enhancing the embedding of paths. The path 
sequence is represented by each path sequence after the 
BERT encoding. The attention mechanism is used to com-
bine the semantic features of multiple paths. The semantic 
similarity score between paths and query relation is finally 

used to determine whether there is a query relationship 
between entity pairs.

BERT enhanced entity representation
As shown in Fig. 3, in this module, each relation and entity 
in path is first mapped to a vector representation, and the 
entity type textual statement will be encoded, and their 
token representations are fed into the BERT model archi-
tecture, which is a multi-layer bidirectional transformer 

Fig. 3 The architecture of BERT enhanced entity representation used to extract path vector representation. rdummy is a dummy relation

Fig. 4 The architecture of BERT enhanced path representation. The operation ⊕ denotes element-wise summation, and the operation ⊗ denotes 
weighted summation. The dotted line represents the attention mechanism
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encoder based on the original implementation described in 
[28], to obtain the entity text representation. Then concat-
enated with the entity types embedding. The final hidden 
vector of the special [CLS] token is denoted as C ∈ R

H , 
where H is the hidden state size in pre-trained BERT. The 
final hidden stateC corresponding to [CLS] is used as the 
entity statement representation:

where edt−1 denotes entity textual statement, and 
the operation 

⋃

 denotes concatenating two vectors, 
Ct−1 ∈ R

H . The notation et−1 denotes the representation 
of the t-1th entity symbol.

Then entity representation and relationship representa-
tion are composed sequentially in an RNN. At each RNN 
step t, the model consumes the representation of entity 
et−1(e0 = es) and a relation rt , and outputs a hidden state 
ht . To resist the sparseness of the entity and reduce model 
parameters, we map each entity to the averaged represen-
tation of its types. For simplicity, we still use et−1 ∈ R

d×d 
to denote the averaged type representation of entity et−1 . 
Here rt ∈ R

d , ht ∈ R
d , the RNN hidden state is given by:

where W1 ∈ R
d×d , W2 ∈ R

d×d , W3 ∈ R
d×k are RNN 

parameter matrices. f is a non-linear function. In the pro-
posed method, f = ReLU() . as shown in Eq. 4, the con-
text representation of entity pairs is given by:

where αδ
i  is the weight of path i when modelling the entity 

pair representation for query relation δ , and f = Tanh().
The weight for each path is as follow:

where zδj  measures how well input path πi and query rela-
tion δ matches, and is as follow:

where f = Tanh() , T ∈ R
d×d . After getting the query 

statement representation and the path context represen-
tation of the entity pair, calculate the probability that the 
entity pair has the query relationship:

(1)Ct−1 = BERT (edt−1)

(2)êt−1 = et−1

⋃

Ct−1

(3)ht = f
(

W1ht−1 +W2rt−1 +W3et−1

)

(4)eps,t
δ = f

(

N
∑

n=1

αδ
i πi

)

(5)αδ
i =

exp(zδi )
∑

j exp(z
δ
j )

(6)zδj = f (πiT )δ

(7)P(δ|es, et) = σ(eps,t · δ)

where σ is sigmoid function. Following Das et al. [14], we 
train a single model for all query relations. The model is 
trained to minimize the negative log-likelihood, and the 
simplified form of the objective function is defined as 
follows:

where �+
R  denotes the set of positive triples and �−

R  
denotes the set of negative triples. We also use the stand-
ard L2 norm of weights as a constraint function. The 
model parameters are randomly initialized and updated 
by considering a gradient step with a constant learning 
rate on the batch of training triples. In our experiment, 
we apply a range of learning rates to find out how this 
affects prediction performance. The training is stopped 
when the loss function converges to an optimal point.

BERT enhanced path representation
Take each sentence sequence π in the path set of 
the entity pair. The first position of the sequence is 
inserted by the classification mark symbol [CLS], 
and the last position is inserted by the [SEP] sym-
bol to represent the end of the sequence. After 
the BERT encoding, taking the final output hid-
den layer representation of the [CLS] symbol as 
the embedding of the path sequence, we can get 
the set of path textual statement representation 
P(es ,et ) = {π1,π2, . . . ,πn},π ∈ R

d . For example, The 
input path text is “[CLS] 肺静脉畸形引流疾病的相
关症状是呼吸窘迫 ,呼吸窘迫症状的相关科室是呼
吸内科. [SEP]” (The related symptom of anomalous 

(8)

L
(

�,�+
R ,�

−
R

)

=−
∑

es ,et ,δ∈�
+
R

logP(δ|es, et)

−
∑

ês ,êt ,�̂∈δ−R

log
(

1− P
(

δ̂|ês, êt
))

Table 1 Statistics of CSKG dataset

Stats Number

# CSKG triples 629,538

# Relation types 17

# Entities 59,881

# Paths 28M

Avg. paths/query relation 1.68M

Avg. path length 3.88

Max path length 7

Avg. training positive instances/query relation 19,799

Avg. training negative instances/query relation 14,929

Avg. positive test instances/query relation 4242

Avg. negative test instances/query relation 34,211
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pulmonaryvenous drainage is respiratory distress, 
and the related department of respiratory distress 
symptoms is the department of respiratory medi-
cine.), and it is fed into the BERT model as follow:

where pdi is the input path text. We use the final hidden 
vector of [CLS] token to represent the path representa-
tion πi . Then, like BERT enhanced entity representation, 
it uses the attention mechanism to combine multiple 
path information, and uses the same output layer and 
objective function (Eqs. 4–8).

Experiments and results
In this section, we first introduce the dataset and the 
details of experiment data preparation, followed by the 
metric (mean average precision, MAP) used to meas-
ure the performance of our methods and the baseline 
methods for relation classification. Then, hyperparam-
eter settings and overall experimental results, as well as 
comparison results in each relationship, are introduced. 
Finally, we present several cases to embody the effec-
tiveness of the attention mechanism and the interpret-
ability of reasoning.

Dataset
OpenKG is an open-source knowledge graph commu-
nity project advocated by the Chinese Information Pro-
cessing Society of China, it provides a large number of 
open-source knowledge graph resources. The Chinese 
symptom knowledge graph in the OpenKG was the main 
resource for our work, and we obtain the path by ran-
dom walks (RWs) to construct the experimental dataset, 
which we named CSKG.

Data preparation
This article builds an experimental dataset on the pub-
lic Chinese symptom knowledge graph and uses the 
random walk method to obtain the path between entity 
pairs. For negative examples, we randomly replacing the 
head entity, tail entity, and relationship in the triple with 
a uniformly sampled random entity or relation. In order 
to test and evaluate the ability of our proposed model to 
distinguish negative examples with the same relation-
ship, which greatly increases the difficulty of the model 
to distinguish between positive and negative examples, 
when we randomly destroy entities, 70% probability to 
choose entities with the same relationship as query rela-
tion. Models in comparison are all evaluated on a subset 
of facts hidden during training. The training set, valida-
tion set, test set are separated randomly according to 
the ratio of 7:1.5:1.5. In this dataset, the number of paths 

(9)πi = BERT (pdi)

between an entity pair ranges drastically from 1 to 622, so 
the robustness of methods in comparison can be better 
evaluated with this dataset. Statistics of CSKG dataset is 
listed in Table 1.

Comparative experiment with baseline models

• PRA [11]: This is the first method to implement path-
based reasoning. It was presented by Lao et al. [11]. It 
uses distinct features to represent the paths that con-
nect entities, creates a large feature matrix, and then 
trains a binary classification model on the feature 
matrix.

• Path-RNN [12]: is a model using RNN to pre-
dict binary target relations on the collected path 
sequences.

• Single-Model [13]: is an improved RNN model based 
on Path-RNN, which considers one model for all 
query relations, and utilizes LogSumExp, which is a 
smooth approximation to max operation, to conduct 
score pooling for multiple paths.

• Single-Model + Types [13]: is the best model achieved 
by Das et al. [13], which represents entities as a com-
bination of entities and an average function of all the 
entity types.

• Att-model [14]: is a model that using an attention 
mechanism instead of LogSumExp for multiple paths 
between entity pairs compared with a single model.

• Att-Model + Types [14]: is an improved model based 
on Att-Model with entities represented as a combi-
nation of entities and an average function of all the 
entity types.

Evaluation metrics
We use MAP as evaluation metrics, following recent 
works [13, 14] evaluating knowledge graph completion 
performance. MAP is the average of precision values at 
the ranks where relevant correct entities are ranked. The 
MAP score is computed using the following equation:

Table 2 Experiments results on CSKG dataset

Bold font shows best performance achieved in the experimental models

Model %MAP

PRA 43.78

Path-RNN 43.83

Single-Model 45.93

Att-Model 46.37

Single-Model + Types 48.24

Att-Model + Types 48.85

BERT enhanced entity representation 51.90
BERT enhanced path representation 54.52
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where Qr is the set of relationship types, AP is the average 
of precision scores at the rank locations of each correct 
result.

Implementation details
We set the baseline model according to the best per-
formance configuration in the original paper. All 
model parameters to be learned are initialized ran-
domly, and the optimization method is Adam. Hyper-
parameters of each model are tuned on development 
set, and training is stopped when the accuracy on 
the development set does not improve by 0.01 within 
the last 10 epochs. We apply a grid search approach 
to tune the hyperparameters in our model. We select 
the learning rate, γ  , for the Adam optimizer among 
0.0001, 0.001, 0.002, 0.0025, 0.003, the dimension 
of relation representation and the hidden states d, h 
among 50, 100, 150, 200, 250, 300, and the dimen-
sion of entity type m among 50, 100, 100, 150, 200, 
250, 300. Model are trained for 100 epochs, with 
batch size = 64, learning rate = 10−3 , and l2-regular-
izer � = 10−5 . Adam settings are as default: β1=0.9; 
β2 = 0.999 ; ǫ = 10−8.

(10)MAP =
1

|Qr |

∑

q∈Qr

AP(q)
Experimental results
We test the effectiveness of our method on 17 query rela-
tions and report the results in Table 2. From the results, 
we can observe that our algorithm achieves the best 
performance. Specifically, (1) The experiment of BERT 
enhanced path representation demonstrates the superior-
ity of our methods compared to other models after fusing 
the textual semantics of all entities and relationships. Our 
method achieves the best results, which is 5.83% higher 
than the previous best method, Att-Model + Types, 
which demonstrates that the inference performance 
can indeed be further improved after adopting textual 
semantic information of paths, which effectively alleviate 
the sparsity problem of paths; (2) BERT enhanced path 
representation is also 2.05% higher than the previous 
best method. It shows that only incorporating the textual 
semantics of entity types can also alleviate the problem 
of entity sparsity. PRA and Path-RNN suffer significantly 
because they treat each query relation separately. Single-
Model and Att-model suffer from the sparseness of KG, 
and cannot surpass our methods.

To better show the strength and weakness of the 
proposed methods against Single-Model + Types and 
Att-model + Types, we further make a more detailed 
comparison for each relation. First, we compare the 
MAP scores of several methods on 17 relationships in 
the dataset. The results are listed in Table 3. It can be 

Table 3 %MAP performance on each relation

Bold font shows best performance achieved in the experimental model. The value in parentheses indicates the percentage increase compared to the best score 
between Single-model + types and Att-model + types

Relations Single‑model + 
types

Att‑model + 
types

BERT enhanced entity 
representation

BERT 
enhanced path 
representation

检查相关状 (Examination-related symptoms) 38.58 50.79 53.31(+2.52) 38.84(−11.95)

检查相关部位 (Examination-related body parts) 52.90 51.64 52.75(−0.15) 70.01(+17.11)

相关状 (Disease-related symptoms) 34.35 45.51 48.43(+2.92) 38.56(−6.95)

相关科室 (Disease-related departments) 43.56 42.27 47.23(+3.67) 56.24(+12.68)

检查相关检查 (Examination-related examinations) 57.35 49.85 53.88(−3.47) 58.29(+0.94)

状相关 (Symptom-related diseases) 39.54 46.81 47.12(+0.31) 49.48(+2.67)

相关检查 (Disease-related examinations) 43.64 38.28 38.23(−5.41) 56.42(+12.79)

状相关科室 (Symptom-related departments) 50.55 51.49 57.24(+5.79) 53.67(+2.18)

状相关状 (Symptom-related symptoms) 57.59 71.44 73.78(+2.34) 48.75(−22.69)

相关 (Disease-related diseases) 37.00 44.33 48.61(−4.28) 34.07(−10.26)

相关药品 (Disease-related drugs) 51.29 47.07 56.34(−5.05) 58.61(+7.32)

状相关部位 (Symptom-related body parts) 42.55 39.86 42.34(−0.21) 47.45(+4.9)

检查相关科室 (Examination-related departments) 44.56 40.16 41.43(−3,13) 65.55(+20.99)

状相关检查 (Symptom-related departments) 53.50 47.53 56.73(+3.23) 65.34(+11.84)

检查相关 (Examination-related diseases) 58.17 56.05 58.43(+0.26) 43.80(−14.37)

相关部位 (Disease-related body parts) 58.58 56.95 57.66(−0.92) 81.00(+22.42)

状相关药品 (Symptom-related drugs) 56.28 50.39 48.81(−7.39) 63.40(+7.12)
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observed that our methods achieved the best perfor-
mance in all relationships. Among them, the “相关部
位(disease-related body parts)” category has the larg-
est improvement 22.42% (from 44.56 to 65.55%). This 
result fully demonstrates that our methods improve the 
shortcomings of Single-Model and Att-model.

Case study
In this section, we use two cases to embody the effec-
tiveness of using the attention mechanism and the 
interpretability of reasoning. We choose the query “
状相关状(两眼上视障碍, 耳聋)?” (Symptom-related 
symptoms(Binocular superior visual impairment, Epi-
cophosis)?) and “相关药品(尿所致骨髓, 甲酚皂溶液)?” 
(Disease-related diseases(Bone marrow disease caused 
by diabetes, Cresol soap solution)?), and select two of 
the positive examples. Then we observe the attention 
weights separately. High attention weight and low atten-
tion weight case for path textual statement are shown in 
Table 4. It can be seen from the table, that the weight of 
the path textual statement closer to the query semantics 
will be higher, while the path textual statement with low 
attention tends to lack the ability of prediction.

Discussion
Experimental results have demonstrated the superiority 
of our model in both reasoning effectiveness and inter-
pretability, which is the first attempt to employ BERT and 
textual path representations for MedKGC. There is a limi-
tation affecting our works. The huge number of param-
eters of BERT will reduce the speed of model training 
and inference. But we think this is a trade-off for better 

performance. By applying knowledge distillation [29] tech-
nology, this problem can be alleviated, and we leave this for 
future research. In the future work, we will consider fur-
ther exploring the joint knowledge graph structure and text 
information for modeling, which is a direction worth stud-
ying. At the same time, we will focus on language models 
pre-training with more text data, such as GPT-3. In addi-
tion, we are also preparing to apply our methods to more 
tasks related to medical knowledge graph reasoning, such 
as medical knowledge graph question answering.

Conclusions
This paper points out the shortcomings of current path-
based reasoning methods and proposes two new medi-
cal knowledge graph reasoning algorithms based on the 
textual semantic representation of paths, which effectively 
alleviate the problem that the sparseness of entities and 
paths in the medical KG. In our experiments, we show that 
our method performs better than recent state-of-the-art 
methods on MedKGC task and can efficiently represent the 
paths between an entity pair to predict their missing rela-
tion. We use the pre-trained language model to enhance 
the representations of entities and paths, and the atten-
tion mechanism is used to combine the semantic features 
of multiple paths. We conducted an empirical evaluation of 
this method over a public challenging medical KG, and the 
experimental results have demonstrated that our method 
has better performance than previous path-based relational 
reasoning methods. We believe that integrating text infor-
mation of entities and relationships, by a large number of 
text semantic patterns encoded in the pre-trained language 
model, is a promising approach for medical knowledge 
reasoning.

Table 4 Examples of attention mechanism in CSKG dataset

Query 状相关状(两眼上视障碍, 耳聋)?
Symptom-related symptoms(Binocular superior visual impairment, Epicophosis)?

High weight 两眼上视障碍症状的相关症状是听觉下降,听觉下降症状的相关症状是耳聋。
The related symptom of the symptoms of upper binocular vision disorder is hearing loss, the related symptom of hearing loss is deafness.

Low weight 两眼上视障碍症状的相关疾病是偏头风, 偏头风疾病的相关疾病是小儿偏头痛, 小儿偏头痛疾病的相关症状是复视, 复视症状的
相关症状是耳聋.
The related disease of the symptoms of visual disturbance in both eyes is migraine, the related disease of migraine is migraine in chil-
dren, and the related symptom of migraine in children is diplopia, and the related symptom of diplopia is deafness.

Query 相关药品(尿所致骨髓, 甲酚皂溶液)?
Disease-related diseases(Bone marrow disease caused by diabetes, Cresol soap solution)?

High weight 糖尿病所致骨髓疾病的相关症状是脊髓病变, 脊髓病变的相关药品是甲酚皂溶液.
The related symptom of bone marrow disease caused by diabetes is spinal cord lesions, and the related medicine for spinal cord lesions 
is cresol soap solution.

Low weight 糖尿病所致骨髓疾病的相关疾病是周围神经病损,周围神经病损疾病的相关症状是感觉过敏, 感觉过敏症状的相关疾病是神劳, 
神劳疾病的相关症状是无力, 无力症状的相关疾病是重症肌无力危象, 重症肌无力疾病相关药品是甲酚皂溶液.
The related disease of bone marrow disease caused by diabetes is peripheral neuropathy, the related symptom of peripheral neuropa-
thy is hyperesthesia, the related disease of hyperesthesia is mental fatigue, the related symptom of mental fatigue is weakness, and the 
related disease of weakness is myasthenia gravis, and the related medicine for myasthenia crisis is cresol soap solution.
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