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Abstract 

Background:  In recent years, with the development of artificial intelligence, the use of deep learning technology 
for clinical information extraction has become a new trend. Clinical Event Detection (CED) as its subtask has attracted 
the attention from academia and industry. However, directly applying the advancements in deep learning to CED 
task often yields unsatisfactory results. The main reasons are due to the following two points: (1) A great number of 
obscure professional terms in the electronic medical record leads to poor recognition performance of model. (2) The 
scarcity of datasets required for the task leads to poor model robustness. Therefore, it is urgent to solve these two 
problems to improve model performance.

Methods:  This paper proposes a combining data augmentation and domain information with TENER Model for Clini-
cal Event Detection.

Results:  We use two evaluation metrics to compare the overall performance of the proposed model with the exist-
ing model on the 2012 i2b2 challenge dataset. Experimental results demonstrate that our proposed model achieves 
the best F1-score of 80.26%, type accuracy of 93% and Span F1-score of 90.33%, and outperforms the state-of-the-art 
approaches.

Conclusions:  This paper proposes a multi-granularity information fusion encoder-decoder framework, which applies 
the TENER model to the CED task for the first time. It uses the pre-trained language model (BioBERT) to generate 
word-level features, solving the problem of a great number of obscure professional terms in the electronic medical 
record lead to poor recognition performance of model. In addition, this paper proposes a new data augmentation 
method for sequence labeling tasks, solving the problem of the scarcity of datasets required for the task leads to poor 
model robustness.

Keywords:  Data augmentation, Pre-trained language model, Transformer, Clinical Event Detection, Electronic 
medical record
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Background
In recent years, with the development of deep learn-
ing, and the increasing demand for medical informa-
tion from medical information technology applications 
such as medical Q & A and drug-assisted research, the 
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use of natural language processing (NLP) technology to 
effectively extract medical information from electronic 
medical records has become vital. On account of the 
importance of this subject, the 2012 Informatics for Inte-
grating Biology and the Bedside (i2b2) proposed a shared 
[1], which is the identification and linking of mentions 
of temporal expressions (TEs) (eg, dates, times, dura-
tions, and frequencies) and clinically relevant events (eg, 
patient’s problems, tests, treatments) in narratives. As its 
subtask, Clinical Event Detection (CED) has been widely 
studied because of its potential help in constructing clini-
cal event lines, assisted diagnosis and other tasks.

The task of Clinical Event Detection is to identify the 
boundary of the event in the electronic medical record 
and determine its type. The event detection to identify 
the boundary and determine type is usually considered 
as a sequence labeling task. The task of Clinical Event 
Detection (CED) and named entity recognition (NER) 
belong to the sequence labeling task. Therefore, it is feasi-
ble to directly apply the advancement of NER technology 
to Clinical Event Detection tasks. Past research mainly 
includes methods based on traditional machine learn-
ing and deep learning. After 2012 i2b2 challenge task 
is proposed, The team involved in the task has adopted 
many different methods: rule-based, support vector 
machine (SVM) [2], conditional random field (CRF) [3], 
Markov Logic and some combination of these methods, 
the best performance is the CRF-based model proposed 
by Beihang University et al [1]. Roberts et al. [4] used a 
combination of supervised, unsupervised and rule-based 
method, and the task ranked third. First, it uses the CRF 
classifier to identify event boundaries, then use an inde-
pendent SVM classifier for type detection. Kovačević 
et  al. [5] combined rules and machine learning and 
achieved F1 measure of 79.85%. it proposed the event 
CRF models were trained on relevant (type-specific) 
subsets of the training data and they all shared some fea-
ture groups. Cyril et al. [6] built Random Forest models 
to identify event modality and polarity. The emergence 
of deep learning greatly reduces the difficulty of obtain-
ing text features. Zhu et al. [7] proposed a bidirectional 
LSTM-CRF model is trained for clinical concept extrac-
tion using the contextual word embedding model, it 
achieved the best performance among reported baseline 
models on the i2b2 2010 challenge dataset. Recently, 
research on the 2012 i2b2 dataset has decreased, but the 
NER task has been widely studied. The LSTM and CRF 
models greatly improve the performance of the NER task 
[8]. Chen et al. [9] proposed a simple but effective CNN-
based network for NER, gated relation network (GRN), 
which is more capable than common CNNs in capturing 
long-term context. graph neural networks (GNNs) are 
also widely used in NER tasks [10].

Bidirectional long short-term memory network (BiL-
STMs) is widely employed in sequence labeling tasks 
owing to its high power to learn the contextual repre-
sentation of words [11]. But the defect of BiLSTM is that 
needs to be processed sequentially over time, it cannot 
be calculated in parallel. As for Transformer model, it 
not only advantage in modeling the long-range context, 
but fully make use of the concurrence power of GPUs. 
However, the position embedding of Transformer has 
no direction-aware, when it is projected into the query 
and key space of self-attention, the property of distance-
awareness also disappears. Therefor, Its performance 
in the sequence labeling task is not like in other fields 
so good. Yan et  al. [12] introduced the adapting Trans-
former encoder (TENER) model it solved the position 
embedding problem. However, experiments have proved 
that the effect is unsatisfactory only using TENER model 
for CED task, Analysis of the reasons is mainly due to the 
lack and particularity of clinical data.

Data augmentation is the most widely used way to 
solve the problem of lack of data. Previous automatic 
data augmentation models are often used in speech [13] 
and image [14] and can help train more robust mod-
els in smaller datasets. However, the data augmentation 
technology in NLP has not been extensively studied. 
Wei et  al. [15] proposed easy data augmentation (EDA) 
techniques for boosting performance on text classifica-
tion tasks is synonym replacement, random insertion, 
random swap and random deletion. Zhu et al. [16] used 
model to generate data is a data augmentation mothed 
for machine reading comprehension. The data augmen-
tation of the sequence labeling task mainly solves the 
problem of the imbalance of the data type samples of the 
NER task [17]. There are other methods, such as back 
translation [18], data noise as smoothing [19] and predic-
tive language models [20]. The past text data augmenta-
tion methods are random and may change the structure 
of sentences. For sequence labeling tasks, if the sentence 
structure is changed, the previous methods will be infea-
sible. This paper proposes a novel data augmentation 
method for sequence labeling tasks, use the CheckList 
[21] to find replacement words to replace some words in 
the sentence, thereby constructing the same format sen-
tence as the dataset. In particular, the replacement words 
contain sentence information, namely, corresponding the 
synonyms or other related words of a word are not sim-
ply searched in the dictionary, but the synonyms or other 
related words of the corresponding sentence. As shown 
in Fig. 1, using CheckList to find the synonyms word to 
replaceable “hot” in the sentence “My drink is hot” are 
“spicy” and “raging”. But using CheckList to find in the 
sentence “It is hot outside”, can not find the synonym 
word to replaceable “hot”.
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Because of the particularity of clinical data, direct 
application of NLP advancements to clinical text mining 
often yields unsatisfactory results. Lee et  al. [22] inves-
tigate how the recently introduced pre-trained language 
model BERT can be adapted for biomedical corpora, 
and proposed a domain-specific language representa-
tion model pre-trained on large-scale biomedical corpora 
(BioBERT) to solve this problem. Therefore, this article 
adopts the BioBERT for word-level embedding to solve 
the problem of poor model performance caused by the 
particularity of clinical data. In addition, in the past few 
years, in order to alleviate the data sparsity and OOV 
problem in word representation, Lample et  al. [23], Ma 
et  al. [24] and Liu et  al. [25] have added character-level 
coding to the model of the English NER task and proved 
its effectiveness. For the Chinese NER task, in order to 
avoid segmentation errors, Zhang et  al. [26] proposed 
a lattice structured LSTM model, which encodes a 
sequence of input characters and all potential words that 
match a lexicon. However, since the lattice structure is 
complex and dynamic, most existing lattice-based mod-
els are hard to fully utilize the parallel computation of 
GPUs, Li et al. [27] converted the lattice structure into a 
flat structure consisting of spans. The character-level fea-
tures of words may show word features, for example, the 
beginning of “un” generally indicates negative character-
istics. Therefore, adding character-level embedding will 
also have an impact on improving the performance of the 
model. Convolutional Neural Networks (CNNs) widely 
applied for character embedding [28], but its specified 
kernel size, it cannot recognize n-gram and discontinu-
ous characters, so adopting TENER to model the charac-
ter-level features in this paper [12].

In summary, the contributions of this article are as 
follows: (1) For the first time, we applied TENER to 
the CED task for multi-granularity information feature 
extraction. (2) We use the pre-trained language model 
BioBERT for word-level embedding, which effectively 
solves the problem of the particularity of clinical data. 
(3) We propose a new method for sequence labeling 
tasks, which effectively solves the problem of lack 
of datasets in the clinical field. Experimental results 
show that our proposed model is significantly and 
consistently superior to the previous state-of-the-art 
technology.

Methods
This paper proposes a multi-granularity information 
fusion encoder-decoder framework. The model in 
this article mainly includes four parts: data augmen-
tation, embedding layer, encoding layer, and decoding 
layer. Figure  2 illustrates an overview of our model, 
where “Char Rep”. is character-level encoder. First, the 
word-lever embedding generated by the pre-trained 
language model in the medical field (BioBERT) and 
the character-lever embedding generated by the 
Transformer are merged and used as the input of the 
encoder. Then, use the adaptive Transformer encoder 
(TENER) to further integrate the information. Finally, 
use CRF to decode and assign category labels to each 
word. In addition, this paper proposes a new data aug-
mentation method, which adopts CheckList to gener-
ate a wide variety of data, improving the generalization 
ability of the model. We will describe each part in 
detail in the following sections.

Data augmentation
The size and quality of dataset have a great impact on 
model performance, but it is usually cumbersome to 
collect. This paper proposes a new data augmentation 
method for sequence labeling tasks, which needs to use 
CheckList [21]. CheckList is a new evaluation methodol-
ogy for comprehensive behavioral testing of NLP models. 
it guides users in what to test, by providing a list of lin-
guistic capabilities, which are applicable to most tasks. It 
includes a matrix of general linguistic capabilities and test 
types that facilitate comprehensive test ideation, as well 
as a software tool to generate a large and diverse number 
of test cases quickly. This article uses CheckList to gener-
ate sentences with the same format as the original data, 
that is, only replace the non-event words in the origi-
nal data, and replace them with synonyms, antonyms, 
hypernyms, hyponyms and related-words (hyponyms 
of hypernyms). For a sentence in the dataset, this article 
will first exclude the word representing the event in the 
sentence, and then use CheckList to find and replace. It 
mainly generates data by replacing one replaceable word 
and replacing all replaceable words, we think that anto-
nyms may have a negative effect on the training of the 
model, so we also used the method of removing anto-
nyms to generate new sentences. As shown in the Fig. 3, 
where the words marked in blue are events, and the words 
marked in yellow are the replaceable words. [1] means 
synonyms, [2] means antonyms, [3] means hypernyms, [4] 
means hyponyms, [5] means related-word. The sentences 
in the picture are from the 2012 i2b2 challenge dataset, 
the hypernyms of the replaceable word “worked” corre-
sponding to this sentence is “set”, the hyponym is “cut”, 

Fig. 1  An example of the characteristics of related words in data 
augmentation
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and the related-word is “put”, it does not have synonyms 
and antonyms. It should be pointed out that the Check-
List [21] may find multiple related words, that is, there 

may be multiple corresponding synonyms, and there may 
be multiple other related words. Since constructing too 
many sentences may not be conducive to the training of 

Fig. 2  The framework of our model

Fig. 3  Examples of replacement words, where the words marked in blue are events, and the words marked in yellow are the replaceable words. [1] 
means synonyms, [2]  means antonyms, [3]  means hypernyms, [4] means hyponyms, [5] means related-word
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the model, this article only uses the first relevant word to 
construct enough new sentences.

After finding the related words, this article replaces the 
replaceable words in the original sentence according to 
the priority order of related words (synonyms → anto-
nyms → hypernyms → hyponyms → related-word) to 
generate new sentences. Since the original sentence is too 
long, we intercept a part of the sentence to show the con-
structed new sentence. Based on the original sentence 
“She has been worked up with barium enema 09/97.”, 
we constructed new sentences as shown in the Table  1, 
where “All” means replacing all replaceable words, “All-
antonyms” means deleting antonyms and then replacing 
all replaceable words, “One-antonyms” means deleting 
antonyms and then replacing one replaceable word.

Embedding layer
Character‑level embedding
The character-level features encoder is shown in Fig. 4, it 
uses TENER and fully connected network(FC) model on 
the character sequence wc = c1, c2 . . . cwl (wl represents 
the number of characters in the longest word, namely, the 
maximum length of the word). Each character cj is repre-
sented using:

where ec denotes a character embedding lookup table. 
The TENER takes in a Character-level representation 

(1)hcj = ec(cj)

matrix Hc =
[

hc1; h
c
2; . . . ; h

c
wl

]T , Hc ∈ R(wl×cd) , where cd 
is the character-level embedding dimension. Then, calcu-
late the output of the TENER layer using the equations 
below:

where h represents the head index, Wh
q ,Wh

v ∈ Rcd×cdk are 
learnable parameters, Kh is split H into cd/cdk partitions 
in the second dimension, usually cdk × n = cd , n is the 
number of heads in Eq.  7, Rt−j is the relative positional 
embedding, and Rt−j ∈ Rcdk ; t and j are index of the tar-
get token and context token, i is in the range [0, dk/2] . in 
Eq.  4, Ahrel

t,j  is attention score between two tokens with 
relative positional embedding, Qh

t K
h
j

T is the attention 
score between two tokens, Qh

t R
T
t−j is the t token’s bias on 

certain relative distance, u ∈ Rcdk , v ∈ Rcdk are learnable 
parameters, uKh

j

T is the bias on the j token, vRT
t−j is the 

bias term for certain distance and direction. The softmax 
in Eq. 5 is along the last dimension. Eq. 8 means concat-
enation in the last dimension. Calculate the output of the 
FC layer using the equations below:

where W1 ∈ Rcd×cdff ,W2 ∈ Rcdff ×cd
, b1 ∈ Rcdff , b2 ∈ Rcd , cdff  is a 

hyper-parameter, FFN (H ′) ∈ Rwl×cd . In order to make 
the model adjustable for the character-level repre-
sentation dimension of words, this paper adds a fully 
connected layer, and finally the character-level represen-
tation of the word hc is obtained by maximum pooling 
according to the penultimate dimension, hc ∈ Rcd.

Word‑level embedding
In order to solve the problem of the particularity of clini-
cal data, this article uses BioBERT (a domain-specific 
language representation model pre-trained on large-
scale biomedical corpora) [25]. BioBERT initializes 
weights from BERT, which is pre-trained on the English 

(2)Qh,Kh,Vh = HcWh
q ,H

c,HcWh
v

(3)

Rt−j =

[

. . . sin

(

t − j

100002i/dk

)

cos

(

t − j

100002i/dk

)

. . .

]T

(4)Ahrel

t,j = Qh
t K

h
j

T
+ Qh

t R
T
t−j + uKh

j

T
+ vRT

t−j

(5)Attn(Qh,Kh,Vh) = softmax(Ahrel)Vh

(6)headh = Attn(Qh,Kh,Vh)

(7)H ′ = MultiHead(Hc) = [head(1); . . . ; head(n)]

(8)FFN (H ′) = max(0,H ′W1 + b1)W2 + b2

Table 1  Examples of data augmentation, where the bold part 
indicates the changed word in the sentence

Mothed Data augmentation

All She have been set down with barium enema 09/97.

All-antonyms She have been set up with barium enema 09/97.

One-antonyms She have been work up with barium enema 09/97.

One-antonyms She has been set up with barium enema 09/97.

Fig. 4  Details of Char Rep
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Wikipedia and Books Corpus general domain corpus. 
Then, BioBERT is pre-trained on PubMed abstract and 
PMC full-text article biomedical corpus. Specifically, 
it uses pre-trained BioBERT on PubMed for 1M steps 
model, this version as BioBERT v1.1 (+PubMed). Fine-
tuned based on this model, the BioBERT model takes 
in word sequence s = w1,w2 . . .wl (l represents the 
maximum sentence length), Calculate the output of the 
BioBERT layer using the equations below:

where Hw ∈ Rl×wd , wd is the word-level embedding 
dimension, the model limits it to a multiple of 768. This 
article is the last BioBERT layer, so the size is 768.

Encoding layer
The character-level features of a sentence is expressed as 
Hc = [hc1, h

c
2, . . . , h

c
l ]
T ,Hc ∈ Rl×cd ,Join it and The word-

level features of a sentence Hw along the last dimension 
using the equations below, where Hw ∈ Rl×wd:

The TENER takes in a Character-level and word-level 
representation matrix H ,H ∈ Rl×(cd+wd),the subsequent 
calculation is the same as the character-level TENER. We 
simply express it as the following formula:

Where H ′ ∈ Rl×(cd+wd) , In order to adapt the output 
dimension of TENER to the input of CRF, we added a 
fully connected layer. The specific calculation formula is 
as follows:

where W1 ∈ R(cd+wd)×df , b3 ∈ Rdf , df  is a hyper-param-
eter. the output dimension of the fully connected layer 
(FC) is l × df  , The value of df  is the number of label types.

Decoding layer
The output of TENER layer and FC layer is expressed 
as H = [h1, h2, . . . , hl]

T ,H ∈ R(l × df ) , it is input to the 
CRF layer to predict the corresponding tag sequence. The 
probability of a label sequence Y = y1, y2 . . . yl is

Where y′ represents an arbitary label sequence, Wyi
CRF 

is a model parameter specific to yi , and b(yi−1,yi)
CRF  is a bias 

(9)Hw = BioBERT (s)

(10)H = [Hc;Hw]

(11)H ′ = TENER(H)

(12)FC(H ′) = H ′W3 + b3

(13)P(y|H) =
exp(

∑

i(W
yi
CRFhi + b

(yi−1,yi)
CRF ))

∑

y′ exp(
∑

i(W
yi
CRFhi + b

(yi−1,yi)
CRF ))

specific to yi−1and yi . Finally, the Viterbi Algorithm is 
used to find the path achieves the maximum probability.

Results
Dataset
To evaluate our proposed model, we experiment on 2012 
i2b2 challenge dataset, the training corpus consists of 
190 electronic medical records, which contains 2250 sen-
tences (The number after adjusting the sentence length), 
and the test corpus of 120 electronic medical records, 
which contains 1741 sentences (The number after adjust-
ing the sentence length), event types include clinical 
department, evidential, occurrence, problem, test, treat-
ment. The proportion of each type is shown in the Fig. 5. 
The 2012 i2b2 challenge dataset does not have develop-
ment set, this article divides the test set into a test set and 
a development set at a ratio close to 1:1. Among them, 
there are 821 sentences in the development set, 920 sen-
tences in the test set.

Evaluation metrics
This paper Clinical Event Detection is a sequence labeling 
task, standard precision (P), recall (R) and F1-score (F) 
are used as evaluation metrics, The calculation method 
is:

where TP represents the number of events predicted 
as events, FP represents the number of non-events 

(14)P =
TP

TP + FP

(15)P =
TP

TP + FN

(16)F =
2× P × R

P + R

Fig. 5  Distribution of clinical event type
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predicted as events, and FN represents the number of 
events predicted as non-events, this is strict matching, 
that is, span predictions must be completely consist-
ent. In order to prove the effectiveness of the model, 
this article also uses the same evaluation metrics as 2012 
i2b2 challenge (Span F1-score and Type accuracy) [1]. 
We used the Span F1-score, the harmonic mean of pre-
cision and recall of the predict output span against the 
gold standard span to evaluate event span detection per-
formance. The calculation of Span F1-score is the same 
as the calculation of the previous F1-score evaluation 
metrics. It is worth noting that the Span F-score is leni-
ent matching (predict event span overlap with the gold 
standard span). For event types, we calculated classifica-
tion accuracy, that is, the percentage of correctly identi-
fied event types for the events whose spans are detected 
correctly, the specific calculation process is as follows:

where “pred.type” means predict type output , “gold.type” 
means gold standard type,“ pred.span” means predict 
span output , “gold.span” means gold standard span.

Experimental setup
In the process of data preprocessing, in order to solve 
the large gap in sentence length, we split the sentence 
according to several punctuation marks. such as “,”, “;” etc, 
these punctuation marks can be used to break the sen-
tence, the sentence is still complete. Then join several 
short sentences that are adjacent but whose total length 
does not exceed the maximum length. Because some 
special characters have their own characteristics, this 
article will deal with them to increase accuracy, such as 
“’s”, splice it directly to the previous word, and we replace 
all digits with “0”. In addition, we use the data augmen-
tation method of this article to expand the training set. 
After the training set is expanded with different degrees 
mothed of data, the number of sentences is distributed 
as shown in the Table 2. Data augmentation is performed 
in a way that only replaces one replaceable word, a large 
number of sentences will be generated, therefore, we will 
also randomly sample different proportions of sentences 

(17)P =
|pred.type

⋂

glod.type|

|pred.span
⋂

glod.span|

for training (20%, 40%, 60%, 80%, 100%), the number of 
these sentences is displayed in the Table  5 of the result 
analysis section.

In the experiment based on the CED task, we use the 
BIOES tag schema. For character-level embedding, we 
set randomly initialized character embedding size cd to 
30, the number of Transformer layers is 1, the number of 
heads n is 3, and the dimension of the middle FC layer 
cdff  is 60. For word-level embedding we only take the last 
layer, the dimension is 768. For encoding layer, the num-
ber of Transformer layers is 2, the number of heads n is 
8. the batch size for training is 16, epochs is 100, we use 
SGD and 0.9 momentum to optimize the model. During 
the optimization, we use the triangle learning rate where 
the learning rate rises to the pre-set learning rate (0.0008) 
at the first 1% steps and to 0 in the left 99% steps [29].

Experimental results and analysis
Evaluation on CED
We compare proposed model with the latest model on 
the 2012 i2b2 challenge dataset. In addition, we will also 
apply the latest model for NER to the data set of this arti-
cle for comparative experiments. The 2012 i2b2 challenge 
test results are shown in Tables 3 and 4.

The overall results of the model using P, R and F evalu-
ation metrics are shown in Table  3. In the first block, 
the model combines rule-based and machine learning 
approaches that rely on morphological, lexical, syntactic, 
semantic, and domain specific features [5]. In the second 

Table 2  Sentence numbers after data augmentation

Augmentation method Number

No data augmentation 2250

Replace all replaceable words 4393

Replace all replaceable words without antonyms 4380

Replace one replaceable word without antonyms 15763

Table 3  Results of Precision, Recall and F1-score metrics, where 
the bold part indicates the best result

Model Precision Recall F1-score

Rule-based and machine 
learning [5]

81.47 78.05 79.85

BiLSTM_CRF 74.84 52.72 61.86

ELMo_TENER [12] 74.54 78.05 76.26

Ours 81.01 79.53 80.26

Table 4  Results of Span F1-score and Type accuracy metrics, 
where the bold part indicates the best result

Model Span F1-score Type accuracy

Beihang University et al. (CRF) [1] 91.66 86.00

Vanderbilt University (CRF _SVM) [1] 90.00 84.00

The University of Texas (CRF_SVM) [1] 89.00 80.00

supervised,unsupervised and rule-
based [4]

89.33 80.45

TENER (the Glove 100d) [12] 74.24 75.05

Ours 90.33 93.00
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block, we give the model performance based on BiLSTM, 
the model uses TENER for character level embedding 
and the Glove 100d pre-trained embedding for word level 
embedding [30]. In the third block of, we give the model 
performance based on Transformer, the model uses 
TENER for character level embedding and the ELMo 
[31] for word level embedding. In the last block, we give 
the experimental result of our proposed model, where 
data augmentation is “replace all without antonyms”. We 
can observe that our proposed model outperforms other 
models. it improves the F1-score from 79.85 to 80.26% 
on overall performance. Compared with the TENER, 
our model improves the F1-score from 76.26 to 80.26%. 
Zhu et  al. [7] proposed model on the i2b2 2010 chal-
lenge dataset and the result is higher than this article, this 
is due to the dataset of this article has added three new 
event types : evidential, occurrence and clinical depart-
ment, in particular, the evidential and occurrence event 
types seem more difficult to detect than other event types 
[1].

The overall results of the model using span F1-score 
and type accuracy evaluation metrics are shown in 
Table  4. The first three block are the results of the top 
three participating in the 2012 i2b2 challenge. The forth 
block used a combination of supervised, unsupervised 
and rule-based method, and the task ranked third. First, 
it identifies event boundaries with a CRF classifier. Then 
it detects type using separate SVM classifiers [4]. The 
fifth block, we give the model performance based on 
Transformer, the Glove 100d pre-trained embedding as 
word-level embedding and model uses TENER as char-
acter-level embedding and encoder. In the last block, 
we give the experimental result of our proposed model. 
We can observe that our proposed model Span F1-score 
is worse than the highest result 1.33%, but our method 
improves the Type accuracy score from 86 to 93%.

Analysis of data augmentation
Data augmentation is a widely used method for dealing 
with insufficient data. In this section, data augmentation 
with different degrees methods are used to realize the 
task of CED. It is based on the TENER model (word-level 
encoding is Glove 100d pre-trained embedding [29]) and 
based on our model for comparison experiments. As 
shown in the Table  5, it is F1-scores in data augmenta-
tion methods of a variety of different degrees. Where, 
“Number” means the number of sentences in the training 
set after data augmentation, “20%, 40%, 60%, 80%, 100%” 
means selecting some sentences at random to augment 
training set, “the Glove 100d” means based on the TENER 
model, “BioBERT” means based on our model. Compar-
ing the results before and after data augmentation proves 
that the data augmentation method in this article is effec-
tive. Comparing the results of containing antonyms and 
not containing antonyms, we find that data augmenta-
tion without antonyms is more beneficial to the model. 
Comparing the results produced by replacing one word 
and replacing all words, we found that only replacing one 
replaceable word and increasing the training set to 7642 
and 10344 sentences can exceed the result of replacing all 
replaceable words and increasing the training set to 4380 
sentences. Therefore, we come to a conclusion,namely,It 
is more effective to replace all replaceable words without 
losing performance than replacing only one replaceable 
word. we find that the prediction result does not increase 
as the number of sentences in the training set increases. 
It will reach saturation by a certain order of magnitude. 
Based on the comprehensive consideration of training 
speed and performance, the data augmentation degree 
used in this paper model is “Replace all replaceable words 
without antonyms”.

Ablation study
We examine the contributions of four main components, 
namely, data augmentation , BioBERT word-level embed-
ding and TENER character-level embedding and encoder. 

Table 5  Comparison results of data augmentation, where the bold part indicates the best result

Augmentation method Number F1-score (the Glove 100d) F1-score 
(BioBERT)

No data augmentation 2250 74.24 76.26

Replace all replaceable words 4393 74.97 80.08

Replace all replaceable words without antonyms 4380 75.28 80.26
Replace one replaceable words without antonyms_20% 4935 74.86 79.96

Replace one replaceable words without antonyms_40% 7642 75.39 79.96

Replace one replaceable words without antonyms_60% 10344 75.10 80.16

Replace one replaceable words without antonyms_80% 13058 75.12 79.91

Replace one replaceable words without antonyms_100% 15763 75.71 80.26
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Tables 6 and 7 show the results, Where “-” means remove 
component, “ → ” means replace component, “TENER→
CNN” means character-level embedding component. 
“TENER→BiLSTM” means encoding component. We 
can observe that data augmentation, BioBERT word-
level embedding, TENER character-level embedding 
and encoder improved the performance of the model to 
varying degrees. Especially, BioBERT, which has been 
pre-trained on a large amount of biomedical data and has 
lots of biomedical information. Data augmentation has 
a certain impact on model performance, it can alleviate 
the problem of poor model performance and generaliza-
tion ability caused by scarcity of data sets. The change of 
the character-level encoder has less impact on the result, 
analyze the reason is that the word-level embedding 
dimension is much smaller than the 768 of the BioBERT 
word-level embedding, but if the character-level embed-
ding is also adjusted to a larger value, the training speed 
of the model will be reduced. TENER encoder is also 
much better than BiLSTM. It increases F1-score by 
0.56%. Experimental results show, these four components 
can help the model learn medical text information bet-
ter. Data augmentation and BioBERT solve the problem 
of the small amount of data in the clinical field and the 
particularity of clinical data.

Error analysis
The prediction performance of different types of events 
is shown in Table  8, we found that the evidential and 
occurrence event types seem more difficult to detect than 
other event types. Especially occurrence event type, there 
is enough data volume, but the result is much lower than 
other types. In future work, we will analyze the cause of 
the low F1-score of the type of event and find ways to 
solve it to improve the performance of the model.

Discussion
There may be two reasons why our model achieves the 
best performance. On the one hand, the model uses a 
pre-trained language model (BioBERT) to generate word-
level features, which makes the model’s ability to capture 
word-level features in the medical field relatively strong. 
On the other hand, a new data enhancement method was 
proposed and the dataset was expanded, which made 
the model learn more information. Table  5 shows the 
results of model testing after using various degrees of 
data enhancement methods. we come to a conclusion, 
It is more effective to replace all replaceable words with-
out losing performance than replacing only one replace-
able word. And the prediction result will not increase as 
the number of sentences in the training set increases, it 
will reach saturation by a certain order of magnitude. 
The prediction performance of different types of events 
is shown in Table 8, we found that the occurrence event 
types seem more difficult to detect than other event 
types, there is enough data volume, but the result is much 
lower than other types.

We also found a problem, Examples of data augmenta-
tion in Table 1, “worked up” in the sentence is a phrase. If 
it is split to find and replace, it will change the meaning of 
the sentence, but it is proved through experiments that it 
does not affect this paper model for Clinical Event Detec-
tion. In order to increase the rationality of the sentence 
and the performance of the model, in the future We will 
study how to accurately recognize phrases in sentences 
for our data augmentation.

Table 6  Results of ablation study with Precision, Recall and 
F1-score metrics

“-” means remove component, “ → ” means replace component, “TENER → 
CNN” means character-level embedding component. “TENER → BiLSTM” means 
encoding component

Model Precision Recall F1-score

Ours 81.01 0.7953 0.8026

BioBERT → Glove 100d 74.84 0.5272 0.6186

-data augmentation 74.54 0.7805 0.7626

TENER → CNN 80.96 0.7944 0.8019

TENER → BiLSTM 79.95 0.7944 0.7970

Table 7  Results of ablation study with Span F1-score and Type 
accuracy metrics

“-” means remove component, “ → ” means replace component, “TENER → 
CNN” means character-level embedding component. “TENER → BiLSTM” means 
encoding component

Model Span F1-score Type accuracy

Ours 90.33 93.00

BioBERT → Glove 100d 79.08 86.60

-data augmentation 90.01 93.05

TENER → CNN 90.28 93.10

TENER → BiLSTM 90.13 92.98

Table 8  Results of different event types

Event type F1-score Training Test

Clinical department 81.64 6.05 5.39

Evidential 75.19 4.49 4.38

Occurrence 66.32 19.95 18.38

Problem 83.75 30.50 31.70

Test 84.09 15.76 15.99

Treatment 84.19 23.25 24.17
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Conclusions
This paper proposes a multi-granularity information 
fusion encoder-decoder framework. For the first time, this 
framework applies a TENER model with direction-aware, 
distance-aware and un-scaled attention to the CED task, it 
uses the pre-trained language model (BioBERT) to gener-
ate word-level features, solves the problem of poor model 
recognition performance caused by obscure professional 
terms in electronic medical records. In addition, this paper 
proposes a new data augmentation method for sequence 
labeling tasks, which solves the problem of poor model 
generalization due to insufficient clinical datasets. Experi-
ments on the 2012 i2b2 challenge dataset show that our 
model achieves superior performance than other existing 
models. In future work, we will continue to study the rea-
sons for the poor results of the event type and the problem 
that the meaning of the generated sentence may change 
due to the occurrence of phrases in the data augmentation.

Abbreviations
CED: Clinical Event Detection; BioBERT: A domain-specific language represen-
tation model pre-trained on large-scale biomedical corpora; TENER: Adaptive 
Transformer encoder; NLP: Natural Language Processing; TEs: Temporal 
expressions; NER: Named entity recognition; SVM: Support Vector Machine; 
CRF: Conditional Random Field; EDA: Easy data augmentation; GRN: Gated 
Relation Network; GNNs: Graph Neural Networks; BiLSTMs: Bidirectional long 
short-term memory network.

Acknowledgements
We thank the anonymous reviewers for their insightful comments.

About this supplement
This article has been published as part of BMC Medical Informatics and 
Decision Making Volume 21 Supplement 9 2021: Health Natural Language 
Processing and Applications. The full contents of the supplement are available 
athttps://​bmcme​dinfo​rmdec​ismak.​biome​dcent​ral.​com/​artic​les/​suppl​ements/​
volume-​21-​suppl​ement-9.

Authors’ contributions
ZZ and LD leaded the method application, experiment conduction and the 
result analysis. ZM and QX participated in the data extraction and preprocess-
ing. All authors provided theoretical guidance and the revision of this paper. 
All authors have read and approved the final manuscript.

Funding
The publication cost of this paper was supported by the National Natural 
Science Foundation of China (Nos. 61762081, 61662067, 61662068) and the 
Key Research and Development Project of Gansu Province (No.17YF1GA016). 
The funding body had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

Availability of data and materials
The datasets used and analyzed during the current study are available from 
the first author upon reasonable requests. https://​www.​i2b2.​org/​NLP/​DataS​
ets/​Main.​php

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 15 August 2021   Accepted: 23 August 2021

References
	1.	 Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical 

text: 2012 i2b2 Challenge. J Am Med Inform Assoc. 2013;20(5):806–13. 
https://​doi.​org/​10.​1136/​amiaj​nl-​2013-​001628.

	2.	 Cortes C, Vapnik VN. Support-vector networks. Mach Learn. 
1995;20(3):273–97.

	3.	 Lafferty J, Mccallum A, Pereira FCN. Conditional random fields: probabil-
istic models for segmenting and labeling sequence data. In: Proceedings 
of 18th international conference on machine learning (2001).

	4.	 Roberts K, Rink B, Harabagiu SM. A flexible framework for recognizing 
events, temporal expressions, and temporal relations in clinical text. J 
Am Med Inform Assoc. 2013;20(5):867–75. https://​doi.​org/​10.​1136/​amiaj​
nl-​2013-​001619.

	5.	 Kovačević A, Dehghan A, Filannino M, Keane JA, a Nenadic G. Com-
bining rules and machine learning for extraction of temporal expres-
sions and events from clinical narratives. J Am Med Inform Assoc. 
2013;20(5):859–66.

	6.	 Grouin C, Grabar N, Hamon T, Rosset S, Tannier X, Zweigenbaum P. 
Eventual situations for timeline extraction from clinical reports. J Am 
Med Inform Assoc. 2013;20(5):820–7. https://​doi.​org/​10.​1136/​amiaj​
nl-​2013-​001627.

	7.	 Si Y, Wang J, Xu H, Roberts K. Enhancing clinical concept extraction with 
contextual embeddings. J Am Med Inform Assoc. 2019;26(11):1297–304. 
https://​doi.​org/​10.​1093/​jamia/​ocz096.

	8.	 Adnan A, Dietrich T, Georg G. Sequence labeling: a practical approach. J 
Am Med Inform Assoc Jamia. 2018. arXiv:​1808.​03926.

	9.	 Chen H, Lin ZJ, Ding GG, Lou JG, Zhang YS, Karlsson B. GRN: gated rela-
tion network to enhance convolutional neural network for named entity 
recognition. Proc AAAI Conf Artif Intell. 2019;33(1):6236–43.

	10.	 Liu P, Chang S, Huang X, Tang J, Cheung JCK. Contextualized non-local 
neural networks for sequence learning. In: AAAI conference on artificial 
intelligence 2019, 2018;vol. 33. arXiv:​1811.​08600.

	11.	 Huang ZH, Xu W, Yu K. Bidirectional lstm-crf models for sequence tag-
ging. Comput Sci. 2015. arXiv:​1508.​01991.

	12.	 Yan H, Deng B, Li X, Qiu X. Tener: adapting transformer encoder for 
named entity recognition. Comput Res Reposit. 2019. arXiv:​1911.​04474.

	13.	 Cui XD, Goel V, Kingsbury B. Data augmentation for deep neural network 
acoustic modeling. IEEE/ACM Trans. 2015;23(9):1469–77.

	14.	 Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep 
convolutional neural networks. Commun ACM. 2017;60(6):84–90.

	15.	 Wei JW, Zou K. Eda: Easy data augmentation techniques for boosting 
performance on text classification tasks, arXiv preprint. 2019. arXiv:​1901.​
11196.

	16.	 Zhu H, Dong L, Wei F, Wang W, Qin B, Liu T. Learning to ask unanswerable 
questions for machine reading comprehension. In: Proceedings of the 
57th annual meeting of the association for computational linguistics, 
pp. 4238–4248. Association for Computational Linguistics, Florence, Italy. 
2019. https://​doi.​org/​10.​18653/​v1/​P19-​1415

	17.	 Li XY, Sun XF, Meng YX, Liang JJ, Wu F, Li JW. Dice Loss for Data-imbal-
anced NLP Tasks. Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, Online, 2020, pp. 465–76.

	18.	 Yu AW, Dohan D, Luong MT, Zhao R, Chen K, Norouzi M, Le QV. Qanet: 
Combining local convolution with global self-attention for reading com-
prehension. arXiv preprint. 2018. arXiv:​1804.​09541.

	19.	 Xie Z, Wang SI, Li JW, Lévy D, Nie A, Jurafsky D, Ng AY. Data noising as 
smoothing in neural network language models. arXiv preprint. 2017. 
arXiv:​1703.​02573.

	20.	 Kobayashi S. Contextual augmentation: Data augmentation by words 
with paradigmatic relations. Proceedings of the 2018 Conference of the 
North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. 2018; 2 (Short Papers):452–7.

	21.	 Ribeiro MT, Wu T, Guestrin C, Singh S. Beyond accuracy: behavioral test-
ing of NLP models with CheckList. In: Proceedings of the 58th annual 

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-21-supplement-9
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-21-supplement-9
https://www.i2b2.org/NLP/DataSets/Main.php
https://www.i2b2.org/NLP/DataSets/Main.php
https://doi.org/10.1136/amiajnl-2013-001628
https://doi.org/10.1136/amiajnl-2013-001619
https://doi.org/10.1136/amiajnl-2013-001619
https://doi.org/10.1136/amiajnl-2013-001627
https://doi.org/10.1136/amiajnl-2013-001627
https://doi.org/10.1093/jamia/ocz096
https://arxiv.org/abs/1808.03926
https://arxiv.org/abs/1811.08600
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1911.04474
https://arxiv.org/abs/1901.11196
https://arxiv.org/abs/1901.11196
https://doi.org/10.18653/v1/P19-1415
https://arxiv.org/abs/1804.09541
https://arxiv.org/abs/1703.02573


Page 11 of 11Zhang et al. BMC Med Inform Decis Mak          (2021) 21:261 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

meeting of the association for computational linguistics, 2020; pp. 
4902–4912. Association for Computational Linguistics. https://​doi.​org/​10.​
18653/​v1/​2020.​acl-​main.​442

	22.	 Jinhyuk L, Wonjin Y, Sungdong K, Donghyeon K, Sunkyu K, ChanHo S, 
Jaewoo K. Biobert: a pre-trained biomedical language representation 
model for biomedical text mining. Bioinformatics. 2020;36(4):1234–40.

	23.	 Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural 
architectures for named entity recognition. In: Proceedings of the 2016 
Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies. 2016.

	24.	 Ma X, Hovy E. End-to-end sequence labeling via bi-directional LSTM-
CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the Association 
for Computational Linguistics (Volume 1: Long Papers), pp. 1064–1074. 
Association for Computational Linguistics, Berlin. 2016. https://​doi.​org/​10.​
18653/​v1/​P16-​1101

	25.	 Liyuan L, Jingbo S, Frank X, Xiang R. Empower sequence labeling with 
task-aware neural language model. Proceedings of the Thirty-Second 
AAAI Conference on Artificial Intelligence. New Orleans, 2018;5253–5260.

	26.	 Zhang Y, Yang J. Chinese NER using lattice LSTM. In: Proceedings of the 
56th Annual Meeting of the Association for Computational Linguistics 
(Volume 1: Long Papers), pp. 1554–1564. Association for Computational 
Linguistics, Melbourne, Australia. 2018. https://​doi.​org/​10.​18653/​v1/​
P18-​1144

	27.	 Li X, Yan H, Qiu X, Huang X. FLAT: Chinese NER using flat-lattice trans-
former. In: Proceedings of the 58th Annual Meeting of the Association for 
Computational Linguistics, pp. 6836–6842. Association for Computational 
Linguistics, 2020. https://​doi.​org/​10.​18653/​v1/​2020.​acl-​main.​611

	28.	 Chiu JP, Nichols E. Named entity recognition with bidirectional LSTM-
CNNs. Trans Assoc Comput Linguist. 2016;4:357–70.

	29.	 Smith LN. Cyclical learning rates for training neural networks. In: 2017 IEEE 
Winter Conference on Applications of Computer Vision (WACV), Santa 
Rosa, CA, USA, pp. 464–72.

	30.	 Pennington J, Socher R, Manning C. Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods 
in Natural Language Processing (EMNLP), Doha, Qatar, 2014; pp. 1532–43.

	31.	 Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer 
L. Deep contextualized word representations. In: Proceedings of the 
2018 Conference of the North American Chapter of the Association for 
Computational Linguistics: Human Language Technologies, New Orleans, 
Louisiana, 2018, pp. 2227–37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/P18-1144
https://doi.org/10.18653/v1/2020.acl-main.611

	Combining data augmentation and domain information with TENER model for Clinical Event Detection
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data augmentation
	Embedding layer
	Character-level embedding
	Word-level embedding

	Encoding layer
	Decoding layer

	Results
	Dataset
	Evaluation metrics
	Experimental setup
	Experimental results and analysis
	Evaluation on CED
	Analysis of data augmentation
	Ablation study
	Error analysis


	Discussion
	Conclusions
	Acknowledgements
	References


