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Abstract 

Background: In this work, we aimed to demonstrate how to utilize the lab test results and other clinical information 
to support precision medicine research and clinical decisions on complex diseases, with the support of electronic 
medical record facilities. We defined “clinotypes” as clinical information that could be observed and measured objec-
tively using biomedical instruments. From well-known ‘omic’ problem definitions, we defined problems using clino-
type information, including stratifying patients—identifying interested sub cohorts for future studies, mining signifi-
cant associations between clinotypes and specific phenotypes-diseases, and discovering potential linkages between 
clinotype and genomic information. We solved these problems by integrating public omic databases and applying 
advanced machine learning and visual analytic techniques on two-year health exam records from a large population 
of healthy southern Chinese individuals (size n = 91,354). When developing the solution, we carefully addressed the 
missing information, imbalance and non-uniformed data annotation issues.

Results: We organized the techniques and solutions to address the problems and issues above into CPA frame-
work (Clinotype Prediction and Association-finding). At the data preprocessing step, we handled the missing value 
issue with predicted accuracy of 0.760. We curated 12,635 clinotype-gene associations. We found 147 Associations 
between 147 chronic diseases-phenotype and clinotypes, which improved the disease predictive performance to 
AUC (average) of 0.967. We mined 182 significant clinotype-clinotype associations among 69 clinotypes.

Conclusions: Our results showed strong potential connectivity between the omics information and the clinical lab 
test information. The results further emphasized the needs to utilize and integrate the clinical information, especially 
the lab test results, in future PheWas and omic studies. Furthermore, it showed that the clinotype information could 
initiate an alternative research direction and serve as an independent field of data to support the well-known ‘phe-
nome’ and ‘genome’ researches.
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Background
As electronic health records (EHR) has been increasingly 
supporting biomedical and healthcare service research, 
utilizing the clinical information, especially the clini-
cal test information, to strengthen precision medicine is 
still an open challenge [1]. Here, we have seen many EHR 
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applications in improving precision medicine and qual-
ity of care, including: identifying disease risk factors [2], 
molecular biomarkers [3]; identifying high-risk/special-
treatment cohorts [4, 5]; identifying the comorbidities[6, 
7]; detecting drug adverse events and side effects [8]; 
repurposing drugs [9]; and predicting early hospitaliza-
tions [10]. However, it is still unclear to what extent the 
findings associate to specific clinical test results, which 
are among the most practical information for the care 
providers [11]. In addition, whether these associations 
imply that the test results are risk factors or just the 
reflection of the phenotype is still ambiguous. For exam-
ple, the monocyte count, which is a popular blood test, 
is the result of the inflammatory response in chronic 
obstructive pulmonary disease and could be as a risk fac-
tor leading to cardiovascular diseases [12].

In the other hands, electronic medical data systems and 
analytical methods, which are the essential facilities to 
tackle the challenge above, have been gradually matured. 
At the data system component, elements in EHR data, 
including the medical test information, unified medical 
language system [13], and data integration [14] have been 
standardized [15–17] and well-supported to EHR extrac-
tion and refinement. In addition, from natural language 
processing tools [18], manual curation and crowd-sourc-
ing efforts, there have been many data sources [19–21] 
potentially allows linking the clinical test results, the phe-
notypic/clinical outcomes, and genotype information. At 
the analytical component, custom statistical data min-
ing and machine learning techniques have been applied 
to EHR data to cope with challenges in understand-
ing biomedical and healthcare big data. To determine 
disease risks, one can use a popular statistical analysis 
technique—disproportionality analysis [22]. To predict 
patient survival and track disease progression using clini-
cal biomarkers [23, 24], one can perform temporal data 
analysis such as regression in time series analysis [25] and 
Cox regression model [26]. To perform classifications 
based on multivariate models [27], one can build statis-
tical learning models such as decision tree [28], artificial 
neural network [29], hidden Markov model, and support 
vector machine [30, 31]. In addition, set-based statistical 
analysis methods, such as chi-square and Fisher’s exact 
test are also useful in evaluating the significance of the 
findings [32]. There have been several examples of infor-
matics systems allowing utilization of medical test and 
other clinical information, such as eMERGE [33] and 
I2B2 [34], where the integration of test results and gen-
otype information would help in specifying the cohorts 
of interest and customized algorithm are developed for 
disease-specific problems.

Given these better facilities, why EHR and its rich 
clinical test information has not been able to play a 

more active role in precision medicine? Among many 
limitations, [35] highlights the data quality issues: 
“interoperability, poor quality, and accuracy of the col-
lected information”. In other words, EHR data have has 
three specific challenging issues to address. First, EHR 
data contains missing values [36] because of human 
error or non-response subjects [37]. Second, EHR data 
is naturally imbalanced: class imbalance, for exam-
ple, the small percentage of ‘abnormality’ events, and 
patient demographic imbalance. Third, EHR data lacks 
thorough and uniform annotation. Usually, the annota-
tion needs to be made patient-specific.

This work is a pioneering framework in better-uti-
lizing EHR, especially its rich clinical test result, to 
enhance precision medicine, defining new problems 
and providing solutions in biomedicine involving these 
data. We proposed the concept “clinotype” in response 
to the call for clinical information modeling, especially 
for querying and analytics over clinical content and 
decision support over clinical content [38]. We define 
“clinotypes” as clinical information, excluding the treat-
ment, that can be observed and measured objectively 
using biomedical instruments. Most of the clinotypes 
are hospital lab tests. However, we argue that the “clino-
type” concept and the “hospital lab test” are not entirely 
the same due to two reasons. First, with the develop-
ment of mobile devices, the patients can self-perform 
some measurements outside the hospital laboratory; 
therefore, the term “hospital lab test” may not be well-
applied in this case. Second, hospital lab tests include 
drug testing (treatment-related); therefore, this type of 
lab test is excluded from “clinotype” definition. In addi-
tion, different from “phenotypes” commonly used in 
biomedicine, which is associated to disease morphol-
ogy developed by healthcare professionals [39], clino-
types are qualitative or quantitative measurements that 
are neutral to expert judgment. We tackled the data 
quality issues by both data quality control and machine 
learning support. We defined three board problems of 
‘clinotype’ data analytics: clinotype-clinotype associa-
tion discovery, clinotype-phenotype association discov-
ery and clinotype-genotype relationship discovery. We 
named the framework CPA (Clinotype Prediction and 
Association-finding). The dataset used in this study, 
provided by the 1st affiliated hospital—Wenzhou Medi-
cal University—China (acronym: 1AH), contains values 
of totally 400 clinotypes, with no specification on inter-
ested cohorts or diseases. This dataset was collected 
between 2012 and 2014 from 91,354 patients, which 
well-represents the Southern Chinese population, 
mostly from south of Fujian province and the entire 
Zhejiang province with more than 20 million civilians.
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Materials and methods
CPA is an integrative machine learning framework, 
including data preprocessing and clinotype analy-
sis as presented in Fig.  1. From the original data (P0), 
which consist of 9,283,306 clinotype results from 91,354 
patients and 400 clinotypes, we filtered insignificant cli-
notypes and patients and normalized the data. In data 
preprocessing, due to technical limitations in Chinese 
natural language processing, we were unable to include 
the non-numerical clinotype results. After preproc-
essing, we used P2 data subset and available diagnosis 
information to solve the clinotypes problem: discovering 
clinotype-phenotype (disease) associations and strati-
fying the patients’ clinotype data for interested cohort 

identification. We curated the existing ’omic’ data sources 
for clinotype-genotype information.

Acquire and preprocess data
We acquired, preprocessed and organized the dataset 
according to the workflow in Fig.  1 by 3 steps, which 
creates 5 data subsets: P0, P1, P2, Pr and Pt. P0 stands 
for the original dataset after removing patients’ identifi-
able information. P1 stands for subsets of data related to 
numerical clinotype. P2 stands for the normalized data-
set from P1. Pr and Pt stand for the training set and the 
test set correspondingly in machine learning. The data 
preprocessing would tackle the non-uniform annotation 
issues and support machine learning as follow.

Fig. 1 Flowchart for CPA framework. The rectangle boxes represent clinotype data subsets from P0 to Pr/Pt. The dash rectangle boxes represent 
clinotype problems and main results. The rounded rectangle boxes represent external (non-clinotype) data and techniques help solving the 
clinotype problems
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The original P0 subset, acquired directly from the 
health checkup (which is an independent department at 
1AH), contains records on 400 health clinotype values of 
91,354 patients between September 2011 and May 2014. 
Among 91,354 patients, 712 patients (0.7%) are under 
18 years old. More information about the selected cohort 
could be found in Table  1. Since this work focuses on 
health clinotype, we manually translated the clinotype 
names from Chinese to English. To improve the quality of 
our translation, we queried our translated English name 
in popular medical terminology resources: MedLine-
Plus (http://www.nlm.nih.gov/medli neplu s/), Lab Tests 
Online (https ://labte stson line.org/), PubMed (http://
www.ncbi.nlm.nih.gov/pubme d/ for title/abstract) and 
adjusted our translation according to the closest matched 
terms in these resources. Importantly, for each personal 
clinotype result in P0, the 1AH provided the normal ref-
erence ranges, which referred to Chinese medical guid-
ance and was the standard requirement at any 1AH 
medical record. The reference ranges are subjected to 
individuals. For example, the Hematocrit test in P0 has 
two reference ranges: 35–45% for female individuals 
and 40–50% for male individuals. The normal reference 
ranges allow annotating all clinotype results as ‘high’, 
‘normal’ and ‘low’. Therefore, in this work, we tackled the 
annotation issue by applying the domain knowledge and 
data standard from the care provider.

The P1 subset results from P0 by filtering out low-
confidence patient and clinotype information. Among 
400 clinotypes, 97 clinotypes are numerical. In this work, 
due to the technical limitation in Chinese natural lan-
guage processing, we did not include the non-numerical 
test result, which often include free text. Three clino-
types: Yeast Culture, Creatinine (Enzymatic) and Thy-
roid Globulin Antibody (ECLIA) are rare (taken by less 
than 1000 patients, or 1% of the population size) and 
excluded from the study to reduce the noisy effect in sta-
tistical machine learning methods. Thus, 94 clinotypes 
remained for further preprocessing and analysis. We also 
removed patients having no numerical clinotypes and 

213 pediatric patients (< 0.1%) due to low count. P1 con-
tains 4,122,917 patients’ health clinotypes entries from 
68,419 patients.

The P2 subset results from P1 by normalizing clinotype 
results with the z-score formula

in which i is the clinotype index, n is the patient index, 
xi is the mean of clinotype i,σi is the standard deviation 
of clinotype i and x̃i,n is the normalized value of patient 
n on clinotype i. The mean and standard deviation was 
calculated only from the training set. We chose z-score 
normalization because it could remove all of the clino-
type biases and variances in machine learning. In addi-
tion, z-score normalization is a linear method, which is 
suitable for interpreting and validating the results from 
linear regression later. We scaled the normal range for 
each individual clinotype result using the same mean and 
standard deviation at (1).

We setup the training subset Pr and subset Pt for 
downstream machine learning analysis and validation. 
We selected the date June 30 2013 to separate the data-
set. This date divides the P2 set into a training set and 
test set following conventional ratio 3:1 (Fig.  1). Pt and 
Pr allow tackling the missing value issues using machine 
learning, which we would describe later. For missing val-
ues existing in Pt and Pr, we replaced them with the cor-
responding predicted values computed from the missing 
value models. The P2, Pt and Pr subsets allow defining 
and solving the clinotype—related problems as shown in 
Fig. 1 pipeline.

In addition to the P0 dataset, the outpatient depart-
ment at 1AH provided the diagnostic history, identified 
by Chinese ICD version 10. More information about dis-
ease-specific cohort could be found in Additional file 1: 
Table S1.

Handle the missing value and data imbalance
Technical solution
Built upon machine learning techniques, the CPA frame-
work handled the missing value issue and partially data 
imbalance issue in one step. We select the support vector 
linear regression (SVLR) to build models predicting the 
missing value. Compared to other techniques in handling 
missing data [43, 44], we preferred SVLR because of not 
only its higher sparsity [45, 46] but also its models could 
be directly applied to discover clinotype-clinotype associ-
ations. For each clinotype y, the SVLR estimate the miss-
ing value using the linear model ỹn = w

T
xn + b if the 

clinotype value of patient n is missing. Here, ỹn denotes 
the estimation for missing value, xn is the vector of 
other (non-missing) clinotype value for patient n, and w 

(1)x̃i,n =
xi,n − xi

σi

Table 1 Statistics about  the  demographic information 
in the selected cohort

Age group Gender No. patient (%)

Young (18–39) Male 14,594 (21.33)

Female 12,596 (18.41)

Middle (40–59) Male 18,717 (27.36)

Female 14,137 (20.66)

Old (60 and above) Male 5207 (7.61)

Female 3168 (4.63)

http://www.nlm.nih.gov/medlineplus/
https://labtestsonline.org/
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/pubmed/
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denotes the coefficient for these non-missing clinotypes. 
SVLR uses the non-missing y in Pr subset to train the 
model. Briefly, the SVLR setup the solution minimizing:

Here, yn denotes the non-missing value for y in train-
ing, ε ≥ 0 is the ‘tolerance’, or expected error between the 
predicted and the real yn in regression, and ξn is the slack 
variable as defined in [45, 46]. Parameter C and ε decide 
the trade-off between the smoothness of regression func-
tion and how tolerance the predicted clinotype value 
could deviate from the true clinotype value. We decided 
to use C = 1 and ε = 0.001 after testing multiple choices 
of C = 0.001, 0.01, 0.1, 1, 100, 1000 and multiple choices 
of ε = 0.001, ε = 0.01, ε = 0.1 ε = 1. We used ILOG CPLEX 
Optimizer [47] to solve the problem (2).

To partially tackle the data imbalance issue, in imple-
mentation, we applied the under-resampling method in 
[48] to select the balanced subset in the training phase. 
By balancing, we mean for each predicted-target clino-
type y in (2), the ratio among ‘normal’, ‘high’ and ‘low’ yn 
selected in training is relatively 1:1:1. For each clinotype 
prediction, we ran resampling, learning and predicting 50 
times and reported the average for coefficients and pre-
dicted value.

Performance metric and validation
We used the models (2) built upon Pr subset to estimate 
the non-missing clinotype values in Pt set. Since each 
non-missing clinotype value has a reference range, the 
real and estimated clinotype value could be annotated as 
either ‘high’, ‘normal’ or ‘low’. Therefore, we have 9 pos-
sible outcomes as shown in Table 2.

With the emphasize on predicting abnormality, we had 
the accuracy (ACC) and positive predictive value (PPV) 
metrics as

Curate the clinotype—genotype association
Since we did not have genetic test information among 
the study cohort, we used public databases PAGER [49, 

1

2
|w| + C

N∑

n

ξn

(2)
subject to

{
w

T
xn + b � yn − ε − ξn

w
T
xn + b � yn + ε + ξn

and ξn � 0 ∀n

ACC =
TP+ TN

TP+ TN+ FP+ FN

(3)PPV =
TP

TP+ FP

50] and REACTOME [51, 52] (pathway and metabo-
lism only) to find genes associated with the clinotypes. 
PAGER is a geneset database, which integrates the most 
popular geneset-level databases known today (including 
MsigDB) and collection of phenotype-related genes from 
popular manual curated databases, including OMIM [53, 
54], MSigDB and GeneSigDB [55]. REACTOME is one 
of the most well-known curated biological pathway data-
bases known today. We removed non-biological words 
in each clinotype name, such as absolute value, percent-
age, ratio, volume, etc. and convert all names to singu-
lar form before querying. For example, with clinotypes 
“Basophils Percentage” and “Monocytes Absolute value”, 
we queried “Basophil” and “Monocyte”. After acquiring 
the clinotype’s related gene set, we used DAVID Gene 
ID conversion tool [56, 57] to map the names retrieved 
from REACTOME and PAGER to UniProt ID to remove 
potential alias names and ensure that the genes found 
were reviewed. After querying and filtering, we obtained 
12,635 connections between 6145 genes and only 61 cli-
notypes, as showed in Additional file 2: Table S2.

Find disease‑phenotype and clinotype associations
Technical solution
Using the diagnostic information for the cohort covered 
in P1 subset, we found the disease-phenotype and cli-
notype associations with the help of student t-test [58] 
as follow. In P1, we select patients having less than 5% 
abnormal clinotype values and no diagnostic history into 
the control set. For each disease, we use the ICD10 diag-
nostic code to select the ‘disease’ set. Comparing between 
the disease and control sets with t-test, we computed the 
p-value for each clinotype. The clinotypes having signifi-
cant p-value (less than 0.05) was considered to have sig-
nificant associations with the underlying disease.

Performance metric and validation
To validate these associations, we compared the disease-
versus-control classification performance using two 
types of model. For the first type of model, noted as ASS 
(abbreviation of association), we only use the disease’s 
associated tests as features for classification. For the 
second type of model, noted as NON (abbreviation of 

Table 2 Confusion matrix between the estimated and real 
clinotype value annotation

TP: true positive, TN: true negative, FP: false positive, FN: false negative

Estimated value annotation

High Normal Low

Real value annotation High TP FN FP

Normal FP TN FP

Low FP FN TP
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non-association), we only used the non-associated tests 
as features for classification. We trained the classification 
models using the Pr set and measure the performance on 
the Pt set, as shown in the above section. We expect that 
the classification metrics: area under the curve (AUC) 
and accuracy [59] of the ASS models should be higher 
than the ones in the NON model. For training classifi-
cation models, we applied Random Forest [60] imple-
mented in Weka version 3.8 [61], which was significantly 
successful in Google’s and Mt. Sinai’s DeepPatient [62].

Identify subcohorts of interest by patient stratification
We used the Plotviz tool [63, 64], built upon the high-
performance computing platform at Indiana University, 
to cluster the P2 subset patients. Deterministic Anneal-
ing Pairwise Clustering (DAPWC) algorithm [65], which 
focuses on highlighting the datapoint difference in high 
dimensional data, Plotviz significantly reduced the com-
putational time, performed dimensionality reduction 
and visualize the results in 3D. To determine the number 
of cluster parameters (k) in Plotviz, we applied Silhou-
ette index [66] (Si) to select the best number of clusters. 
Si closed to 1 implies appropriate clustering structure; 
meanwhile, Si closed to -1 implies inappropriate cluster-
ing structure, including too few and too many clusters. 
From multiple experiments, we choose k = 5 (Si = 0.793).

We proposed two option to annotate the clusters. First, 
we found the significant clinotypes expressing in each 
cluster by the ANOVA test. Clinotypes returning sig-
nificant average p-value (less than 0.05) could be used to 
annotate the clusters. Second, we found which clusters c 
would over-represent a specific disease D using hyperge-
ometric distribution p-value computed as

where N (nu) is the number of patients in P2 subset, 
K (kappa) is the number of patients having disease D diag-
nosis, η is the size of cluster c and κ is the number of patients 
having disease D in cluster c. The less-than-0.05 p-value 
implies that cluster c significantly enriches disease D.

Results
In this work, we use the following acronyms:

• SVLR: support vector linear regression
• PPV: positive predictive value
• NPV: negative predictive value
• ACC: accuracy
• AUC: area under the receiver-operating characteris-

tic curve

(4)
min(K,η)∑

τ=κ

(
K!

(K−τ)!τ !

)(
(N−K)!

(η−τ)!((N−K)−(η−τ))!

)

N!
(N−η)!η!

Robust missing value prediction models
In tackling missing value issue, the prediction perfor-
mance of SVLR is desirable for predicting values of a 
number of numerical clinotypes. Overall, the weighted 
prediction accuracy for all measurement is 0.760, the 
weighted average PPV is 0.488, and the weighted average 
NPV is 0.829. This performance is significantly higher 
than the random prediction, in which, due to the met-
ric defined in the method sections, the expected ran-
dom ACC/PPV/NPV would be 0.33. Additional file  3: 
Table  S3 shows all prediction performance metrics of 
all clinotypes. There are three scenarios for the perfor-
mance of SVLR on predicting missing clinotypes. First, 
Blood Platelet Hematocrit, Average Erythrocyte Volume, 
and Lymph Absolute Value show both high (above 0.7) 
PPV and accuracy. Second, Albumin, RBC Volume Dis-
tributed SD Value and Neutrophils Absolute value show 
average PPV (from 0.5 to 0.7) and high accuracy. Third, 
Lipid-related measurements, such as LDL-Cholesterol, 
Apolipoprotein B and Triglycerides achieve moderate 
PPV but moderate or low accuracy (below 0.7), except 
LDL cholesterol. Most of the clinotype NPVs are high, 
except for lipid-related measurements.

The SVLR may not be very accurate to model clino-
types for old people. In Fig.  2, accuracy, PPV and NPV 
of models trained by young-age and middle-age groups 
are higher than the ones trained using old groups. Fur-
thermore, the average NPV and accuracy trained by old-
age groups are lower than the average NPV and accuracy 
using the entire dataset.

The significant disease‑phenotype‑clinotype associations 
could potentially improve disease identification
Here, we focused on the phenotype-clinotype associa-
tions of five popular chronic diseases: chronic gastritis, 
coronary, cataract, hyperlipidemia, and diabetes. We 
found 147 significant phenotype-clinotype associations 
(Additional file  4: Table  S4). We demonstrated the top 
10 significant clinotype-phenotype associations, sorted 
by p-value, in Table  3. Figure  3 shows that the classifi-
cation models built upon these associations (acronym: 
ASS models) are completely superior to the models built 
without using these associations (non-association, acro-
nym: NON models). Briefly, the ASS models only use the 
clinotypes that have strong associations to the diseases; 
while the NON models do not use these clinotypes. The 
details on constructing these models, from finding clino-
type-phenotype associations to classification algorithms 
(random forest) could be found in the method section. 
In all diseases, the ASS models achieve higher AUC and 
PPV. By average, the ASS models AUC of 0.967 and PPV 
of 0.923; meanwhile, the NON models only achieve AUC 
of 0.942 and PPV of 0.886.
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Cohort identified by stratification of patients’ clinotype 
reveals potential chronic comorbidities
For 5 subcohorts identified by Plotviz clustering, the 
ANOVA tests return 67 significant clinotypes (Additional 
file  5: Table  S5) which could be used to annotate each 
cluster. Information for selecting the number of clus-
ters could be found in Additional file 5. Interestingly, the 
unbias and domain-knowledge free clustering method 
(Plotviz) results in patients subgroups who have poten-
tially similar disease phenotypes. The top 5 significant 
clinotypes are Blood Platelet Distributed Width (p-value 
1.79 × 10–169), Postprandial 2h Blood Sugar (p-value 
3.58 × 10–133), Glucose (p-value 9.69 × 10–104), Sacchari-
fication Blood Protein (p-value 6.01 × 10–73) and Crys-
tallization (p-value 7.92 × 10–49). These top 5 clinotypes 
annotate two clusters. Blood platelet Distributed Width 
and Crystallization is higher cluster 3 containing 101 
patients (Figs. 4, 5). Postprandial 2h Blood sugar, Glucose 
and Saccharification Blood-red Protein specify cluster 1 

containing 843 patients. Additional file 6: Table S6 sum-
marizes the disease-phenotype annotation for each clus-
ter. These annotations could be visualized using with 
Plotviz (http://salsa hpc.india na.edu/plotv iz/) visualiza-
tion and data files in Additional file 7.

Discussions
In this work, CPA’s machine learning technique could 
successfully predict the missing health clinotype values. 
Accurate missing-value prediction provides qualified 
information for supporting diagnosis and a better under-
standing of the patient at an individual level. In addition, 
Plotviz clustering technique could reveal patient sub-
groups who potentially share similar health issues. Vali-
dation via curation shows potential explanation about 
significant clinotype-clinotype associations at the gene 
level. This result could be used to suggest new biological 
research topic about the clinotype-genotype associations.

We also want to clarify the difference of “clinical mod-
eling” concept, which our CPA framework aims for, 
with the “clinical information models” (CIM) defined 
by Moreno-Conde’s group [40]. In [40], CIM is a board 
concept for structural and semantic artifacts providing 
multiple functionalities: organizing, storing, querying, 
visualizing, exchanging and analyzing data. In the CPA 
framework, missing value prediction and clinotype-cli-
notype association discovery could be called analyzing 
data functionalities. In addition, the results from patient 
clustering and linking clinotypes to genomic databases 
could certainly lead to new clinical trials and research. 
Therefore, CPA could extend the CIM concept by adding 
the recommendation functionality, which could be very 
helpful for doctor and research users.

Fig. 2 Performance of SVLR models for predicting missing values: average ACC, PPV and NPV comparison between different groups of patients 
(defined in the method sections)

Table 3 Top 10 significant clinotype-phenotype 
association found in P2 dataset

Clinotype Disease‑phenotype p‑value

Blood crystallization Diabetes 3.36 × 10–18

Blood crystallization Coronary 1.48 × 10–17

Rheumatoid factor Hypertension 1.78 × 10–16

Blood crystallization Hyperlipidemia 1.47 × 10–13

Rheumatoid factor Chronic gastritis 4.77 × 10–12

Glucose Diabetes 1.71 × 10–11

Crystallization Cataract 4.22 × 10–11

Rheumatoid factor Hyperlipidemia 6.47 × 10–9

Blood platelet Hyperlipidemia 6.24 × 10–7

Triglycerides Hyperlipidemia 6.61 × 10–7

http://salsahpc.indiana.edu/plotviz/
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Fig. 3 AUC/PPV comparison between two types of the disease-specific classification model: using (ASS) and not using (NON) only 
disease-phenotype-clinotype association
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Fig. 4 Top 5 clinotypes annotating identified subcohorts. x axis stands for the cluster index. y axis stands for the normalized clinotype values
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There are three main limitations of this research work. 
The first limitation is that the linear prediction models do 
not work well with patients from old-age groups. There-
fore, the nonlinear methods are better-recommended to 
learn the clinotype-clinotypes associations the follow-up 
analysis from the old-age-group data. The second limita-
tion is constructing the semantic structure among health 
clinotype names. Thus, we could not use standard anno-
tation code for diseases, symptoms and other pheno-
types, such as ICD10 and MeSH term to acquire better 
curation as in [41].

In addition, to complete the triangle among clinotype, 
phenotype and genotype, the CPA framework should 
include the following problems. First, mining clinotype-
clinotype association would complete the clinotype-
clinotype edge, which has not been addressed. Machine 
learning techniques could be reapplied in this problem. 
Second, linking the clinotype-clinotype and clinotype-
genotype associations to the gene level would provide 
insights explaining the associations above. Here, integrat-
ing PheWas with better clinotype-phenotype association 
(from curation and natural language processing) would 
be a promising solution. We would solve these problems 
in some future work.

In addition, PPV leaves two issues for open dis-
cussion in this work. First, the weak anti-correlation 
between prediction accuracy and PPV leaves an issue 
in sampling the training set. It is expected that when 
we use totally random balance sampling in the training 
set, the distribution of predicted labels in the test set 
may contain less ‘normal’ label and may increase PPV. 
However, ‘normal’ is the major label; therefore, increas-
ing PPV may decrease accuracy. We do not have a clear 

answer whether or not more advanced data sampling 
approaches in [42] could be a better solution due to 
the missing value. Second, although the average PPV 
achieved in this work is moderate (PPV), we argue that 
it is a reportable outcome. In this study, the ‘positive’ 
class stands for abnormal measurement value (either 
high or low), which is often the minor class in health 
data. In addition, our definition for true positive (see 
method section of setup metrics for prediction per-
formance) only allows the predicted label and the true 
label as either ‘high’ or ‘low’. In other words, if the pre-
dicted is ‘low’ but the true label is ‘high’ and vice versa, 
we still consider this case as false positive although 
both the predicted label and the true label are not ‘nor-
mal’. With this definition, the expected random PPV is 
0.33, much less than the average PPV we achieved. Our 
plausible results in clinotype-clinotype association dis-
covery and patient clustering, which directly use clino-
type missing value prediction, show that the discovery 
is still solid with the PPV above. However, we believe 
that the discovery could be improved if we apply other 
techniques with higher PPV.

Conclusions
By CPA framework, we showed how utilizing clinical 
test results information (clinotype) could further sup-
port precision medicine. The proposed problems and 
solutions with clinotypes demonstrate that clinotype 
could potentially be an independent area but associat-
ing with the well-known genotype–phenotype associa-
tion studies. Machine learning techniques play a key 
role in this pioneering work. It could lay out the general 
ideas from which the future techniques could improve 
the solution for each problem proposed in this work.
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