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Abstract

Background: With the rapid development of sequencing technologies, collecting diverse types of cancer omics
data become more cost-effective. Many computational methods attempted to represent and fuse multiple omics
into a comprehensive view of cancer. However, different types of omics are related and heterogeneous. Most of the
existing methods do not consider the difference between omics, so the biological knowledge of individual omics
may not be fully excavated. And for a given task (e.g. predicting overall survival), these methods prefer to use
sample similarity or domain knowledge to learn a more reasonable representation of omics, but it’s not enough.

Methods: For the purpose of learning more useful representation for individual omics and fusing them to improve
the prediction ability, we proposed an autoencoder-based method named MOSAE (Multi-omics Supervised
Autoencoder). In our method, a specific autoencoder were designed for each omics according to their size of
dimension to generate omics-specific representations. Then, a supervised autoencoder was constructed based on
specific autoencoder by using labels to enforce each specific autoencoder to learn both omics-specific and task-
specific representations. Finally, representations of different omics that generate from supervised autoencoders were
fused in a traditional but powerful way, and the fused representation was used for subsequent predictive tasks.

Results: We applied our method over TCGA Pan-Cancer dataset to predict four different clinical outcome
endpoints (OS, PFI, DFI, and DSS). Compared with traditional and state-of-the-art methods, MOSAE achieved better
predictive performance. We also tested the effects of each improvement, which all have a positive effect on
predictive performance.

Conclusions: Predicting clinical outcome endpoints are very important for precision medicine and personalized
medicine. And multi-omics fusion is an effective way to solve this problem. MOSAE is a powerful multi-omics fusion
method, which can generate both omics-specific and task-specific representation for given endpoint predictive
tasks and improve the predictive performance.
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Background
Introduction
Driven by high-throughput sequencing technologies,
many cancer genomics programs have been established
to generate omics data, so the cancer data grows almost
exponentially in volume, variety and complexity [1].
Among these large-scale sequencing studies, The Cancer
Genome Atlas (TCGA) is the most famous one, which
generates a rich resource of multi-omics data and pro-
vides more than 30 cancer types. In TCGA, each patient
holds multi-omics profiling, including DNA methylation,
protein expression, gene expression RNASeq, miRNA
mature strand expression and so on. These different
types of omics are related and heterogeneous. For a sin-
gle patient, different omics are associated with the same
trait and biological connections exist between different
omics, but different omics provide different molecular
level information for the same trait and they are also dif-
ferent in quantitative and descriptive forms. Therefore,
integration analysis of multi-omics is a great challenge,
and powerful integration methods may promote the ex-
ploration of pathogenesis of cancer by taking advantage
of different omics, and furthermore, accelerating the de-
velopment of precision medicine and personalized
medicine.
In most cancers, the number of patients is only a few

hundred, but many omics has tens of thousands of di-
mensions, which means for a specific task, most omics
features are noise which causes the curse of dimension-
ality problem. Furthermore, if we use multiple high-
dimension omics simultaneously, the problem will be
more serious. Recently, many works [2] focus on allevi-
ating the curse of dimensionality problem, but in real
TCGA datasets, not all omics are high-dimension such
as the dimension of protein expression is only a few
hundred in the TCGA Pan-Cancer dataset. Moreover,
recent works [3] utilize sample similarity to achieve the
idea that similar samples should have similar representa-
tions, and utilizing domain knowledge to construct asso-
ciations between and within omics. These methods are
powerful in solving clustering problem, but for predicting,
the representations that generate from the sample similar-
ity and domain knowledge are not power enough. Because
under specific task, there is still a lot of noise (e.g. task-
independent information) in these representations, which
hinders the performance of these models [4].
Based on above observations, we proposed a model

named Multi-omics Supervised Autoencoder (MOSAE),
an autoencoder-based multi-omics fusion method, which
designs different autoencoder structures for different
omics based on dimensional differences and uses label
information to enforce autoencoder to equip the ability
that the representations generate from autoencoders are
associated with subsequent tasks. So each omics will

have a specific supervised autoencoder, and the repre-
sentations produce from the supervised autoencoders
will be fused in a simple but powerful manner. Key con-
tributions of this paper are summarized as follows:

1. We observed that different omics contain different
biological knowledge, and only a fraction of this
knowledge is useful for subsequent tasks. Therefore,
we constructed an omics- and task-specific struc-
ture of autoencoder (named supervised autoenco-
der) to explore knowledge of each omics. Each
omics has a unique supervised autoencoder, and
representations generate from these supervised
autoencoder contain both omics- and task-specific
biological knowledge.

2. We observed that traditional fusion methods such
as concatenation are not suitable for integrating
multi-omics, and average is a better alternative.
This method averaging the representations by elem-
ent, hence, knowledge from different omics are
enforced to have the same meanings in the same
position of dimension.

3. We redesigned the loss function to guarantees the
availability of our structure. Specifically, for the
supervised autoencoders of each omics, both
prediction error and reconstruction error were
constructed. And a single prediction error that
based on fused representation were constructed.
This loss function can prevent information leakage.

4. We verified our method by predicting four different
Pan-cancer clinical outcome endpoints. The results
shown that MOSAE achieved better results than
traditional and state-of-the-art methods, and has
robust generalization ability.

Related work
We summarized recent multi-omics learning methods
into two part: representation of omics and fusion be-
tween multiple representations of each sample.
For representing of omics, autoencoder is widely used,

which is a deep learning method for dimension reduc-
tion of high-dimensional omics data [5], representation
of cancer patients [6] and even fusion of multi-omics
data [7]. And in order to increase the ability of represen-
tation of autoencoder, a large number of variants of
autoencoder were developed [8]. utilizes nonlinear data
self-expressiveness to learn the hidden layer of autoen-
coder, which is the representation of patient [3]. utilizes
feature interaction network and patient similarity net-
work to constrain the training objective of autoencoder
that alleviate overfitting and curse of dimensionality
problem. Most of above methods are unsupervised or
semi-supervised and they perform the same processing
on different omics, which reduced the representation
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ability of autoencoder. Therefore, our method MOSAE
employed labels to train autoencoder for each omics and
designed the structure of autoencoder according to the
characteristics of different omics.
For fusing multiple representations, concatenation is

the most common method, which concatenate different
omics representations into a single vector directly, but
concatenation is often unworkable [1]. Therefore, a
plethora of methods have been developed to integrate/
fuse multiple omics data. And [9] divides integrative
methods into four categories: network-free non-Bayesian
(NF-NBY), network-free Bayesian (NF-BY), network-
based non-Bayesian (NB-NBY) and network-based
Bayesian (NB-BY) methods. They are classified by
whether employing a prior on data probability distribu-
tion or graphs to model interactions. In NF-NBY, Partial
Least Squares (PLS)-based methods are used widely. For
example, sPLS [10] is a sparse vision of PLS, and Multi-
block PLS [11] performing PLS on a multi-omics data-
set. In addition, multi-omics gene-wise weights is an-
other popular method in NF-NBY that integrate
different omics into a score for each gene. In NF-BY,
iCluster [12] is an innovative method that capture the
similarities among different omics by minimize within-
cluster variance. In NB-NBY, stSVM [13] utilizes diffu-
sion kernels to random walk on each network with re-
starts, and Similarity Network Fusion (SNF) [14] fuses
patient similarity networks (sample-sample network) it-
eratively from each omics. Affinity Network Fusion
(ANF) [15] is an upgrade of SNF that employ state tran-
sition matrix to obtain affinity matrix (similarity matrix)
and fused weighted view by a ‘smooth’ procedure. Our
method belongs to NB-NBY that no prior is assumed on
data and no graph is used for model interactions, which
means our model structure is simpler than others. How-
ever, our experimental results show that our fusion
method outperforms concatenation and some NB-NBY-
based methods [3], and we believe our fusion method
may contain some real biological meaning.

Methods
Our method is based on autoencoder so we give a brief
introduction to it, and then we divided our method into
three part: specific autoencoder, supervised autoencoder
and multi-omics fusion, and discussed them in later
sections.

Autoencoder
Autoencoder is an unsupervised neural network method
that applies back-propagation, setting the output values
to be equal to the inputs. And one of the hidden layer of
autoencoder is considered as the representation of the
inputs. If the hidden layer has fewer neural units than
the input layer, we treat the hidden layer as a

compressed knowledge representation of the original in-
put, otherwise we treat the hidden layer as a ‘diversity’
representation that map the original space to a higher
dimensional space.
Usually, autoencoder is divided into two processes, en-

coder and decoder. Suppose the original input is X ∈
ℝN × p, a sample-feature matrix with N samples and p
features. An one-layer neural network with parameter
Θe is regarded as encoder:

Encoder X;Θeð Þ ¼ H∈ℝN�k

H is usually referred to as latent representation of in-
put X. The encoder maps N samples from p-dimension
space to k-dimension space. And another one-layer
neural network with parameter Θd is regarded as
decoder:

Decoder H ;Θdð Þ ¼ ~X∈ℝN�p

~X is reconstruction representation which has the same
shape as X. The decoder maps N samples from k-
dimension space back to p-dimension space, and it
should be noted that X and ~X are different. The whole
process of autoencoder can be expressed as:

Decoder Encoder X;Θeð Þ;Θdð Þ ¼ ~X

Finally, the objective function of autoencoder can be
formulated with Frobenius norm:

arg min
Θe;Θd

X−~X
�� ��2

F

The objective function is also called reconstruction
error, which try to penalize the difference between X
and ~X . And the latent representation H is generally used
in subsequent tasks as the representation of input, be-
cause it’s widely believed that H retains input informa-
tion in a better form. And there is an interesting fact
that if all neural networks in autoencoder is linear and
the dimension of H is less than the dimension of X, we
would observe a similar dimensionality reduction as ob-
served in principal component analysis (PCA).

Specific autoencoder
As mentioned before, different omics have different
properties, more specifically, the dimension of some
omics are high and other are low. This situation is very
common, but current methods are not considered. In
order to deal with this situation, we thought that the
omics with high-dimension contain more information
than the omics with low-dimension, because high-
dimension omics contains more genes (or protein), and
more genes (or protein) mean more complete descrip-
tions of a patient.
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Therefore, for high-dimension omics (hold more infor-
mation), we need compress them to a lower dimension
space. In addition, the compression step can avoid over-
fitting. On the contrary, for low-dimension omics, the
information is less, so we need to map original omics
nonlinearity into higher dimension, and produce more
nonlinear combinations of original features. Therefore,
in our specific autoencoder, we suppose that there are

M types of omics X = {X(1),…, X(i),…, X(M)}, in which XðiÞ

∈ℝN�pðiÞ represents the ith omics. And then the M types
of omics have been divided into high-dimension group
X(high) and low-dimension group X(low). Without loss of
generality they were formulated as:

X highð Þ ¼ X 1ð Þ;X 2ð Þ;…;X lð Þ
n o

X lowð Þ ¼ X lþ1ð Þ;X lþ2ð Þ;…;X Mð Þ
n o

X ¼ X highð Þ∪X lowð Þ

And autoencoders for each omics were formulated as:

H ið Þ ¼
Encoder Fπ ið Þ X ið Þ

� �
;Θ ið Þ

e

� �
if X ið Þ∈X highð Þ

Encoder Gπ ið Þ X ið Þ
� �

;Θ ið Þ
e

� �
if X ið Þ∈X lowð Þ

8<
:

~X
ið Þ ¼ Decoder H ið Þ;Θ ið Þ

d

� �

FπðiÞ ð∙Þ is a ‘compression’ neural network and GπðiÞ ð∙Þ is
an ‘expansion’ neural network, they have formed omics-
specific layers. And the decoder structure is same for all
omics. H(i) is the new latent representation of ith omics
that will be used in subsequent tasks, and all H(i) have
the same dimension k. The loss function become:

arg min
Θ ið Þ

e ;Θ ið Þ
d ;π ið Þ

XM

i¼1
X ið Þ−~X

ið Þ���
���2
F

In fact, the structures are different in all omics not
only in high-dimension or low-dimension omics, be-
cause different autoencoder have different parameters.

Supervised autoencoder
Now, we have got the autoencoders for each omics, but
the latent representations produced by those autoenco-
ders may not good enough to represent the omics for a
given task. Follow above ideas, high-dimension omics
hold more information, but under a given task, only a
few information are useful and others are considered as
noises. So many methods attempted to enforce autoen-
coder to learn more specific information but their repre-
sentation ability is insufficient. And in this paper, we
thought that using labels is the best way to do so.

Therefore, we reformulated the loss function of the spe-
cific autoencoder as:

arg min
Θ ið Þ

e ;Θ ið Þ
d ;π ið Þ;Θ ið Þ

p

XM

i¼1
X ið Þ−~X

ið Þ���
���2
F
þ α

XM

i¼1
L Y ; ~Y

ið Þ� �

~Y
ið Þ ¼ Predictor H ið Þ;Θ ið Þ

p

� �

PredictorðH ðiÞ;ΘðiÞ
p Þ is a supervised neural network

with parameter ΘðiÞ
p and input H(i). Y is the label vector

of given task. And L is the prediction loss (cross entropy
or mean squared error). The loss function encourages
that the representation produced by autoencoder should
hold omics- and task-specific knowledge, and α is used
to adjust propensity. From another perspective, the su-
pervised autoencoder is a common supervised deep
neural network with reconstruction error, but in our
method, we focus on the representation rather than pre-
diction, so we called it supervised autoencoder.

Multi-omics fusion
After above processing, we can generate a very powerful
representation for each omics, and they can be used dir-
ectly. But different omics describe different aspects
about the same trait, the representation of a single-
omics is not comprehensive for a trait. Therefore, we
used a very simple but powerful way, average, to fuse
those representations. In supervised autoencoder, we got
H(i) for ith omics, and all M representations have the
same dimension k, so we fused them as:

H fusionð Þ ¼ 1
M

XM

i¼1
H ið Þ

Again, we used labels to enforce the H(fusion) contains
task-specific information. And the loss function
becomes:

arg min
Θ ið Þ

e ;Θ ið Þ
d ;π ið Þ;Θ ið Þ

p ;Θ f

XM

i¼1
X ið Þ−~X

ið Þ���
���2
F

þ α
XM

i¼1
L Y ; ~Y

ið Þ� �
þ βL Y ;Y fusionð Þ

� �

Y fusionð Þ ¼ Predictor H fusionð Þ;Θ f

� �

Y(fusion) is the result produced by a neural network
with parameter Θf and input H(fusion). All labels were
processed uniformly in this loss function, so there is no
information leakage. And α, β are used to adjust propen-
sity, they were set to 1 in this paper. Average is a very
simple operation of fusion, but we believe it plays an im-
portant role: the elements in each H(i) may have different
meanings, but the average operation enforces the ele-
ments in the corresponding positions to have the same
meanings. The fused representation may represent a
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higher level of biological information (e.g. pathway) than
the molecular level.
An illustration of the whole framework of MOSAE is

depicted in Fig. 1. The framework is the same for four
different tasks.

Results

Dataset We used TCGA Pan-Cancer data to verify our
method, which downloaded from UCSC Xena (https://
xenabrowser.net/datapages/). There are many types of
omics in TCGA Pan-Cancer, and we selected four of
them to verify our method, including DNA methylation,
miRNA sequencing (miRNA-Seq), RNA sequencing
(RNA-seq) and protein expression (RPPA). Besides, we
used four prediction tasks (binary) in our experiment:
overall survival (OS), disease-specific survival (DSS),
progression-free interval (PFI) and disease-free interval
(DFI). They are clinical outcome endpoints, and specific
definitions can be found in [16].
For each task, samples with both above four types of

omics were selected, and we obtained 5983, 5799, 5983
and 3191 samples for OS, DSS, PFI and DFI, respect-
ively. And for features in each omics types, we removed
variables with low variance or low mean and filtered out
outliers. Because of the difference between tasks, the
number of features in each omics under each task is

different. And the final number of features we used is
shown in Table 1.

Evaluation metric
The proportion of the sample in each task is unbalanced,
for example, there are 5983 samples in OS, of which
1692 are positive samples and 4291 are negative samples.
Therefore, we selected Area Under the Receiver Operat-
ing Characteristic Curve (ROC AUC) as the evaluation
metric. In biostatistics, the metric is known as C-index
which ranges from 0.5 to 1, and the value over 0.7
indicate that our model may be a good model. We im-
plemented this metric using scikit-learn (https://scikit-
learn.org). Besides, we used 5-fold cross validation to
calculate the metric, so there is a standard deviation for
each result.

Comparison with other methods
In order to verify the performance of our method
MOSAE, we chosen six common machine learning
methods as baselines to compare with MOSAE. Those
baselines include SVM, DecisionTree, Naïve Bayes, kNN,
RandomForest, and AdaBoost. And the input of base-
lines is the concatenation of multiple omics, and they
were implemented using scikit-learn. Multi-view
Factorization AutoEncoder predicted OS and PFI using
the same dataset and metric as us, and achieved state-of-

Fig. 1 An illustration of MOSAE
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the-art results. So we used the results in their paper [3]
directly to compare with ours. For MOSAE, there are
four supervised autoencoders for four omics, and the
number of input units is equivalent to the number of in-
put features. DNA methylation and RNA-Seq belong to
high-dimension group so the number of the second layer
of their corresponding autoencoder was set to 100 as a
‘compression’ neural network, and miRNA-Seq and
RPPA belong to low-dimension group so the second
layer was set to 1000 as an ‘expansion’ neural network.
The latent representation layer was set to 400 for all
autoencoders. The ROC AUC scores are shown in
Table 2, and the standard deviation is in brackets. At the
same time, in order to show the difference between dif-
ferent methods more intuitively, we visualized the ROC
AUC scores in Fig. 2. Our algorithm achieves the best
results under all tasks.

Further performance analysis
In this section, we experimented to examine the per-
formance of various improvements in MOSAE. Since
our method is based on autoencoder, we choose a plain
autoencoder as the baseline, which is a three layers
neural network, and we used the concatenation of multi-

omics as input, and used the middle layer as latent
representation.
In order to show the results more intuitively, we divide

MOSAE into four modules. The first module is multi-
omics (MO), which mean each omics has its own auto-
encoder. The second module is fusion, which determines
the way latent representations are merged. Here we used
two ways, concatenating (Cat) and averaging (Ave). And
for concatenation, the size of each latent representation
is set to 100, so the size of fusion representation is 400,
which is equivalent to the size of average. The third
module is supervised (Sup), which means using labels
for latent representation. The fourth module is specific
(Spec), which means the network structure will be ad-
justed according to the size of the dimension. So
MOSAE can be expressed as (MO +Ave + Sup + Spec).
The ROC AUC scores are shown in Table 3 and visual-
ized in Fig. 3. Every module gives a steady improvement
in performance for predicting all tasks.

Discussion
Performance of MOSAE
The results (Table 2, Fig. 2) compared with other
methods shown that MOSAE has a significant improve-
ment over the baseline approaches for predicting all
tasks, and results are as stable as baselines. Therefore,
we can draw a conclusion that our method outperforms
traditional methods, and MOSAE can be generalized to
different tasks. Besides, we observed that the results of
PFI and DFI are worse than OS and DSS. We think this
is because PFI and DFI have short-term clinical follow-
up intervals. And the amount of data in DFI is much
smaller than PFI, so DFI is even worse. In addition,
Multi-view Factorization AutoEncoder [3] is an
autoencoder-based method, which belongs to NB-NBY
methods that utilizes graph to model domain knowledge
of features and utilizes sample similarity matrix to fuse
different view. But its results for OS and PFI are 0.766
and 0.724, respectively, which is worse than ours (OS:
0.7830 and PFI: 0.7325). This may indicated that our fu-
sion methods and other improvements are more effect-
ive than Multi-view Factorization AutoEncoder.
From the results in Table 3 and Fig. 3, we can found

that every module gives a steady improvement in per-
formance for predicting all tasks, and Ave and Sup are
the most prominent. The results indicated that the latent
representations and fusion representations produced by
MOSAE are more powerful for predicting tasks, and
average is a better fusion method than concatenation.

Reconstruction error
From another perspective, MOSAE can be considered as
a multi-view neural network with reconstruction error.
To examined the role of reconstruction error in

Table 1 Details of Preprocessed Data

Omics types OS DSS PFI DFI

DNA Methylation 4183 4182 4183 4424

miRNA-Seq 658 658 658 680

RNA-Seq 4720 4722 4720 4703

RPPA 210 210 210 210

Table 2 Comparison with Other methods

Methods OS DSS PFI DFI

SVM 0.6905
(±0.0108)

0.6927
(±0.0154)

0.6416
(±0.0119)

0.5950
(±0.0174)

DecisionTree 0.6973
(±0.0082)

0.6877
(±0.0199)

0.6503
(±0.0093)

0.5736
(±0.0276)

Naïve Bayes 0.6825
(±0.0110)

0.7139
(±0.0277)

0.6672
(±0.0074)

0.6631
(±0.0304)

kNN 0.7189
(±0.0086)

0.7134
(±0.0146)

0.6788
(±0.0095)

0.6488
(±0.0474)

RandomForest 0.7355
(±0.0082)

0.7449
(±0.0160)

0.6999
(±0.0134)

0.6621
(±0.0299)

AdaBoost 0.7297
(±0.0042)

0.7369
(±0.0219)

0.6831
(±0.0155)

0.6454
(±0.0254)

Multi-view Factorization
AutoEncoder [3]

0.766
(−)

– 0.724
(−)

–

MOSAE 0.7830
(±0.0081)

0.7870
(±0.0293)

0.7325
(±0.0123)

0.7061
(±0.0393)
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MOSAE, we used plain neural network (NN) as the
comparison object, the input is the same as plain
autoencoder (AE). And MO, Ave, Sup and Spec are
the same as above, for example, (AE +MO +Ave +
Sup + Spec) is MOSAE, this is a litter different from
above, the purpose is to make a more clearly com-
parison. And (NN +MO +Ave + Sup + Spec) means
there is an independent neural network for each
omics (MO), the representations that generate from
each neural networks were fused by averaging (Ave),

those independent neural network were train with la-
bels (Sup) and the structure of neural network were
dependent on the dimension of omics (Spec). From
the results (Table 4), we can see that NN outper-
forms AE, which means the reconstruction error may
not work in predicting, but our Sup module changed
this situation. This change proves that adding label
information to each autoencoder (with reconstruction
error) can improve the representation ability. But
there is an exception. For OS, reconstruction error
did not work well, this may due to the good data
quality of OS, which can be confirmed in [16].

Conclusions
Predicting clinical outcome endpoints are very important for
precision medicine and personalized medicine. And multi-
omics fusion is an effective way to solve this problem. In this
paper, we developed an autoencoder-based method named
MOSAE to fuse multi-omics to predict clinical outcome.
Firstly, we utilized the difference of omics to design specific
structure of autoencoders for different omics, then we
employed labels to enforce autoencdoers to learning task-
specific representations. Finally, we fused those representa-
tions by averaging, which is a simple but powerful operation.
MOSAE has been verified in Pan-Cancer dataset, and the

Fig. 2 The ROC AUC scores for different tasks and methods

Table 3 Performance of Various Modules of MOSAE

Methods OS DSS PFI DFI

Plain autoencoder 0.7632
(±0.0058)

0.7660
(±0.0229)

0.6999
(±0.0103)

0.6615
(±0.0340)

MO + Cat 0.7644
(±0.0135)

0.7709
(±0.0292)

0.7030
(±0.0115)

0.6634
(±0.0366)

MO + Ave 0.7682
(±0.0134)

0.7753
(±0.0291)

0.7189
(±0.0136)

0.6942
(±0.0368)

MO + Ave + Sup 0.7721
(±0.0112)

0.7793
(±0.0252)

0.7227
(±0.0124)

0.6960
(±0.0388)

MO + Ave + Sup + Spec 0.7830
(±0.0081)

0.7870
(±0.0293)

0.7325
(±0.0123)

0.7061
(±0.0393)
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Fig. 3 The ROC AUC scores for different Modules

Table 4 Performance of Reconstruction Error

Methods OS DSS PFI DFI

NN 0.7641
(±0.0085)

0.7698
(±0.0225)

0.7039
(±0.0134)

0.6631
(±0.0283)

AE 0.7632
(±0.0058)

0.7660
(±0.0229)

0.6999
(±0.0103)

0.6615
(±0.0340)

NN +MO + Ave 0.7726
(±0.0090)

0.7768
(±0.0226)

0.7223
(±0.0157)

0.6880
(±0.0337)

AE + MO + Ave 0.7682
(±0.0134)

0.7753
(±0.0291)

0.7189
(±0.0136)

0.6942
(±0.0368)

NN +MO + Ave + Sup 0.7750
(±0.0083)

0.7747
(±0.0315)

0.7219
(±0.0157)

0.6859
(±0.0268)

AE + MO + Ave + Sup 0.7721
(±0.0112)

0.7793
(±0.0252)

0.7227
(±0.0124)

0.6960
(±0.0388)

NN +MO + Ave + Sup + Spec 0.7837
(±0.0104)

0.7854
(±0.0301)

0.7299
(±0.0097)

0.7016
(±0.0380)

AE + MO + Ave + Sup + Spec 0.7830
(±0.0081)

0.7870
(±0.0293)

0.7325
(±0.0123)

0.7061
(±0.0393)
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results shown that MOSAE outperforms traditional and
state-of-the-art methods in all tasks. Every improvement in
MOSAE has improved the performance of prediction, and
MOSAE has robust generalization ability. Our feature work
will focus on designing new structure of autoencoder and de-
veloping more powerful and interpretable fusion methods.
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