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Abstract

Background: Blood cultures are often performed to detect patients who has a serious illness without infections and
patients with bloodstream infections. Early positive blood culture prediction is important, as bloodstream infections
may cause inflammation of the body, even organ failure or death. However, existing work mainly adopts statistical
models with laboratory indicators, and fails to make full use of textual description information from EHRs.

Methods: We study the problem of positive blood culture prediction by using neural network model. Specifically, we
first construct dataset from raw EHRs. Then we propose a hybrid neural network which incorporates attention based
Bi-directional Long Short-Term Memory and Autoencoder networks to fully capture the information in EHRs.

Results: In order to evaluate the proposed method, we constructe a dataset which consists of totally 5963 patients
who had one or more blood cultures tests during hospitalization. Experimental results show that the proposed neural
model gets 91.23% F-measure for this task.

Conclusions: The comparison results of different models demonstrated the effectiveness of our model. The
proposed model outperformed traditional statistical models.

Keywords: Hybrid neural network, Long short-term memory, Electronic health records, Positive blood cultures
prediction

Background
With the rapid development of computing technologies,
more and more medical monitoring equipments and soft-
ware systems are used in clinical practice, generating a
large amount of data. This provides opportunities and
challenges to accelerate clinical science using large scale
of practical clinical data in less expense [1, 2]. For this
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reason, machine learning has been increasing impact for
medical information research. Various machine learning
techniques have been used to mine clinical knowledge
[3–7]. Earlier work demonstrated the feasibility of build-
ing predictive models with clinical data [8, 9]. Ideally, we
wish to be able to establish such models from data rou-
tinely collected in Electronic Health Records (EHRs) [10].
In the present research, our aim is to construct a novel
model for predicting the risk of bloodstream infection
of patients during hospitalization by predicting positive
Blood Cultures (BCs).

The positive BCs is defined as a blood sample in which
bacteria or fungi are present. The growth of bacterial or
fungi in the blood can cause inflammation of the body,
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even organ failure or death [11]. When test positive is sus-
pected blood is drawn for blood culture and the patient
is started on antibiotics. On average for every culture-
positive results an additional more patients receive antibi-
otic treatment contributing to antibiotic resistance in the
community and increased healthcare costs [12]. Rapid
identification of positive BCs is important for the rapid
initiation of optimal treatment in patient. When BCs
results are not available, the decision to continue or stop
antibiotics is made based on laboratory test and the
clinical profile of the patient. However patients’ clinical
descriptions are complex unstructured texts and not fully
understood [13, 14].

In recent years, some researchers have noticed the
importance of these problems [15, 16]. Matheny et al.
[17] developed a hybrid rules and natural language pro-
cessing methods for detection of blood culture bacterial
contamination. Steenkiste et al. [18] proposed a temporal
computational model to explore for the potential predic-
tion of the outcome of a blood culture test based on nine
clinical parameters measured over time. However, this
model only uses the numerical physical indicators.

Motivated by these observation, we propose a novel
hybrid neural network model which could extract the
laboratory and the clinical description features simulta-
neously, for predicting positive blood culture based on
EHRs. Electronic Health records usually contain two main
information: textual description and discrete laboratory
physical indicators. A piece of EHRs are shown in Fig.
1. We can see a patient’s Chief Complaints (CC), Admis-
sions Records (AR), physical and laboratory indicators.
The main contributions of the proposed method can be
summaried as follows:

(1) In the study, we construct a dataset from a large
amount of raw EHRs which contained one or more
blood culture tests taken during hospitalization.

(2) The hybrid model incorporates Attention-based
Bi-directional Long Short Term Memory (ABiLSTM)
and Denoising Autoencoder (DAE) network. The
ABiLSTM is used to extract textual features and DAE
takes the numerical indicators as input for capturing
important numerical features.

(3) Conduct an extensive and large-scale empirical study
to evaluate the effectiveness of the our method.

Related work
There are a number of studies that use machine learn-
ing techniques in the field of disease prediction [19, 20].
The majority of these works focused on the numerical
factors including physical examination factors and labora-
tory indicators. For example, Zou et al. [21] used decision
tree, random forest and neural network to predict diabetes
mellitus based on 14 clinical attributes. Ding et al. [22]

applied a random forest model for predicting acute res-
piratory distress syndrome events in ICU patients based
on 42 clinical variables. Yin et al. [23] used preprocedu-
ral clinical variables to develop a model for prediction
of contrast-induced nephropathy (CIN) before radiolog-
ical procedures among patients administered contrast
media.

Moreover, some researches have conducted to the early
detection of bloodstream infecions by predicting the out-
come of blood cultures [18, 24]. Mani et al. [25] developed
non-invasive predictive models for late onset neonatal
sepsis based on the electronic medical records. A blood
culture was taken to further differentiate between neg-
ative and positive culture sepsis. Instead of exclusively
looking at physiological features, Lukaszewski et al. [26]
trained an artificial neural network model to predict posi-
tive BCs. This model could correctly predict the outcome
of the blood culture test in 83.09% of patient case. How-
ever, this research was performed based a limited data set
of only 92 patients.

Previous researches mainly uses clinical laboratory
parameters to predict diseases without directly taking into
account unstructureal clinical description from the EHRs.
Here, we present a hybrid neural network model which
could extract the laboratory and the clinical description
features simultaneously from EHRs to predict the out-
come of blood cultures. The models may contribute to the
discontinuation of antibiotics in negative cases before BCs
results become available. The end results could be reduced
antibiotic use with its associated benefits for the patient
and for healthcare utilization. To this end, we explore and
illustrate the potential of neural networks in the accurate
prediction of positive blood cultures.

Methods
Task modeling
When doctors suspect a patient to test positive they
can decide to advance to a blood culture test, the task
aims to construct a model to predict positive blood cul-
ture results. We model the prediction task based on the
following steps.

• We construct a dataset D∗ from the real EHRs
dataset. Specifically, positive examples indicate that
patients have positive blood culture results at least
once during hospitalization, which is denoted as
D+ ∈ D∗. Negative examples indicate that the result
of patient’s blood culture were all negative, which is
denoted as D− ∈ D∗.

• At the training phase, we use the data D∗ that
contains both D+ and D− to train our model M.

• At the test phase, we apply the well-trained model M
to predict patient’s blood culture test result, which
can distinguish patients who has a serious illness
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Fig. 1 A piece of EHRs from a patient

without infections or patients with bloodstream
infections.

Hybrid neural network model
Our proposed hybrid neural network model including two
main parts: attention-based BiLSTM and Autoencoder,
the whole architecture of our method can be found in

Fig. 2. ABiLSTM is used for learning continuous repre-
sentation from the textual description information. The
textual information contain the patient’s chief complaints
and admissions records in EHRs. Chief complaints refer
to patient’s symptoms and feeling of abnormal physio-
logical function when the patient is ill. The admissions
records are the text description of patient’s present illness
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Fig. 2 The proposed hybrid neural network framework

at admission. Plenty of useful information is embedded in
clinical text, which are critical for disease analysis [27, 28].
In addition, the Autoencoder is used to learn continuous
representation from the laboratory biochemical indicators
in EHRs.

Textual representation
In this study, the input from textual sentences describe
the basic disease symptoms and which may imply use-
ful information behind the texts. Chinese clinical texts
are dramatically different from clinical texts in English, as
there is no separator between words. At present, many
words segment tools are be proposed for Chinese text
analysis such as THULAC (https://github.com/thunlp/
THULAC-Python), Jieba (https://pypi.org/project/jieba/).
However, there are no special Chinese word segmenta-
tion tools for the clinical domain. In this study, Chi-
nese clinical sentences are segmented into single Chi-
nese characters. ( were segmented into

Formally, given an input sentence x = x1, . . . , xn, the
BiLSTM model first finds the word or phrase embedding
e(xi) ∈ RL of each word xi in the lookup table E ∈ RL×V ,
where L is the dimension of embedding vector and V
represents the vocabulary size.

BiLSTM models a recurrent state transform sequence
from an input sequence to a hidden state sequence. Basi-
cally, a LSTM represents each time step with an input,
a memory and an output gate, denoted as it , ft , ot ,
respectively.

it = λ (Wxixt + Whiht−1 + Wcict−1 + bi)

ft = λ
(
Wxf xt + Whf ht−1 + Wcf ct−1 + bf

)

ct = ft � ct−1 + it � tanh (Wxcxt + Whcht−1 + bc)

ot = λ (Wxoxt + Whoht−1 + Wcoct + bo)

ht = ot � tanh (ct)

(1)

where λ is the element-wise sigmoid function and � is the
element-wise product. xt is the input vector (word embed-
ding) at the time t, and ht is the hidden state vector, W are
weight matrices, and b are biases.

The BiLSTM has two parallel layers in both forward and
backward direction. Therefore, we get a sequence hft ={−→

h1 , . . . ,
−→
hn

}
from left to right, and another sequence

hbt =
{←−

h1 , . . . ,
←−
hn

}
from right to left. We then con-

catenate these two hidden outputs as one total output:

ht = [
hf ; hb

]
(2)

Based on the BiLSTM modeling, we obtain textual repre-
sentation ht .

Attention mechanism has been demonstrated success in
machine learning. In this section, we use the words atten-
tion to enhance performance of the disease prediction.
In EHRs, not all words or phrases are equally important
for predicting positive blood culture, under the assump-
tion that the label of xt is not determined by ht only. Let
h be a matrix consisting of output vectors [ h1, . . . , hn]
that the BiLSTM layer producted, where n is the sentence

https://github.com/thunlp/THULAC-Python
https://github.com/thunlp/THULAC-Python
https://pypi.org/project/jieba/
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length. The attention layer produces a new representa-
tion sequence h(r) =

(
h(r)

1 , . . . , h(r)
n

)
, where h(r)

t is the
representation at step t and can be calculated as follows:

h(r) = tanh
(

h · αT
)

(3)

where tanh is the activation function, αt is the weight vec-
tor for each word in the sentence calculated as follows:

αt = softmax
(

wT · tanh(h)
)

(4)

where softmax is the normalization function, h ∈ R
dw×T ,

dw is the dimension of word vectors, w is a trained param-
eter vector. Finally, the attention layer produces a new
representation sequence h(r) =

(
h(r)

1 , . . . , h(r)
n

)
.

Numerical representation
The laboratory biochemical indicators are all the numeri-
cal features in our clinical data, and some of the values are
correlated. Using these values directly are not applicable.
Previous work showed that the Denoising Autoencoder
(DAE) network can be exploited for noise and correla-
tion reduction, feature extraction [29, 30]. Therefore, we
employ DAE to extract the numerical features.

DAE is a machine learning model that aims to recon-
struct input data as close as possible. A DAE generally
comprises two parts: encoder and decoder. The initial
input x is corrupted to x̃ by a stochastic mapping x̃ ∼
q

(
x̃|x)

. Then the encoder maps an input x̃ to a hidden
representation h(z) via a nonlinear transformation.

h(z) = f
(
W x̃ + b

)
(5)

And then the decoder maps the hidden representa-
tion h(z) back to reconstruct data x̃ via another nonlinear
transformation:

h(d) = g
(

Ŵ h(n) + b̂
)

(6)

Where W and b represent the weight and bias matrices of
encoder, respectively, while Ŵ and b̂ represent the weight
and bias matrices of decoder, respectively. Moreover, f ()
and g() denote non-linear activation functions, such as the
sigmoid function, hyperbolic tangent, and rectified linear
function. Finally, we obtain a refined representation h(d)

of the discrete values.

Out layer
A fully connected layer is used to combine two types of
vectors from textual representation and numerical repre-
sentation. This layer can be computed as:

h(A) = g
(

W (A)
)

·
[

h(r)

h(d)

]
(7)

where W (A) is a parameter, and g is ReLU function. Here,
the dropout technique is utilized to avoid the overfitting.

Finally, we employ the softmax activation function as the
classifier in the bottom of the fully connected layer to
obtain the output.

Experiments
Dataset construction and data preprocessing
To construct the dataset of this task, we gather a large
amount of EHRs data, which is from the first affili-
ated hospital of Zhengzhou University, with a span of 2
years ranging from 2017 to 2018. The raw EHRs contain
some personal privacy, e.g., patient’s name, hospitaliza-
tion number, resident ID number etc., so we remove these
information by preprocessing. In addition, all patients
were at least 16 years old at the moment of admission.
We selected patients who had at least one blood culture
test taken during hospitalization as our goal to construct
a model which can distinguish patients who has a serious
illness without infections and patients with bloodstream
infections. We defined two patients groups. One group
consisted of patients who had positive blood culture result
at least once after their admission in the hospitalization.
And in another group, the results of the blood cultures
tests are all negative during hospitalization. The goal of
this research is to predict the risk of bloodstream infection
of patients during the hospitalization by predicting posi-
tive blood cultures. We did not distinguish the pathogen
types. As such, we cannot rule out that positive blood cul-
tures, which may be the result of false positive predictions
caused by skin contaminants. Finally, we select a set of
patients from the EHRs based on the following criteria:

• A patient who had blood culture positive results
during hospitalization is selected as positive example.

• A patient whose results of all blood culture tests are
negative during hospitalization is selected as negative
example.

Based on the above steps, we get total 28043 patients,
in which 25056 patients are negative examples and 2987
patients are positive examples. This is an extremely imbal-
ance dataset, and is problematic for directly conduct-
ing the experiments. To tackle this problem, we employ
undersampling method to balance the classes. Specifi-
cally, we randomly deletes the majority-class data for
balancing the dataset. At last, there are total 5963 exam-
ples in the dataset after undersampling. For the purpose
of fully utilizing these dataset, we repeated the random
undersampling for ten times to get the average prediction
results.

The extracted data consists of textual description and
numerical indicators in EHRs. The textual informa-
tion contain the patient’s CC and AR in EHRs, which
includes the patient’s disease symptoms and test results.
These information is important and closely related to
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the patient’s health. In addition, we extract the labora-
tory numerical parameters in EHRs. First, we removed
clinical parameters which present in a small fraction of
patients. The remaining parameters were further grouped
in 27 parameter features as illustrated in Table 1, includ-
ing three basic features (sex, age and temperature) and
twenty-four blood test indexes. After removals of missing
data, we further normalize the data:

x̃ = x − avg
std

(8)

where x is the value, avg the average of all values and std
the standard deviation.

The textual and basic features were extracted from
admissions records after admission. Normally, patients
may have multiple blood tests during hospitalization, but
in this study we only analyzed blood test indexes before
the first positive blood culture test. For the positive group
of patients, we extracted the test results before the first

Table 1 Overview of included clinical characteristics of patients

Number Clinical parameters Abbreviation

F1 Sex SEX

F2 Age AGE

F3 Temperature [°C] TEMP

F4 C-reactive protein concentration CRP

F5 Procalcitonin PCT

F6 Prothrombine time PT

F7 Prothrombin time activity PT%

F8 Thrombin time TT

F9 Activated partial thromboplastin time APTT

F10 Fibrinogen degradation products FDP

F11 Fibrinogen FIB

F12 D-Dimer D-Dimer

F13 White blood cell WBC

F14 Neutrophil NEUT

F15 Blood platelet PLT

F16 Red blood cell RBC

F17 Hemoglobin HB

F18 Platelet PLT

F19 Neutrophil count NEUT#

F20 Neutrophil ratio NEUT%

F21 Lymphocyte count LYMPH#

F22 Lymphocyte ratio LYMPH%

F23 Hematocrit HCT

F24 Red cell distribution width RDW

F25 Mean platelet volume MPV

F26 Basophil ration BASO%

F27 Thrombocytocrit Pct

blood culture test was positive, including the maximum
PCT and CRP values and the seven terms of coagulation
test results with the maximum PT value. Besides, we also
extracted the latest 15 blood test indexes before the first
positive blood culture. For the negative group of patients,
we extracted the minimum PCT and CRP values during
hospitalization. The latest another 25 clinical indexes were
extracted before the first blood culture test.

In summary, we obtain one dataset across 5963 patients
with each one containing 27 clinical features. A patient
was labeled as ‘1’ with a positive blood culture and ‘0’
otherwise.

Evaluation metric
In our study, we use widely-used evaluation measures to
evaluate the performance of prediction models, includ-
ing precise, recall and F-measure. These measures can
be defined by True Positives (TP), False Positives (FP),
False Negatives (FN) and True Negatives (TN) in Table 2.
Here TP, FN, FP and TN are the number of examples cor-
rectly labeled as positive, the number of positive examples
incorrectly labeled as negative, the number of negative
incorrectly labeled as positive, the number of negative
examples correctly labeled as negative, respectively.

The recall rate denotes the ratio of the number of posi-
tive examples that are correctly classified as positive to the
total number of positive examples. This measure is very
important for our task, because prediction models intend
to find out positive examples as much as possible. The
precision of a model denotes the ratio of the number of
positive examples that are correctly classified as positive
to the number of examples that are classified as positive.
The prediction precision evaluates the correct degree of
prediction model, which are defined as :

recall = TP
TP + FN

(9)

precision = TP
TP + FP

(10)

Obviously, a good prediction model desires to get high
value of recall rate and precision. However, there exists
trade-off between the recall rate and precision. Therefore,
a comprehensive measure of recall rate and precision is
necessary. F-measure is the harmonic mean of recall rate
and precision, which is defined as:

F − measure = (1 + α) × recall × precision
recall + α × precision

(11)

Table 2 Four kinds of prediction results

Predict as positive Predict as negative

Positive examples TP FN

Negative examples FP TN
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where α ∈ (0, +∞), is the weight of recall metric. In this
research, we use α = 1.

All the above evaluation measures range from 0 to
1. Obviously, an ideal prediction model should hold
high values of recall rate and F-measure. In the experi-
ment, we evaluate the performances of models in terms
of recall and F-measure. We also get the precision
results since it has been included in the comprehensive
F-measure.

Experimental settings
For datasets, we performed 10-fold cross-validation fol-
lowing prior work [31]. The whole dataset is split into
ten sections, each decoded by the model trained from the
remaining nine sections. We randomly choose one section
from the nine training sections as the validation dataset to
tune the model parameters.

In our experiments, there are two types of parameters,
containing model hyper-parameters and other setting.
Typically, L denotes the dimension of the word vec-
tors, Lbilstm is the maximum length of the input textual
sequences, NAE is the number of Autoencoder layer, NMLP
is the number of fully connected layers. The dropout rate
in fully connected layer is denoted as Rdropoout . λ is the ini-
tial learning rate for AdamGrad. In our model, the word
embedding E, is randomly initialized with uniform sam-
ples from [ −

√
6

r+c , +
√

6
r+c ], where r and c are the number

of rows and columns in the structure. Parameters are
shown in Table 3.

To validate the effectiveness of the proposed approach
for prediction of blood culture outcome, we compared
our approach with the several representative methods,
four discrete models including Logistic Regression (LR),
Naive Bayes (NB), Support Vector Machine (SVM) and
Adaboost Decision Tree (ADT). These discrete models
have been extensively used for classification tasks, giving
competitive results. And three neural models: Convolu-
tional Neural Network (CNN), Bi-directional Long Short
Term Memory (BiLSTM) and a hybrid neural network
models which integrates the Autoencoder (AE) with the
ABiLSTM to make use of two types of features. And all

Table 3 Parameters of our model in the experiment

Type Parameters

Training λ = 0.001, epochs = 20

batchsize = 16

Embedding dim(emb(L)) = 100

epochs = 20

BiLSTM Lbilstm = 128

Rdropoout = 0.5

AutoEncoder NAE = 6, NMLP = 2

above baseline models are implemented with Sklearn and
Tensorflow.

We design three experiments to evaluate our approach:
(1) Only laboratory biochemical indicators as input to the
model (Numerical input only, noted as Numerical). (2)
Only the textual features such as patient’s information,
symptoms and admissions records in the EHRs as input
to the model (noted as Textual). (3) Numerical and textual
features as input to the model.

Results
In this section, we evaluate the performance of our hybrid
model based on the ability to accurately predict the out-
come of a blood culture test. Firstly, we compare the
ability of the different methods to predict positive blood
culture based on the laboratory features. Based on the
constructed dataset, Table 4 shows experimental results
of different methods. We can know that the LR model
proposed by Chen [32] only gives 78.91% F-measure. The
main reason is that this model only take laboratory indica-
tors as input, ignoring the textual description information
from EHRs. This limits the performance of the task. The
NB and SVM models gives 81.95% and 83.23% F-measure,
outperforming the LR model. This shows the effective-
ness of these two models in this task. Among all models,
ADT gives the relatively highest results, giving 85.56%
F-measure. The main reason is that ADT is a boosting
model which contains multiple meta classifiers and uses
the assembling mechanism, and this makes ADT model
more powerful.

Table 5 shows the experimental results of different
methods based on textual description information from
EHRs. Among all models, the neural network models
get the relatively good results. The BiLSTM gives 72.59%
F-measure and the ABiLSTM could get 73.21%. This
demonstrates that the neural network has powerful abil-
ity to fully learn the intrinsic features from the textual
description. However, we can easily observe that using
only textual information, no better than laboratory indi-
cators features.

The experimental results of different methods based
on laboratory+textual features are shown in Table 6.
By integrating DAE, ABiLSTM+DAE could achieve
91.23% F-measure on laboratory+textual features, which

Table 4 Experimental results of numberical features

Model Precision (%) Recall (%) F-measure (%)

LR 78.56 79.26 78.91

NB 80.24 83.73 81.95

SVM 84.56 81.95 83.23

ADT 84.64 86.51 85.56

AVG 82.00 82.86 82.41
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Table 5 Experimental results of textual features

Model Precision (%) Recall (%) F-measure (%)

LR 66.21 59.31 62.57

NB 59.25 62.75 60.95

SVM 63.56 65.25 64.39

ADT 65.54 67.25 66.38

CNN 69.21 71.18 70.18

BiLSTM 76.35 69.19 72.59

ABiLSTM 75.35 71.19 73.21

AVG 66.92 55.01 67.18

is significantly higher than other methods. Remarkably,
we can know that all models can get better performance
based on the combination of numerical and textual fea-
tures compared to the only laboratory (numerical) and
textual features. This is because different types of features
in EHRs can both give their own contributions. Mean-
while, the results from only laboratory features are better
than that from numerical features.

Discussion
In this section, we analyze the results on constructed test
set to show the main reasons that the hybrid model (ABiL-
STM+DAE) is better than the discrete models (ADT).
We characterize the main errors generated by the hybrid
model. Table 7 shows the number of positive examples for
correct/incorrect recognition. For positive blood culture
prediction, the number of examples that were addressed
correctly by ABiLSTM+DAE model but incorrectly by
the ADT model is over 3.5 times compared to those
addressed by the ADT model correctly but by the ABiL-
STM+DAE model incorrectly (345 versus 97). Moreover,
among the 345 examples that were addressed correctly
ABiLSTM+DAE model but incorrectly by the ADT model.
This indicates that the hybrid model helps to capture more
features information to improve prediction performance.

Table 6 Experimental results of hybrid numberical and textual
features

Model Precision (%) Recall (%) F-measure (%)

LR 83.55 85.23 84.38

NB 84.36 87.68 85.99

SVM 86.12 87.41 86.76

ADT 85.72 87.39 86.55

CNN 87.36 88.69 88.01

BiLSTM 87.16 90.01 88.56

CNN+DAE 89.21 90.36 90.01

BiLSTM+DAE 90.32 91.59 90.96

ABiLSTM+DAE 90.15 92.35 91.23

AVG 87.11 89.68 88.05

Table 7 Comparisons between the ABiLSTM+DAE and ADT on
the test set

Model
Recongition(%)

BiLSTM+DAE ADT

Correct Correct 1398 (49%)

Correct Wrong 345 (12%)

Wrong Correct 97 (3.3%)

Wrong Wrong 107 (3.6%)

Conclusion
It is challenging to predict patients at risk for blood-
stream infection based on laboratory test results and the
clinical profile of the patient. Therefore, the ability to
accurately predict a positive outcome of blood cultures at
an early stage may save lives and make full use of med-
ical resources. In this paper, we propose a hybrid neural
networks model by integrating the attention based BiL-
STM and denoising Autoencoder networks to predict the
outcome of a blood cultures. Based on the constructed
dataset from the raw Chinese EHRs, experimental results
show that this model can accurately determine the out-
come of blood culture test at the moment the blood
sample was taken. In this study, we only used the contents
of chief complaints and admissions records in EHRs and
did not integrate all contents of EHRs into the model, such
as medical orders, surgical records, nursing records and so
on. Therefore, future research will focus on how to inte-
grate different types of medical information to improve
the prediction effect for positive blood culture.
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