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Abstract

Background: Clinical registers constitute an invaluable resource in the medical data-driven decision making context.
Accurate machine learning and data mining approaches on these data can lead to faster diagnosis, definition of
tailored interventions, and improved outcome prediction. A typical issue when implementing such approaches is the
almost unavoidable presence of missing values in the collected data. In this work, we propose an imputation
algorithm based on a mutual information-weighted k-nearest neighbours approach, able to handle the simultaneous
presence of missing information in different types of variables. We developed and validated the method on a clinical
register, constituted by the information collected over subsequent screening visits of a cohort of patients affected by
amyotrophic lateral sclerosis.

Methods: For each subject with missing data to be imputed, we create a feature vector constituted by the
information collected over his/her first three months of visits. This vector is used as sample in a k-nearest neighbours
procedure, in order to select, among the other patients, the ones with the most similar temporal evolution of the
disease over time. An ad hoc similarity metric was implemented for the sample comparison, capable of handling the
different nature of the data, the presence of multiple missing values and include the cross-information among
features captured by the mutual information statistic.

Results: We validated the proposed imputation method on an independent test set, comparing its performance
with those of three state-of-the-art competitors, resulting in better performance. We further assessed the validity of
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our algorithm by comparing the performance of a survival classifier built on the data imputed with our method versus
the one built on the data imputed with the best-performing competitor.

Conclusions: Imputation of missing data is a crucial –and often mandatory– step when working with real-world
datasets. The algorithm proposed in this work could effectively impute an amyotrophic lateral sclerosis clinical
dataset, by handling the temporal and the mixed-type nature of the data and by exploiting the cross-information
among features. We also showed how the imputation quality can affect a machine learning task.

Keywords: Imputation, Missing data, K-nearest neighbours, Mutual information, Naïve Bayes, Clinical datasets,
Amyotrophic lateral sclerosis

Background
By discovering novel and useful patterns from clinical reg-
isters and electronic health records, healthcare analytics
has transformed the healthcare industry both in terms
of cost optimisation and ever improving quality of care
[1]. Among the possible approaches, the use of machine
learning (ML) and data mining techniques are provid-
ing the means to extract information from the complex
and voluminous amount of available data, virtually creat-
ing a paradigm shift in the whole healthcare sector, from
basic research to clinical and management applications [2,
3]. The possible advantages of such analyses could vastly
improve patients’ lives and benefit society as a while. From
an economic perspective, the use of these techniques to
improve practice efficiency results in a more affordable,
high-quality healthcare [4]. Besides, from a clinical point
of view, the possible improvements in medical knowl-
edge, as well in diagnosis and prognosis capabilities, allow
higher health standards. Studies as survival analyses can
evidence risk factors and detect the effect of specific treat-
ments both in disease progression and quality of life [5],
moving towards a personalised care system. Moreover,
an enhanced knowledge of the pathologies can be trans-
lated into computer-aided tools, offering clinicians a valid
support in decision making.

The creation of accurate and effective analytic models
from healthcare data, however, is challenging, because of
issues regarding quality and heterogeneity [6]. The type
and frequency of collected data vary based on the specific
application field, a patient’s clinical condition and admin-
istrative requirements. Moreover, medical tests and treat-
ments can be carried out at different times even if patients
exhibit the same symptoms. This, together with human
factors (poor handwriting, missing charts or pages, mea-
surements being documented in inconsistent locations,
etc.), results in many aspects of a patient’s clinical con-
dition being unmeasured or unrecorded at different time
points.

Missing values may be clinically important, but can-
not be handled by most analytics algorithms [7] and can
significantly affect the conclusions that can be drawn

from the data [8]. For instance, missing data can intro-
duce bias in the results of randomised controlled trials,
negatively affecting the derived clinical decisions and ulti-
mately patient care [9]. When performing survival anal-
ysis, missing data can occur in one or more risk factors.
The standard response of simply excluding the affected
individuals from the analysis could lead to invalid results
if the excluded group is selective with respect to the
entire sample, and to a waste of costly collected data [10].
In remote health monitoring settings, missing data is a
prevalent issue affecting long-term monitoring systems
which can lead to failure in decision making [11]. For elec-
tronic health records, missing values frequently outnum-
ber observed ones, mainly because they were designed
to record and improve patient care and streamline billing
rather than collecting data for research purposes [12].

Many kinds of analyses, from simple statistics to
advanced data mining and machine learning meth-
ods, either fail altogether in dealing with missing data
or end up producing biased estimates of the inves-
tigated associations when simple curing techniques
(such as complete case analysis, overall mean impu-
tation, or the missing-indicator methods) are applied
[13]. To utilise all clinical data and achieve opti-
mal performance of the used algorithms, the missing
data issue must be addressed by imputing the missing
values.

When considering the heterogeneity of the data
recorded in this setting, a typical example of mixed-type
variables dataset is represented by disease registers. The
variables in this domain can be classified as either static
if constant throughout the patient’s clinical history, such
as sex or age at disease onset, or dynamic if varying in
time, such as blood pressure or sugar levels at subsequent
visits. Furthermore, they can be continuous when repre-
senting measurements in a range of continuous values,
ordinal when the values fall in a discrete ordered set, or
categorical when describing a qualitative property out of a
finite number of categories or distinct groups without any
order relations. An adequate imputation method should
therefore be able to handle this data complexity altogether.
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Many of the available imputation methods are restricted
to only one type of variable. For mixed-type data, the dif-
ferent variable types are usually handled separately, thus
ignoring possible relations among variables of different
types. Moreover, most of them make strong assumptions
on the characteristics of the missing data, such as locality
in Gaussian Process based models [14], low-rankness and
temporal regularity in matrix factorisation models [15]
and multivariate normality in Expectation-Maximisation
methods [16]. Finally, most commonly used imputation
methods are not able to explicitly handle the temporal
nature of longitudinal patient data [17].

This paper presents an adaptive mutual information-
weighted k-nearest neighbours (wk-NN) imputation algo-
rithm developed to explicitly handle missing values of
continuous/ordinal/categorical and static/dynamic fea-
tures conjointly. The proposed methodology was applied
and validated on a subset of the Piemonte and Valle
d’Aosta Amyotrophic Lateral Sclerosis (PARALS) regis-
ter [18], a prospective epidemiological register from two
Italian regions.

Types of missing data
Missing values can be of three general types: missing com-
pletely at random (MCAR), missing at random (MAR) and
missing not at random (MNAR). When missing data are
MCAR, the presence and/or absence of data is completely
independent of observable variables and parameters of
interest. In this case, the set of subjects with no missing
data is also a random sample from the source population.
This represents the best possible type of missing data as
any analysis performed will be unbiased [19], although it
is a highly unlikely scenario.

Missing data are MAR when the propensity for a value
to be missing depends on some observed patient char-
acteristic. For instance, males are less likely to fill in a
depression survey. This kind of missing data can induce
bias in the resulting analysis especially when the data is
unbalanced because of many missing values in a certain
category.

Finally, we are in the MNAR scenario when the missing
values are neither MCAR nor MAR. For instance, when
asking subjects for their income level it might well be that
missing data are more likely to occur when the income
level is relatively high. Here, the reason for missingness
obviously is not completely at random, but is related to
unobserved patient characteristics.

Many imputation methods require the missing data
to be MCAR, or at least MAR. On the other hand, an
imputation based on a k-nearest neighbours approach
is applicable in any of the three previous situa-
tions, as long as there is a relationship between
the variable with the missing value and the other
variables [20].

Previous work
Several methods for handling missing data are already
available [21]. The simplest approaches consists in focus-
ing the analysis only on non-missing values in the dataset,
by either dropping cases where at least one variable is
missing or by dropping variables where at least one value
is missing. These approaches completely neglect the rela-
tionships among variables, possibly causing severe infor-
mation loss and worsening the statistical power and stan-
dard errors of the analyses [22, 23]. Mean/median/mode
imputation or value propagation (Last Observation Car-
ried Backward or Next Observation Carried Forward),
are some other fast and easily interpretable statistical
approaches. These imputation methods, however, may
lead to low accuracy and biased estimates of the investi-
gated associations [13, 24].

Regression represents a somewhat more advanced
imputation approach that estimates missing values by
regressing them from other related variables [25], espe-
cially time [26]. While deterministic regression limits
the imputation to the exact prediction of the regression
model, often producing an overestimation of the corre-
lation among the variables, stochastic regression adds a
random error term to the predicted value in order to
recover a part of the data variability [27].

Multivariate imputation by chained equations (MICE)
[28] is one of the most prominent methods in the litera-
ture [29]. In this imputation procedure, a series of regres-
sion models are run whereby each variable with missing
data is modelled conditional upon the other variables
in the data. This means that each variable is modelled
according to its distribution, with, for example, predictive
mean matching for continuous data, logistic regression for
binary data, polytomous logistic regression for categorical
data and proportional odds for ordinal data.

3D-MICE, recently introduced in [17], combines MICE
with Gaussian process (GP) [14, 30] predictions, thus
imputing missing data based on both cross-sectional and
longitudinal patient data information. MICE is used to
carry out cross-sectional imputation of the missing val-
ues, while a single-task GP is used to perform longitudinal
imputation. The estimates obtained by the two methods
are then combined by computing a variance-informed
weighted average. 3D-MICE can adequately impute con-
tinuous longitudinal patient data, but is unable to handle
categorical and static variables.

A non-parametric method based on a random forest
that can cope with different types of variables simulta-
neously, called missForest, was introduced by Stekhoven
et al. [31]. This method is based on the idea that a ran-
dom forest intrinsically constitutes a multiple imputation
scheme by averaging over many unpruned classification or
regression trees. While not requiring assumptions about
distributional aspects of the data, missForest requires the
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observations to be pairwise independent, which is rarely
the case when handling clinical records (several visits for
each patient).

Another popular imputation method for cross-sectional
time series data is Amelia II [16], which performs
multiple imputation by implementing an Expectation-
Maximisation with Bootstrapping algorithm. Amelia II
can utilise both time series and multi-variable informa-
tion in a dataset for the imputation task. This method
requires all variables in the dataset to be multivariate nor-
mally (MVN) distributed. This requirement reduces the
applicability of the method especially when dealing with
non-normalisable and/or categorical variables.

Recently, a number of deep learning frameworks for
estimating missing values in multi-time-series clini-
cal data have been proposed [32–34]. These methods
achieved impressive results on benchmark datasets due
to the high-quality representations extracted from large
amount data, which means that their applicability is lim-
ited when only few data are available.

The “nearest neighbours” (NN) methods are among the
most popular imputation procedures [20, 35]. Missing
values of samples with missing data are replaced by val-
ues extracted from similar other samples with respect to
observed characteristics. NN imputation approaches are
donor-based methods where the imputed value is either
a value that was actually measured for another record in
a database (1-NN) or the average/median/mode of mea-
sured values from k records (k-NN). These methods were
often shown to outperform other imputation techniques
[36], even though results depend heavily on the choice
of the metric used to measure the similarity between
samples. Moreover, because data collection periods vary
across patients, samples may not be directly comparable.
Furthermore, the similarity metric should also handle the
presence of missing values in the donor samples, manage
the different nature of the data, and take into account the
possibly unbalanced contribution of static and dynamic
variables, with the latter adding information over time.

Aim of this work
In this work, we present an imputation algorithm based on
a weighted k-NN approach, able to handle missing data in
static and dynamic mixed-type variables simultaneously.
The k-NN imputation approach is fully non-parametric
and does not require explicit models to relate variables,
thus being less prone to model misspecification than other
methods [20]. In our algorithm, we define an ad hoc
similarity metric in which we employ the mutual informa-
tion (MI) values between feature pairs as weights in the
computation of the distance among samples, in order to
account for the cross-feature information.

The proposed methodology has been developed and
validated on a clinical epidemiological register of patients

affected by amyotrophic lateral sclerosis (ALS), that is, a
collection of dynamically acquired data over subsequent
screening visits, one visit at a time. Compared to clinical
trial datasets, epidemiological registers better characterise
the general ALS population, since clinical trial population
must fit a stringent set of criteria [37]. This clinical register
represents a typical instance of complex dataset consti-
tuted of both static/dynamic and mixed-type variables,
and, coherently with its real-world nature, is inevitably
subject to missing data.

ALS is a fatal neurodegenerative disorder characterised
by progressive muscle paralysis caused by the degenera-
tion of motor neurons in the brain and spinal cord [38].
The disease is progressive and fatal: the symptoms worsen
over time and there are no known effective treatments
that can effectively halt or reverse its progression, which
will inevitably result in respiratory failure, typically within
4 years form disease onset [39]. The enormous social,
medical and human costs imposed on ALS patients, their
families and the health systems in general are pushing the
scientific community towards the development of compu-
tational tools to derive predictions for prognostic coun-
selling, stratification of cohorts for pharmacological trials,
and timing of interventions [40–44].

To this purpose, two distinct DREAM Challenges have
been organised in the past years [41, 44]. By employ-
ing the clinical information of the first three months of
patients’ visits from different datasets, the participants
were asked to develop algorithms to predict the disease
progression and to stratify the patients into meaningful
subgroups. The PARALS register used in our work was
partially included in the datasets of the second challenge.

ALS is a rare disease: its incidence in Europe and in
populations of European descent is 2.6 cases for 100,000
people per year and the prevalence is of 7–9 cases
per 100,000 people [45], with ALS rates being mainly
unknown in the rest of the world [38]. This implies that
the available patients’ data collected in clinical registers
is of inestimable importance for furthering the transla-
tional research on the disease and that missing values
cannot be treated with simple curing techniques. With the
aim to build a complete dataset from the PARALS reg-
ister that can be similarly used for the application and
development of ML algorithms, we developed an adaptive
weighted k-nearest neighbours algorithm for the impu-
tation of the first three months of screening visits. Our
imputation method is based on the assumption that sub-
jects with a similar disease progression over a short period
of time share similar feature values and can therefore be
cross-exploited to impute missing values.

In addition to adequately characterising the temporal
evolution of the disease course [41], the selected time
interval is short enough to allow the imputation of sub-
jects with few available visits. Moreover, the information
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of newly added subjects can be promptly used for the
imputation of others. Finally, by focusing on a reduced
observation interval, only a relatively small number of
visits (and thus a relatively small number of features) is
considered. In a k-NN setting, having a small number of
features prevents the methods from incurring in the curse
of dimensionality: in general, as the number of dimensions
(features) increases, the closest distance among samples
tends to the average distance and the predictive power of
the algorithm decreases [46].

The proposed method was compared to three other
state-of-the-art imputation algorithms, namely Amelia II
[16], missForest [31] and MICE [28], which are the main
representatives of the methods currently available in the
literature. Our experiments show that our method outper-
forms the competitors in the imputation of most of the
features and on average.

To assess the possible impact of the proposed method in
a concrete scenario, we provide a simple application of the
imputed data in a survival classification task. We used a
naïve Bayes (NB) classifier to distinguish between patients
with long and short survival times by using only the infor-
mation in their first three months of screening visits. Our
results show that imputing the training set with the pro-
posed method improves the prediction performance of
the NB classifier on a hold-out test set, also achieving bet-
ter performance than the classifier built on the training
set imputed with the top competitor (MICE). By asserting
the effectiveness of the proposed imputation method in
enhancing the training data for a very simple classification
algorithm with naïve hypotheses, we confirm its applica-
bility in more complex and sophisticated analyses. Finally,
we believe that the proposed methodology could be of
great aid to clinicians since it enables the survival predic-
tion of patients by employing only the information from
their first three months of visits, regardless of possible
missing values.

Materials and methods
Dataset
The dataset used in this work was extracted from the
PARALS Register as follows. We selected the cohort of
patients with first visit from January 1st, 2001 and follow-
up up to July 18th, 2017, and excluded the ones having
an onset that predated the first visit by five years or more
(average ALS prognosis) in order to filter out clinical out-
liers. The selected cohort includes 700 patients, resulting
in a dataset containing the information assessed over their
subsequent screening visits, for a total of 6,726 visits.

The 25 variables collected in the dataset include some
clinical features recorded during the first visit –the static
ones– that are: patient sex, body-mass index (BMI) both
premorbid and at diagnosis, a measure of respiratory
functionality (forced vital capacity, FVC) at diagnosis,

familiality of ALS, the result of a genetic screening
over the most common ALS-associated genes, pres-
ence of frontotemporal dementia (FTD), site of dis-
ease onset (limb/bulbar), age at onset, diagnostic delay
(time from ALS onset to diagnosis); the remaining
features –the dynamic ones– are collected over visits
and consist of: the presence/absence up to the cur-
rent visit of non-invasive ventilation (NIV) and per-
cutaneous endoscopic gastrostomy (PEG), that are two
guideline-recommended interventions for symptom man-
agement in ALS, and the revised ALS Functional Rating
Scale (ALSFRS-R) [47], which is a 12-item question-
naire rated on a 0–4 point scale evaluating the observ-
able functional status and change for patients with ALS
over time.

The time of the visit for each patient is expressed in
months and set to zero in correspondence to the first visit,
resulting in negative values for the onset delta. These vari-
ables are detailed in Table 1, according to their data type
(continuous, ordinal, or categorical), with the percentage
of native missing values and the static (S) or dynamic (D)
nature of the feature. In this summary, for the NIV and
PEG variables we reported the total number of patients
who were administered these interventions.

In order to develop and validate the imputation algo-
rithms on independent data, we split the dataset in train-
ing (80% = 560 subjects, 5,507 visits) and test (20% = 140
subjects, 1,219 visits) sets, by stratifying the dataset over
all variables.

Imputation algorithm
In this work we developed a weighted k-NN approach to
impute the missing values in the first three months of
screening visits of each patient. We based our algorithm
on the assumption that patients with similar character-
istics share the same disease course over time. Patient
similarity is assessed by using an apposite distance metric
over their features.

Given a patient with a missing value to be imputed
and a pool of other patients having that feature, the
algorithm searches for the k-closest subjects in terms
of disease progression similarity and infers the estimate
for the missing value. First, the distance among the cur-
rent patient and the other candidate subjects from the
pool is computed. Then, a weighted average of the corre-
sponding values in the k most similar patients is obtained
and used as plausible estimate of the missing one. To
impute the whole dataset, the procedure is iterated for
each missing value of the given patient and then for
each patient with missing values in their visits. The algo-
rithm takes into account the temporal evolution of the
data over visits and handles both the mixed nature of the
data and the presence of missing values in the distance
computation.
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Table 1 Dataset. For each feature, the type either static (S) or dynamic (D) is defined. For the continuous and ordinal features,
percentage of native missing values and inter-quartile range (IQR) values at 25%, 50% and 75% are reported; for the categorical
features, levels and corresponding percentage of instances are reported; for the NIV and PEG variables, we reported the total number
of patients who were administered these interventions

Continuous features Categorical features

Feature Type % NA IQR Feature Type Levels %

BMI premorbid [kg/m2] S 2.08 23/25/28 sex S Female 47.6

BMI diagnosis [kg/m2] S 0.91 22/24/27 Male 52.4

FVC diagnosis [%] S 4.12 83/98/108 NA 0

age at onset [years] S 0 56/64/70 familiality S No 91.4

diagnostic delay [months] S 0 5/9/14 Yes 8.1

onset delta [months] S 0 -18/-11/-6 NA 0.5

genetics S C9orf72 7.1

FUS 0.3

SOD1 1.4

TARDBP 1.6

Ordinal features wild type 83.6

Feature Type % NA IQR NA 6.0

ALSFRS-R 1 D 0 2/3/4 FTD S No 53.0

ALSFRS-R 2 D 0 3/4/4 Yes 13.0

ALSFRS-R 3 D 0 2/3/4 NA 34.0

ALSFRS-R 4 D 0 2/3/4 onset site S Bulbar 34.4

ALSFRS-R 5 D 0 1/2/3 Limb 65.6

ALSFRS-R 6 D 0 1/2/3 NA 0

ALSFRS-R 7 D 0 1/3/3 NIV D No 59.6

ALSFRS-R 8 D 0 2/2/3 Yes 40.4

ALSFRS-R 9 D 0 0/1/3 NA 0

ALSFRS-R 10 D 0 3/4/4 PEG D No 31.9

ALSFRS-R 11 D 0 3/4/4 Yes 25.0

ALSFRS-R 12 D 0 4/4/4 NA 43.1

Adaptive k-NN sample construction
To capture the temporal evolution of the features over
subsequent visits, for a given patient i with missing data to
be imputed, the algorithm builds a feature vector (k-NN
sample) that contains the information recorded during
his/her first three months of screening visits. The fea-
ture vector is created by binding the static information
for that patient (constant throughout all his/her visits)
to the dynamic ones in the [0, 2] months time interval
from the first visit in chronological order (with 0 being
the first month). In our dataset, all the patients have
between 1 and 4 visits in the first three months of screen-
ing: the algorithm adaptively builds k-NN samples whose
length depends on the number of available visits for each
subject to be imputed. Figure 1(a) illustrates the sample
construction for subject i, with p being the number of
static features, m the number of the dynamic ones, and n

the number of his/her visits in the first three months of
screening.

To identify the subjects in the pool of candidates hav-
ing disease progression similar to subject i, the algorithm
builds an analogous feature vector for each candidate
neighbour with an available value in correspondence to
the feature to be imputed. In more detail, each candidate
neighbour j is temporally mapped over the current subject
i, adaptively building a sample according to their match-
ing time points. The feature vector of j is initialised with
the subject’s static features. Let ti = (

ti,1, ti,2, . . . , ti,n
)

be
the time points of the visits in the first three months of
screening for subject i. For each visit time point ti,l of
subject i, the closest-in-time visit of subject j within one
month is selected. If no matching visit is found, candi-
date j is excluded from the k-NN search. Otherwise, the
dynamic features of the matching visit are extracted and
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Fig. 1 Sample construction for imputation and survival classification. a Sample construction for each patient with missing data to be imputed. b
Candidate sample construction procedure. In this example, subject i has n = 4 visits in the first three months of screening (one in the first month, two
in the second and one in the third) while candidate j has 3 visits in this interval (one visit per month). Since the visit at tj,2 matches both visits at ti,2 and
ti,3, its dynamic feature values are repeated twice in the resulting feature vector (sample). c Survival classification sample construction for each patient

stacked to the feature vector of subject j; possible miss-
ing values in the matching visits of subject j are passed
on his/her feature vector. Please notice that a candidate
subject j may have repeated blocks of dynamic features
in his/her feature vector corresponding to the same visit
matching with multiple visits of subject i. Also notice that
the feature vectors of the candidate subjects include the
dynamic information of visits in the [0, 3] months time
interval from the first visit (that is, of the first four months
of screening visits). Figure 1(b) schematically depicts the
candidate sample construction procedure.

Weighted k-nearest neighbours
For a subject i with a missing value to be imputed, the
wk-NN algorithm proceeds as follows. The features of the
subject sample, together with his/her candidate samples,
are normalised to the [0, 1] interval in order to account
for the difference among the ranges. Then, the distance
between subject i and each candidate j is computed
according to the following metric.

Let v = (v1, v2, . . . , vN ) and u = (u1, u2, . . . , uN ) be the
feature vectors of, respectively, subject i and candidate j.
Let Nstat(v, u) and Ndyn(v, u), be, respectively, the number
of common non-missing static and dynamic features in v
and u. Also, let Scateg, Sord, Scont, Dcateg, Dord, and Dcont be
the sets of indices of, respectively, the static categorical,
the static ordinal, the static continuous, the dynamic cate-
gorical, the dynamic ordinal, and the dynamic continuous
features in v and u. The distance between v and u is given

by:

d(v, u) =
n ·

(∑
l∈Scateg I(vl, ul) + ∑

l∈Sord∪Scont |vl − ul|
)

n · Nstat(v, u) + Ndyn(v, u)

+
∑

l∈Dcateg I(vl, ul) + ∑
l∈Dord∪Dcont |vl − ul|

n · Nstat(v, u) + Ndyn(v, u)
,

(1)

where n is the number of visits in the first three months of
screening for subject i and I(vl, ul) is 0 if vl = ul and 1 oth-
erwise. If either vl or ul, or both, are missing, the feature
at index l does not contribute to the distance. The numer-
ator is divided by the number of comparable features in u
and v to normalise the distance on the number of common
non-missing values. Because of the sample building proce-
dure, each dynamic feature appears n times in the feature
vectors: to re-balance the contribution of all the features
to the similarity metrics, both the distance between static
features and the count Nstat(v, u) are multiplied by n.

At this point, a filtering step is performed: candidates
with a number of comparable features with subject i
smaller than the 90% of the total number of non-missing
features in sample i (both computed with the same adjust-
ment for the static features) are dropped.

Once the distances to all the candidates have been com-
puted, the k nearest ones are selected and their values in
correspondence to the feature to be imputed are used for
the imputation: for continuous and ordinal features, after
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removing possible outliers (values outside 1.5 times the
interquartile range above the upper quartile and below the
lower quartile), the missing feature in i is imputed with
the average of the selected values, each weighted by the
inverse of the corresponding candidate distance; for cat-
egorical features, the missing feature in i is imputed with
the mode of the selected values.

The procedure is repeated over all features with miss-
ing values in subject i. In our implementation, values
previously imputed in i are not used for the subsequent
imputations.

Weighted k-nearest neighbours with mutual information
We improved the wk-NN algorithm by including the
cross-information among the features, given by the
mutual information statistic, in the similarity metric (wk-
NN MI). Unlike correlation metrics, the MI can measure
the strength of both linear and nonlinear associations
among features.

The MI among features is computed using the infotheo
R package v1.2.0 [48]. For two discrete variables X and Y
whose joint probability distribution is pXY (x, y) = P(X =
x, Y = y), and marginal probability distributions are,
respectively, pX(x) = P(X = x) and pY (y) = P(Y = y),
the mutual information between them, denoted MI(X, Y ),
is computed as:

MI(X, Y ) =
∑

x∈X

∑

y∈Y
pXY (x, y) ln

pXY (x, y)
pX(x)pY (y)

. (2)

The marginal and joint probability distributions of X
and Y are determined empirically from the data by a
frequentist approach. Continuous variables (X) are dis-
cretised into i = 3√N intervals of equal width w =
(max(X) − min(X)) /i, where N is the number of samples
of X.

Let f be the index of the feature currently being imputed
in subject i, and let MIf = (

MIf ,1, . . . , MIf ,f , . . . , MIf ,N
)

be the MI values between the feature at index f and all the
features in the sample. The MI values are then employed
as weights for the distance computation in the wk-NN
algorithm:

df (v, u) =
n ·

(∑
l∈Scateg MIf ,l · I(vl , ul) + ∑

l∈Sord∪Scont MIf ,l · |vl − ul |
)

n · Nstat(v, u) + Ndyn(v, u)

+
∑

l∈Dcateg MIf ,l · I(vl , ul) + ∑
l∈Dord∪Dcont MIf ,l · |vl − ul |

n · Nstat(v, u) + Ndyn(v, u)
.

(3)

Please notice that here the distance among samples
depends on the missing feature value currently being
imputed, which means that the candidates chosen as near-
est neighbours may change when imputing different fea-
tures. An outline of the proposed imputation procedure is
given in Fig. 2 and thoroughly described in Algorithm 1.

Imputation performance metrics
To evaluate the performance of the developed imputation
methods, we employed the normalised root-mean-square
deviation (nRMSD) for the continuous and ordinal fea-
tures and the proportion of falsely-classified (PFC) for the
categorical ones. Let f be the index of a feature imputed
in T patient visits: vimp

f is the vector of imputed values for
that feature and vtrue

f is the vector of true measured values.
If f is the index of a continuous or ordinal feature, the cor-
responding nRMSD is calculated over the T patient visits
as:

nRMSDf =

√
∑T

i=1

(
vtrue

i,f −vimp
i,f

)2

T
max(vtrue

f ) − min(vtrue
f )

. (4)

Otherwise, if f is the index of a categorical feature, the
corresponding PFC is calculated over the T patient visits
as:

PFCf =
∑T

i=1 I(vtrue
i,f , vimp

i,f )

T
, (5)

where I(vtrue
i,f , vimp

i,f ) equals 0 if vtrue
i,f = vimp

i,f , and 1 other-
wise.

In order to better analyse and compare the distribution
of the error, we also computed the normalised absolute
error (nAE) of each imputed continuous or ordinal value.
The nAE for the imputed feature f of a given patient visit
is given by:

nAEf (i) =
|vtrue

i,f − vimp
i,f |

max(vtrue
f ) − min(vtrue

f )
. (6)

Analysing the nAE distribution for each feature allows us
to gain more insight on the quality of the imputation.

In all cases, the closer these metrics are to zero the
better the imputation.

Selecting the optimal number of nearest neighbours
The proposed wk-NN and wk-NN MI imputation meth-
ods require the user to select an adequate k (num-
ber of nearest neighbours) hyperparameter. This can be
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Fig. 2 Algorithm workflow of the wk-NN MI imputation method

achieved by performing a cross validation scheme to test
out different k values and select the best one. The patients
in the dataset are partitioned into a user-defined number
of folds. For a given k value, for each patient in a given
fold, and for each feature, all the measured values corre-
sponding to that feature are first removed at the same time
from the patient’s visits, and then imputed by using all the
subjects from the other folds as candidates.

By repeating this procedure for all folds, an imputed
value is obtained for each known measurement, and the
imputation quality for the current value of k can be
assessed by using a chosen performance metric. This pro-
cedure can be repeated for several values of k in order
to determine the best performing one to be finally used
to impute the whole dataset. Moreover, by removing the

values of only one feature at a time, the distribution and
pattern of missing values in the dataset is generally pre-
served, which ensures the plausibility of the imputation
performance results.

Enhancing the performance of a survival classification task
with data imputation
Patients with ALS exhibit a very high degree of vari-
ability in disease susceptibility and pathogenic mecha-
nisms. This is one of the main reasons for the negative
results of therapeutic trials conducted so far, as statisti-
cal variance masks treatment effects [49, 50]. An optimal
trial design requires samples size estimation, which, in
turn, requires some understanding of the natural pro-
gression of the disease. The accurate prediction of the
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Algorithm 1 wk-NN MI imputation algorithm.
1: N ← set of subjects with missing values
2: w ← 3 � time window (in months) for the visits to be

imputed
3: k ← 20 � number of nearest neighbours to select as

candidates
4: for each subject i in N do
5: select the visits of i in w for the sample construc-

tion procedure
6: if i has at least one missing value in w then
7: n ← the number of visits of subject i in w
8: v ← k-NN sample for i
9: F ← features in v with missing values

10: Nv ← number of non-missing features in v
11: J ← N\{i} � pool of candidate subjects for the

imputation
12: U ← empty matrix of candidate samples
13: for each subject j in J do
14: select the visits of j in w+1 for the sample

construction procedure
15: U

[
j,

] ← k-NN sample for j
16: end for
17: for each feature h of v do
18: normalise v[ h] and U[, h] in [0, 1]
19: end for
20: compute the MI of all pairs of features of U
21: for f in F do
22: for each candidate sample u in U do
23: if u[ f ] is NA then
24: continue
25: end if
26: Ncomparable ← number of non-missing

features in both v and u
27: if Ncomparable < 0.9 · Nv then
28: continue
29: end if
30: compute the MI-weighted distance

between u and v
31: end for
32: Kf ← list of values of feature f of the k

nearest neighbours of v
33: if f is continuous then
34: remove possible outliers from Kf
35: fimputed ← inverse-distance-weighted

average of Kf
36: else if f is ordinal then
37: remove possible outliers from Kf
38: fimputed ← rounded inverse-distance-

weighted average of Kf
39: else if f is categorical then
40: fimputed ← mode of Kf
41: end if
42: end for
43: end if
44: end for

survival time in ALS patients is of paramount impor-
tance, and could aid prognostic counselling, stratifica-
tion of cohorts for pharmacological trials, and timing of
interventions.

In order to evaluate the enhanced potential of the
dataset imputed with the proposed method, we imple-
mented a simple survival classification task. The PARALS
register contains survival information for each patient,
either in the form of date of death for the deceased ones
or the date of the last visit for the censored ones. For
each subject, we determined the survival outcome as the
binary answer to the question “Does the subject survive
for more than 3 years (36 months) from his/her first
screening visit?”. The patients that were censored before
the 36 months threshold were discarded since we were
unable to answer the question. The number of patients
in the training set was thus reduced to 545 (from the ini-
tial 560), and the number of patients in the test set was
reduced to 138 (from the initial 140). The 36 months
threshold was selected because it splits the patients into
two almost equal sets.

For each patient, we built a survival sample – a feature
vector able to encode the disease progression in his/her
first three months of visits, as follows. For each dynamic
feature in this time range, we computed three derived fea-
tures, namely the minimum, maximum, and the slope.
The slope was obtained by fitting a linear regression
model on the temporal series constituted by the values of
the feature collected over the three months interval. These
values were then used together with the static features
to construct a fixed-length vector (53 features in total)
used as an input sample for our classification task (see
Fig. 1(c)). The survival samples constructed on the original
data (that is, before imputation) carry over their missing
values. When handling missing static features, the missing
values were simply carried over to the constructed sam-
ples. In case of missing dynamic features, missing values
are reported in the corresponding derived features that
could not be computed due to data missingness.

For this classification task we employed the naïve Bayes
classifier [51] implemented in the e1071 R package v1.7-2
[52].

Naïve bayes models
Naïve Bayes is a simple learning algorithm that utilises
Bayes’ theorem in conjunction with the “naïve” assump-
tion that, given the class label, every pair of features is
conditionally independent. A NB classifier considers the
contribution of each feature to the given class proba-
bility as independent, regardless of possible correlations.
Although this assumption is often violated in practice, NB
classifiers often achieve competitive classification results
[53]. Because of theirs computational efficiency and many
other desirable features, NB classifiers are widely used in
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practice. A brief introduction to the method is reported in
Additional file 1.

In order to evaluate the effect of the different imputation
techniques on the classification task, and to further assess
the performance of the proposed algorithm, we trained
five NB models on five distinct sets of survival samples.
First, starting from the original non-imputed training set
composed of the first three months of patient visits, we
built the corresponding training set of survival samples
with their native missing values, from here on referred
to as original dataset. From this first set we obtained
two other sets for the complete case analysis: the com-
plete cases dataset obtained by selecting only the survival
samples without missing values, resulting in 252 survival
samples, and the complete features dataset obtained by
selecting only the features without missing values, result-
ing in 44 remaining features in the survival samples.
Finally, we built two other training sets of survival sam-
ples for the classification task by imputing the first three
months of patient visits from the training set once with the
proposed algorithm (wk-NN MI) and once with the best
performing competitor.

The models were used to predict the set of test sam-
ples obtained from the non-imputed first three months of
patient visits in the original test set.

Results and discussion
Comparison with the other imputation methods
We compared the proposed algorithm with the three
state-of-the-art imputation methods, namely Amelia II
(Amelia R package v1.7.5), missForest (missForest R pack-
age v1.4) and MICE (mice R package v3.6.0). We also
introduced a random version of our algorithm, k-random
neighbours (k-RN), that randomly samples a subset of
k subjects from the pool of available candidates, to be
used as a baseline for the imputation performance assess-
ment. The selection of the optimal hyperparameter values
for all the employed imputation methods is reported in
Additional file 1.

Performance comparison on the training set
On the training set, the imputation performance was
evaluated with the LOOCV setting described earlier: for
each subject, all the measured values of his/her fea-
tures were removed one feature at a time, and were then
imputed using the competitor methods. The imputed val-
ues obtained by each method were compared to the true
ones, and the average error was evaluated for each feature.

Tables 2, 3 and 4 show the average error (in terms of
nRMSD or PFC) obtained on the training set for each con-
tinuous, ordinal and categorical feature, respectively. The
proposed wk-NN MI imputation method outperforms the
competitors on average and on the majority of the fea-
tures. For the continuous features, the average nRMSD
score obtained by wk-NN MI with the optimal k = 20 is
0.1195 against 0.1539 of wk-NN with the optimal k = 10,
0.1651 of Amelia II, 0.1572 of MICE, and 0.1784 of miss-
Forest. For the ordinal features, the average nRMSD score
obtained by wk-NN MI is 0.1182 against 0.1550 of wk-
NN, 0.1751 of Amelia II, 0.1521 of MICE, and 0.1728 of
missForest. For the categorical features, the average PFC
score obtained by wk-NN MI is 0.1198 against 0.1323 of
wk-NN, 0.2589 of Amelia II, 0.1761 of MICE, and 0.1900
of missForest. In the three tables, we also report the per-
formances for the k-RN baseline, computed for k = 10
and k = 20: the obtained performances outperform the
baseline.

To verify that the performance improvement was in
fact statistically significant, we analysed the nAE distribu-
tions and PFC values obtained by wk-NN MI and MICE
(the best performing among the competitor methods) on,
respectively, the continuous/ordinal and categorical fea-
tures. Figure 3 shows the nAE distributions obtained on
the training set for the continuous features. The plots
show that wk-NN MI yields lower nAE values in all
features. We also performed two-tailed Wilcoxon signed-
rank tests [54] to assess the difference between the distri-
butions: the obtained p-values are all smaller than 0.001,
confirming that the difference is statistically significant.

Table 2 nRMSD scores for the continuous features in the training set. The best performances are highlighted in bold

Features

Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI

k = 10 k = 10 k = 20 k = 20

BMI premorbid 0.1012 0.0960 0.1323 0.1634 0.1286 0.1617 0.0731

BMI diagnosis 0.1560 0.1069 0.1476 0.1750 0.1457 0.1687 0.0965

FVC diagnosis 0.2466 0.2463 0.2534 0.1970 0.1876 0.1953 0.1839

age at onset 0.2355 0.2362 0.2393 0.1855 0.1748 0.1820 0.1735

diagnostic delay 0.1150 0.1218 0.1316 0.1484 0.1282 0.1495 0.0850

onset delta 0.1362 0.1362 0.1665 0.1848 0.1584 0.1778 0.1049

Average 0.1651 0.1572 0.1784 0.1757 0.1539 0.1725 0.1195
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Table 3 nRMSD scores for the ordinal features in the training set. The best performances are highlighted in bold

Features

Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI

k = 10 k = 10 k = 20 k = 20

ALSFRS-R 1 0.1959 0.1540 0.1788 0.2454 0.1529 0.2390 0.1249

ALSFRS-R 2 0.1644 0.1433 0.1684 0.1904 0.1394 0.1907 0.1218

ALSFRS-R 3 0.1768 0.1387 0.1679 0.2175 0.1331 0.2130 0.1133

ALSFRS-R 4 0.2173 0.1916 0.2145 0.2516 0.1606 0.2455 0.1472

ALSFRS-R 5 0.2183 0.1863 0.2179 0.2812 0.1763 0.2727 0.1394

ALSFRS-R 6 0.2064 0.2015 0.2113 0.2864 0.1849 0.2773 0.1513

ALSFRS-R 7 0.1953 0.1696 0.1833 0.2645 0.1544 0.2550 0.1295

ALSFRS-R 8 0.2021 0.1488 0.1651 0.2460 0.1470 0.2377 0.1138

ALSFRS-R 9 0.2655 0.2405 0.2268 0.3744 0.2222 0.3657 0.1589

ALSFRS-R 10 0.1060 0.1093 0.1565 0.2523 0.1668 0.2475 0.0943

ALSFRS-R 11 0.0854 0.0982 0.1340 0.2446 0.1585 0.2403 0.0847

ALSFRS-R 12 0.0682 0.0434 0.0485 0.0933 0.0637 0.0908 0.0391

Average 0.1751 0.1521 0.1728 0.2457 0.1550 0.2396 0.1182

The Wilcoxon signed-rank test is a non-parametric sta-
tistical test used to assess whether the population mean
ranks differ in a paired samples setting. This test can
be used to determine whether two paired samples were
selected from populations having the same distribution.
We employed this non-parametric test to asses whether
there is any statistically significant difference between the
nAE distributions (which are very skewed and cannot be
assumed to be normally distributed) obtained on contin-
uous and ordinal data by different imputation methods.

Figure 4 shows the nAE distributions obtained on the
training set for the ordinal features. The plots show that
wk-NN MI yields lower nAE values on 10 out of 12
features (ALSFRS-R scores 1 to 10). We also performed
two-tailed Wilcoxon signed-rank tests with Pratt’s correc-
tion (since the nAE values on the ALSFRS-R variables

can only assume values in {0, 0.25, 0.5, 0.75, 1}, the signed-
rank test has many “ties”) to assess the difference between
the distributions: the obtained p-values are smaller than
0.001 for the ALSFRS-R scores 1 to 10 which confirms that
the difference is statistically significant for these features.
Lastly, the tests showed that for ALSFRS-R 11 and 12 there
was no statistically significant difference between wk-NN
MI and MICE.

Figure 5 compares the PFC values obtained by wk-NN
MI and MICE. The plots show that wk-NN MI outper-
forms MICE in all the categorical features, resulting in
a significant difference in 6 out of 7 of them, namely in
sex, familiality, genetics, FTD, onset site, and NIV, while
showing no significant improvement for PEG. We also
performed McNemar’s Chi-squared test [55] which con-
firmed that the difference is statistically significant in

Table 4 PFC scores for the categorical features in the training set. The best performances are highlighted in bold

Features

Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI

k = 10 k = 10 k = 20 k = 20

sex 0.4859 0.4416 0.4463 0.5160 0.3974 0.4831 0.3823

familiality 0.1646 0.1268 0.1372 0.0842 0.0823 0.0842 0.0738

genetics 0.3310 0.1781 0.1751 0.0956 0.0895 0.0956 0.0815

FTD 0.3295 0.2642 0.3565 0.2060 0.2003 0.1960 0.1903

onset site 0.2957 0.1516 0.1403 0.3672 0.1017 0.3484 0.0800

NIV 0.1111 0.0556 0.0537 0.0518 0.0480 0.0518 0.0235

PEG 0.0948 0.0150 0.0208 0.0069 0.0069 0.0069 0.0069

Average 0.2589 0.1761 0.1900 0.1897 0.1323 0.1809 0.1198
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Fig. 3 Normalised absolute error distributions obtained with MICE and wk-NN MI (with k = 20) on the continuous features of the training set

these 6 features. McNemar’s Chi-squared test is a sta-
tistical test used on paired categorical data. It is applied
to 2 × 2 dichotomous contingency tables with paired
samples, to determine whether there is “marginal homo-
geneity”, that is, the row and column marginal frequencies
are equal. When comparing two classifiers, each sam-
ple can be either be classified correctly or miss-classified
by each classifier, and thus a 2 × 2 dichotomous contin-
gency table can be built. The null hypothesis of “marginal
homogeneity” would mean there is no difference between
the two classifiers. The imputation of categorical data
can be seen as a classification task, and thus, McNemar’s
Chi-squared test can be used to determine if the dif-
ference between two imputation methods is statistically
significant.

Performance comparison on the test set
After selecting the methods’ hyperparameters on the
training set, we compared the performance of the pro-
posed imputation method against the competitors on the

test set. For each patient in the test set, we removed all
the known measurements from his/her visits, one feature
at a time, and imputed the missing values by using all the
training set subjects as candidates. This setting represents
the common situation where new subjects are continu-
ously added to an existing dataset of clinical records and
some of their values are natively missing. For Amelia II,
MICE and missForest, we bound the records of the first
three months of visits for the given patient in the test set
with all the information on the training set in a single data
frame, which was then used as an input for these imputa-
tion algorithms. Finally, we compared the imputed values
obtained by each method with the true ones.

The imputation results on the test set are shown in
Tables 5, 6 and 7 for each continuous, ordinal and cat-
egorical feature, respectively. Results on the held-back
test set confirm that the proposed wk-NN MI impu-
tation method outperforms the competitors on average
and on the majority of the features. For the continuous
features, the average nRMSD score obtained by wk-NN
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Fig. 4 Normalised absolute error distributions obtained with MICE and wk-NN MI (with k = 20) on the ordinal features of the training set

MI is 0.1332 against 0.1624 of wk-NN, 0.1803 of Amelia
II, 0.1731 of MICE, and 0.2011 of missForest. For the
ordinal features, the average nRMSD score obtained by
wk-NN MI is 0.1274 against 0.1561 of wk-NN, 0.2654 of
Amelia II, 0.1542 of MICE, and 0.1740 of missForest. For
the categorical features, the average PFC score obtained
by wk-NN MI is 0.1303 against 0.1456 of wk-NN, 0.2646 of

Amelia II, 0.1900 of MICE, and 0.1966 of missForest. The
baseline was also outperformed by the proposed wk-NN
approaches.

We also analysed the nAE distributions and PFC values
obtained by wk-NN MI and MICE (the best performing
among the competitor methods) on, respectively, the con-
tinuous/ordinal and categorical features. Figure 6 shows
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Fig. 5 Proportion of falsely classified obtained with MICE and wk-NN MI (with k = 20) on the categorical features of the training set

the nAE distributions obtained on the test set for the con-
tinuous features. The plots and the two-tailed Wilcoxon
signed-rank tests show that wk-NN MI yields statistically
significant lower nAE values in 5 out of 6 features, namely
BMI premorbid, FVC diagnosis, age at onset, diagnostic
delay, and onset delta. The two methods did not obtain
statistically significant differences in the imputation of
BMI diagnosis.

Figure 7 shows the nAE distributions obtained on the
test set for the ordinal features. The plots and the two-
tailed Wilcoxon signed-rank tests with Pratt’s correction
show that wk-NN MI yields statistically significant lower
nAE values on 9 out of 12 features (ALSFRS-R scores 1 to
5 and 8 to 11) at the 0.05 level. Lastly, the tests showed
that for ALSFRS-R 6, 7 and 12 there was no statistically
significant difference between wk-NN MI and MICE.

Figure 8 compares the PFC values obtained by
wk-NN MI and MICE. The plots and the McNe-
mar’s Chi-squared tests show that wk-NN MI out-
performs MICE in 4 out of 7 categorical features,
namely in sex, genetics, FTD, and onset site, at the

0.05 statistical significance level. No statistically signif-
icant improvements are obtained for familiality, NIV
and PEG.

Survival classification results
In this section we report the results of the survival classifi-
cation procedure. Figure 9 gives the Precision-Recall (PR)
and Receiver Operating Characteristic (ROC) plots of the
NB classifiers trained on the five different sets of train-
ing samples. These plots were obtained by thresholding
on the class label probabilities obtained by the NB classi-
fiers for each survival sample. We also included the PR and
ROC plots of a random predictor as a baseline. To ensure
that the performance improvement is statistically signifi-
cant, we computed the absolute classification error of the
NB classifiers for each classification sample in the test set.
The absolute classification error of each sample was com-
puted as the absolute value of the difference between the
class label and the predicted class probability. We per-
formed two-tailed Wilcoxon signed-rank tests to assess
the difference between the errors.
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Table 5 nRMSD scores for the continuous features in the test set. The best performances are highlighted in bold

Features

Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI

k = 10 k = 10 k = 20 k = 20

BMI premorbid 0.1302 0.1353 0.1787 0.2047 0.1692 0.2034 0.1105

BMI diagnosis 0.1459 0.1227 0.1653 0.1968 0.1665 0.2033 0.1145

FVC diagnosis 0.2481 0.2401 0.2584 0.2036 0.1821 0.1980 0.1752

age at onset 0.2799 0.2650 0.2781 0.2024 0.1847 0.2061 0.1823

diagnostic delay 0.1286 0.1228 0.1350 0.1481 0.1209 0.1422 0.0958

onset delta 0.1489 0.1529 0.1910 0.1785 0.1512 0.1686 0.1210

Average 0.1803 0.1731 0.2011 0.1890 0.1624 0.1869 0.1332

Table 6 nRMSD scores for the ordinal features in the test set. The best performances are highlighted in bold

Features

Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI

k = 10 k = 10 k = 20 k = 20

ALSFRS-R 1 0.3148 0.1852 0.1852 0.2467 0.1609 0.2528 0.1457

ALSFRS-R 2 0.2680 0.1852 0.2122 0.2197 0.1527 0.2049 0.1424

ALSFRS-R 3 0.2663 0.1673 0.1504 0.2443 0.1504 0.2265 0.1416

ALSFRS-R 4 0.2832 0.1913 0.1852 0.2770 0.1813 0.2762 0.1602

ALSFRS-R 5 0.3012 0.1741 0.2060 0.3039 0.1714 0.2873 0.1496

ALSFRS-R 6 0.3035 0.1768 0.1973 0.3141 0.1701 0.2996 0.1631

ALSFRS-R 7 0.2873 0.1687 0.1800 0.2762 0.1550 0.2787 0.1416

ALSFRS-R 8 0.2910 0.1550 0.1550 0.2645 0.1519 0.2514 0.1153

ALSFRS-R 9 0.3189 0.2192 0.2774 0.3709 0.2491 0.3549 0.1800

ALSFRS-R 10 0.1845 0.0903 0.1481 0.2410 0.1416 0.2462 0.0648

ALSFRS-R 11 0.1938 0.0941 0.1408 0.2316 0.1340 0.2415 0.0716

ALSFRS-R 12 0.1728 0.0432 0.0506 0.1013 0.0551 0.0990 0.0529

Average 0.2654 0.1542 0.1740 0.2576 0.1561 0.2516 0.1274

Table 7 PFC scores for the categorical features in the test set. The best performances are highlighted in bold

Features

Imputation methods

Amelia II MICE missForest
k-RN wk-NN k-RN wk-NN MI

k = 10 k = 10 k = 20 k = 20

sex 0.4440 0.4813 0.4366 0.5560 0.4366 0.4440 0.3955

familiality 0.2724 0.0970 0.1381 0.0597 0.0597 0.0597 0.0821

genetics 0.3166 0.2124 0.1776 0.1506 0.1506 0.1506 0.1351

FTD 0.4749 0.3575 0.3911 0.2179 0.2626 0.2235 0.2346

onset site 0.2910 0.1418 0.1343 0.4552 0.0896 0.4664 0.0522

NIV 0.0485 0.0299 0.0634 0.0410 0.0149 0.0410 0.0075

PEG 0.0050 0.0101 0.0352 0.0050 0.0050 0.0050 0.0050

Average 0.2646 0.1900 0.1966 0.2122 0.1456 0.1986 0.1303
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Fig. 6 Normalised absolute error distributions obtained with MICE and wk-NN MI (with k = 20) on the continuous features of the test set

As a first result, we observe that the proposed method
improves the prediction capabilities of a NB classifier:
indeed, the PR curve achieves a perfect precision score
of 1.0 for wider recall values. Moreover, the proposed
method obtains the highest Area Under the Curve (AUC)
value of 0.865. The improvement is somewhat less notice-
able in terms of ROC curves and ROC-AUCs, although
we can see that the proposed method improves the false
positive rate which stays at zero for a wider true pos-
itive rate interval. The statistical test on the absolute
classification error compared to all the other classifiers
obtained p-values smaller than 0.001, confirming that the
improvement is statistically significant.

Interestingly enough, the complete cases (PR-AUC =
0.833 and ROC-AUC = 0.785) and complete fea-
tures analyses (PR-AUC = 0.840 and ROC-AUC =
0.790) worsen the prediction quality of the classifier with
respect to the original dataset (PR-AUC = 0.850 and
ROC-AUC = 0.796). The two-tailed Wilcoxon signed-
rank tests’ p-value when comparing the complete cases
and complete features analyses with the original dataset

are < 0.001 and 0.022, respectively, while there is no sta-
tistically significant difference between the complete cases
and the complete features analyses (p-value= 0.379). The
loss of information resulting from simply ignoring sam-
ples or entire columns with missing data hinders the
precision of the classifier. On the other hand, the NB
classifier can effectively learn from the survival samples
with their native missing values, as reflected by the pre-
diction results.

By comparing the predictions of the NB classifier
trained on the original dataset (PR-AUC = 0.850 and
ROC-AUC = 0.796) with the ones trained on the two
imputed datasets, we can see how the imputation quality
can affect the classification performance: the performance
improves when the patient data are imputed with wk-NN
MI (PR-AUC = 0.865 and ROC-AUC = 0.816), while it
worsens when using the best competitor for the imputa-
tion (MICE), as can be seen from its PR and ROC curves
which do not achieve a perfect precision of 1 or a per-
fect false positive rate of 0 for any interval of recall/true
positive rate.
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Fig. 7 Normalised absolute error distributions obtained with MICE and wk-NN MI (with k = 20) on the ordinal features of the test set

Conclusions
In this work we developed a weighted k-NN-based impu-
tation approach, able to plausibly fill in the missing values
in an ALS disease register. The best performing method,
the proposed weighted k-NN with MI with k = 20,
outperforms the state-of-the-art algorithms in terms of
imputation accuracy, on continuous, ordinal and categor-
ical variables.

The advantages of the proposed approach are man-
ifold. While many imputation methods require strin-
gent assumptions on the nature of the missing data, a
k-NN-based imputation only requires the presence of
some relationship between the variable with the miss-
ing value and the other variables. The imputed values are
always in the dynamic range of the existing data. Fur-
thermore, the selection of a small k parameter ensures
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Fig. 8 Proportion of falsely classified obtained with MICE and wk-NN MI (with k = 20) on the categorical features of the test set

a good compromise between performance and the need
to preserve the original distribution of the data, a very
important characteristic any imputation method should
satisfy.

The proposed method employs the MI values between
feature pairs as weights in the distance computation of the
wk-NN procedure. The results show that wk-NN MI out-
performs the wk-NN approach, confirming that the MI
can be effectively used to exploit the cross-information of
the features for the imputation task.

We showed that the proposed algorithm is able to han-
dle mixed-type data effectively, that is, patient records
composed of categorical, ordinal and continuous features,
each of which can be either static or dynamic, and with
different distributions. In our method, thanks to the sam-
ple construction procedure described in Adaptive k-NN
Sample Construction, the temporal evolution of the data
over subsequent visits is captured and exploited for the
imputation. Furthermore, our method does not require
a dataset of complete cases to perform the imputation

because of the distance metric used. We only used
information from the training set to impute the subjects
of the test set in order to simulate the real-world scenario
where new subjects populate the disease register a few at
a time.

Finally, we provided a simple survival classification task
as a potential application example of the proposed impu-
tation method. Our results show that the imputation of
the missing values in the training dataset improves the
predictions of a Naïve Bayes classifier. Since the NB rep-
resents a very simple classification technique, we believe
that more complex and sophisticated analyses could also
benefit from our imputation method.

For all these reasons, we believe that our method is
potentially applicable in diverse contexts where imputa-
tion is needed. The final aim of this work is to provide a
tool that can enhance the quality and the quantity of the
data employed in analytics tasks, to improve and acceler-
ate translational research. Concretely, the tool will allow
clinicians to effectively use the information collected in a
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Fig. 9 Precision-Recall and ROC plots of the naïve Bayes classifiers. The plots show that the imputation of the training set with the proposed method
improves the classification performance of a naïve Bayes classifier
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limited time interval by curing the possible presence of
missing data.

The specific employment of the method in the context
of epidemiological ALS registers will enable the devel-
opment and application of machine learning and data
mining methods for the prediction of ALS disease progno-
sis, as well as the identification of related biomarkers. As
novel clinical registers covering wider patient populations
and new clinical variables (for instance, new genetic test
results, different functional scale measures) will become
available, missing values arising from the aggregation
with older datasets could be imputed with the proposed
approach. We also believe that the proposed methodology
could be of great aid in other disease registers containing
static and dynamic mixed-type data as well.

The proposed algorithm is able to impute missing data
in a fixed time window (that is, the first three months of
patients’ visits). We plan to extend its imputation capa-
bilities to the whole patients’ visits history with a sliding-
window approach. Moreover, other distance metrics with
more sophisticated weighting schemes could yield better
imputation results. We will investigate these issues in our
future work.
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