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Abstract

Background: Assessment and rating of Parkinson’s Disease (PD) are commonly based on the medical observation
of several clinical manifestations, including the analysis of motor activities. In particular, medical specialists refer to the
MDS-UPDRS (Movement Disorder Society – sponsored revision of Unified Parkinson’s Disease Rating Scale) that is the
most widely used clinical scale for PD rating. However, clinical scales rely on the observation of some subtle motor
phenomena that are either difficult to capture with human eyes or could be misclassified. This limitation motivated
several researchers to develop intelligent systems based on machine learning algorithms able to automatically
recognize the PD. Nevertheless, most of the previous studies investigated the classification between healthy subjects
and PD patients without considering the automatic rating of different levels of severity.
Methods: In this context, we implemented a simple and low-cost clinical tool that can extract postural and kinematic
features with the Microsoft Kinect v2 sensor in order to classify and rate PD. Thirty participants were enrolled for the
purpose of the present study: sixteen PD patients rated according to MDS-UPDRS and fourteen healthy paired subjects.
In order to investigate the motor abilities of the upper and lower body, we acquired and analyzed three main motor
tasks: (1) gait, (2) finger tapping, and (3) foot tapping. After preliminary feature selection, different classifiers based on
Support Vector Machine (SVM) and Artificial Neural Networks (ANN) were trained and evaluated for the best solution.
Results: Concerning the gait analysis, results showed that the ANN classifier performed the best by reaching 89.4% of
accuracy with only nine features in diagnosis PD and 95.0% of accuracy with only six features in rating PD severity.
Regarding the finger and foot tapping analysis, results showed that an SVM using the extracted features was able to
classify healthy subjects versus PD patients with great performances by reaching 87.1% of accuracy. The results of the
classification between mild and moderate PD patients indicated that the foot tapping features were the most
representative ones to discriminate (81.0% of accuracy).
Conclusions: The results of this study have shown how a low-cost vision-based system can automatically detect
subtle phenomena featuring the PD. Our findings suggest that the proposed tool can support medical specialists in
the assessment and rating of PD patients in a real clinical scenario.
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Background
Nowadays neurological disorders represent the leading
cause of disability [1]. Among neurological disorders,
Parkinson’s disease (PD) affects more than six millions of
people in the world and is the fastest growing so that the
estimated number of PD affected people in the 2040 is
13 million [2]. PD is a neurodegenarative disorder caused
by a substantial loss of dopamine in the forebrain. The
exhibited signs and symptoms, that can be different for
everyone, may include tremor, slowed movement, rigid
muscles, impaired posture and balance, loss of automatic
movements, speech and writing changes [3, 4]. PD diag-
nosis is typically made by analyzing motor symptoms with
clinical scales, such as the Movement Disorder Society –
sponsored revision of Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) [5] and the Hoehn & Yahr (HY) [6].

Although several scientific results support the valid-
ity of the MDS-UPDRS for rating, subjectivity and low
efficiency are inevitable since most of the diagnostic cri-
teria use descriptive symptoms, which cannot provide a
quantified diagnostic basis. In fact, PD early signs may
be mild and go unnoticed and symptoms often begin
on one side of the body and usually remain worse on
that side, even after symptoms begin to affect both sides.
With this evidence, the development of computer-assisted
diagnosis and computer-expert systems is very important
[7, 8], especially when dealing with motor features. Hence,
a tool that can help neurologists to objectively quantify
small changes in motion performance is needed to have a
quantitative assessment of the disease.

Related works
In the last years, machine learning (ML) techniques have
been used and compared for PD classification [9], e.g.
Support Vector Machine (SVM), Linear Discriminant
Analysis (LDA), Artificial Neural Network (ANN), Deci-
sion Tree (DT), Naïve Bayes. Most of the published stud-
ies investigate two-group classifications, i.e. PD patients
vs healthy subjects of control (HC), with promising
results obtained [10]. Few works, indeed, presented mul-
ticlass classification among patients at different disease
stages [9–11].

Researchers have also applied ML to classify PD patients
and HC by extracting features related to motor abilities.
The majority of the studies based on the analysis of either
the lower limb motor abilities or the upper limb motor
abilities are usually focused on a single exercises or a sin-
gle symptom [12–31]. Different technologies have been
exploited to capture the analyzed movements, and the
most used are optoelectronic systems, wearable sensors
like accelerometers and gyroscopes and camera-based
systems [32].

Objective and precise assessments of motor tasks are
usually performed using large optoelectronic equipment

(e.g., 3D-camera-based systems, instrumented walkways)
that require heavy installation and a large space to conduct
the experiments [33]. Earlier efforts to develop clinic-
based gait assessment tools for patients with PD have
appeared in the literature over the past two decades.
Muro-de-la-Herran et al. [34] and Tao et al. [35], reviewed
the use of wearable sensors, such as accelerometers, gyro-
scopes, magnetoresistive sensors, flexible goniometers,
electromagnetic tracking systems, and force sensors in
gait analysis (including both kinematics and kinetics), and
reported that they have the potential to play an important
role in various clinical applications. Among the different
proposed wearable sensors, inertial measurement units
(IMU) were widely used, even though there are several
key limitations that should be considered when consider-
ing the use of wearable IMUs as a clinical-based tool, e.g.
the gyroscope-based assessment tools suffer from a drift-
ing effect [36]. Systems that are based on low-cost camera
might represent a valid solution to overcome both the high
cost and encumbrance of an optoelectronic system and
the above reported limitation of the IMU-based system.
Since the release of the Microsoft Kinect SDK, the Kinect
v2 sensor has been widely utilized for PD-related research.
Several projects focused on rehabilitation and they pro-
posed experimental ways of monitoring patients’ activities
[36–39]. Most of the cited works carried on comparisons
of the Kinect v2 sensor in relation to gold standards, as
optoelectronic systems, in order to test and quantify its
accuracy.

According to the recent trends in the area of intelligent
systems for personalized medicine [40–46], it seems clear
that there is the necessity for new, low-cost, and accessible
technologies to facilitate in-clinic and at-home assessment
of motor alterations throughout the progression of PD
[47]. In this context, we have proposed a low-cost camera-
based system able to recognize and rate PD patients in
a completely non-invasive manner. The main novel contr
ibutions respect to the state of the art presented above are:

• differently from already published studies, we also
considered the classification of the PD severity;

• we used the MS Kinect v2 system to investigate three
motor exercise: gait, finger tapping and foot tapping;

• we evaluated a large set of features extracted from the
kinematic data (spatio-temporal parameters,
frequency and postural variables);

• differently from previous studies on gait analysis for
PD classification [36, 37, 39, 48], we also considered
postural oscillations and kinematics of upper body
parts (trunk, neck and arms);

• we have developed and compared two classifiers
(SVM and ANN) able to assess and rate the
movement impairment of PD patients using a specific
set of features extracted by the recorded movements.
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Our main goal is to design and test a mobile low-cost
decision support system (DSS) that can be easily used
both in specialized hospitals and at home thus implement-
ing the recent telemedicine paradigms. The system aims
then to detected the early symptoms of PD, and to pro-
vide a tool able to monitor, assess and rate the disease in a
non-invasive manner, since the early stages.

Materials and methods
Participants
We recruited thirty elderly participants from a local clin-
ical center (Medica Sud s.r.l., Bari, Italy): 14 healthy sub-
jects (10 male and 4 female, 73.5 ±6.4 years, range 65-82
years) and 16 idiopathic Parkinson patients (13 male and
3 female, 74.9 ±7.6 years, range 63-87 years). The PD
patients were examined by a medical doctor and rated
according to MDS-UPDRS that considers a scoring with
five levels, i.e. normal, slight, mild, moderate and severe.
In detail, nine patients have been classified as mild (mean
age 67.2 years, SD 9.8, age range 54-81) and seven were
rated as moderate (mean age 74.1 years, SD 7.1, age range
63-87). None of the patients was classified as either slight
or severe.

Experimental setups
In this study, we considered three motor exercises that
involve both the lower and upper extremities of the body:
(1) gait, (2) finger tapping and (3) foot tapping. We
designed and tested a specific experimental setup for each
exercise. All the setups make use of the Microsoft Kinect
v2 One RGB-D camera that acquired both color and depth
data at 30 Hz. It is important to remark that a) the fin-
ger tapping and the foot tapping were performed the same
manner as described in the Subsection III.4 and Subsec-
tion III.7 of the UDPRS scale, respectively, whereas b) the
gait exercise has been performed on a distance, i.e. 2.5-
m meters shorter than the path length considered by the
Subsection III.10 (10 meters). The motivation for such
choice will be further discussed.

In this study, right and left sides of each participant were
independently considered, thus the final dataset about the
PD patients is composed of 60 instances.

Posture and gait
As the Subsection III.10 of the UDPRS considers, we asked
each participant to walk straight towards the camera with
the natural normal walking pace (Fig. 1). Participants
were asked to repeat the task several times in order to
acquire at least one gait cycle (stance phase and swing
phase) for each side. The task trial started with the sub-
ject standing in a T-pose for one second. Subjects then
walked toward the Kinect sensor, which was placed 3.5
m away from the subject’s starting point at a height of
0.75 m. The 3.5 m distance was selected to guarantee

that the recorded gait cycle, which began when the sub-
ject was about 2.5–3 m from the Kinect, did not include
the acceleration/deceleration phases of walking that are
anticipated during the initiation or completion of the gait
task.

During the walking, the human skeleton pose has been
estimated and recorded by using the Microsoft SDK func-
tions. The resulting human skeleton is represented by 25
nodes, also called control points, in the Kinect’s reference
frame known as the skeleton space. Each node represents
a specific joint with 3D position information in units of
meters. The skeleton space uses a right-handed coordi-
nate system: the Y axis lies in the vertical direction of
the image plane, the Z axis extends in depth perpen-
dicularly from the sensor, and the X axis is horizontal
in the image plane and orthogonal to the Y and Z axes
(Fig. 2). Even though the Subsection III.10 considers a
walking distance equal to 10 meters, we used a reduced
path length in order to facilitate the skeleton tracking
thus reducing the error of the estimated skeleton pose at
each frame.

Finger tapping
The finger tapping test considers the examination of both
hand separately. As the Subsection III.4 of the UDPRS
considers, the tested subject is seated in front of the
camera and is instructed to tap the index finger on the
thumb ten times as quickly and as big as possible. During
the task the subject wears two thimbles made of reflec-
tive material on both the index finger and thumb (see
Fig. 3).

Foot tapping
The feet are tested separately. The tested subject sits in a
straight-backed chair in front of the camera and has both
feet on the floor. He is then instructed to place the heel
on the ground in a comfortable position and then tap the
toes ten times as big and as fast as possible. A system of
stripes with a reflective marker is positioned on the toes
(see Fig. 3).

Movement estimation and feature extraction
For each acquired task, we developed a specific routine
able to compute the trajectories of the moving links of the
body, i.e. arms, legs, fingers and toes, and to extract a set
of hand-crafted features.

Gait and postural analysis
As discussed in the experimental setup section, the human
skeleton pose has been estimated by using functions of the
Microsoft SDK, that automatically computes the 3D posi-
tion of the 25 landmark points. Given the whole trajectory
of each extracted point, three categories of features have
been considered:
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Fig. 1 Setup for postural and gait analysis. Representation of the proposed set-up in the clinical center

• temporal features, e.g. duration of gait phases in
seconds and in percentage compared to the duration
of the gait cycle;

• spatial features, e.g. estimated length, width and
velocity of movements, normalized by the height or
the lower limb length of the subject according to the
specific feature;

• angular features, e.g. the average angle of specific
articulations to evaluate the posture of the body and
the range of motions of some other skeletal joints.

In detail, we have first segmented each phase of the
gait cycle, i.e. Loading Response (LR), Mid-STance (MST),
Terminal Stance (TST), Pre-SWing (PSW), Initial SWing

Fig. 2 Reference system for postural and gait data acquisition. Schematic Representation of the Global Reference System (the Kinect, black lines)
and of the Subject’s Reference System (blue lines)
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Fig. 3 Finger tapping and foot tapping setups. Left image shows a healthy subject wearing the two passive finger markers. The three images
reported on the right show the foot of a subject doing the foot tapping exercise while he is wearing a passive marker on the toes

(ISW), Mid-SWing (MSW) and Terminal SWing (TSW)
(Fig. 4), as proposed by Tupa et al. [38]. Given the exact
time of the begin and the end of each gait cycle phase,
we then extracted the spatio-temporal features reported
into the first 13 rows of the Table 1. Concerning the angu-
lar features, that are listed at the bottom of the Table 1,
we computed 1) the range of motion (ROM) of the arm
swing along the sagittal plane, the average value of the 2)
Trunk and the 3) Neck flexion angles along the sagittal
plane during the all gait cycle, and the 4) tonic lateral flex-
ion of the trunk along the frontal plane (for more detail
about the postural angle definitions please refer to the

works of Seah et al. and Barone et al. [50, 51]). The mean
and the standard deviation values of both postural and
kinematic parameters for all the subjects are summarized
in Table 2.

Finger tapping and foot tapping
The acquisition of the finger and foot tapping are based on
custom made trackers covered by reflective material. Even
though the two tapping are different movements and rely
on trackers that have different shapes, a unique algorithm
has been used to extract the features related to both exer-
cises. In detail, such procedure considers the extraction

Fig. 4 Gait cycle. Breakdown of the gait cycle into phases. Contribution from the work of Stöckel et al. [49]
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Table 1 Postural and gait analysis

Feature Acronym Domain Unit Selection

Stance Phase STp Temporal %

Swing Phase SWp Temporal %

Double Support Phase DSp Temporal % Case A,B

Stance Time STt Temporal sec

Swing Time SWt Temporal sec

Stride Time STDt Temporal sec Case B

Stride Cadence STDc Spatial #/min Case A

Stride Length STDl Spatial cm Case A,B

Step Length SPl Spatial cm

Step Width SPw Spatial cm

Stride Velocity STDv Spatial m/sec Case A

Swing Velocity SWv Spatial m/sec Case A

Trunk Flexion TFlex Angular degree Case A,B

Neck Flexion NFlex Angular degree Case A,B

Pisa Syndrome PS Angular degree Case A

Arm Swing ASrom Angular degree Case A,B

Summary of the 16 Features and the Selected Features (9 features for the Case A
and 6 features for the Case B) used by the Classification Algorithms

of the reflective marker positions from the Microsoft
Kinect v2 acquisitions, first, and the computation of all the
features related to the acquired movement.

Image processing for movement tracking. The two
vision-based acquisition systems use passive reflective
markers to track and record the position of the thumb, the

Table 2 Postural and gait analysis

Feature Healthy PD Mild PD Moderate PD

STp 60.1 ±3.3 62.0 ±3.5 61.6 ±2.6 62.5 ±4.4

SWp 39.8 ±3.3 38.0 ±3.5 38.4 ±2.6 37.4 ±4.4

DSp 18.6 ±5.2 22.9 ±5.2 21.8 ±3.7 24.2 ±6.6

STt 0.8 ±0.1 0.8 ±0.1 0.9 ±0.1 0.8 ±0.1

SWt 0.5 ±0.1 0.5 ±0.1 0.6 ±0.1 0.5 ±0.1

STDt 1.3 ±0.1 1.4 ±0.2 1.5 ±0.2 1.3 ±0.2

STDc 45.0 ±5.2 44.9 ±8.3 41.8 ±5.1 48.9 ±10.0

STDl 71.3 ±11.0 56.9 ±15.1 57.3 ±15.3 50.3 ±19.8

SPl 35.8 ±6.2 28.4 ±7.8 28.6 ±7.9 25.1 ±10.0

SPw 8.8 ±2.6 9.7 ±1.9 9.6 ±1.9 10.1 ±2.0

STDv 0.5 ±0.1 0.4 ±0.1 0.4 ±0.1 0.4 ±0.1

SWv 1.2 ±0.3 1 ±0.2 1.0 ±0.2 0.9 ±0.3

TFlex 5.4 ±2.2 5.6 ±2.9 5.6 ±2.9 4.7 ±3.8

NFlex 7.9 ±2.2 8.1 ±2.9 8.0 ±2.9 7.2 ±3.8

PS 0.1 ±1.2 -0.2 ±0.8 -0.2 ±0.8 -0.1 ±0.7

ASrom 16.1 ±7.8 11.0 ±6.3 10.7 ±5.3 10.9 ±8.9

Mean and Standard Deviation of Postural and Kinematic Features during Gait

index finger and the toes. A routine based on image pro-
cessing techniques has been developed and employed to
1) recognize the markers in each acquired video frame and
2) compute the 3D position of a centroid point associated
to the specific marker. As a first step, the blobs associated
with the reflective markers have been segmented using the
OpenCV library functions on each infrared image frame
as follows:

• Extraction of the pixels associated with the reflective
passive markers with a thresholding operation;

• Blurring and thresholding operations in sequence;
• Eroding and dilating operations in sequence;
• Dilating and eroding operations in sequence.

After the post-processing steps explained above, all the
found blobs are extracted using an edge detection proce-
dure. Only the blobs having sizes comparable with mark-
ers’ size are kept for the next analysis. As final step, the
centroid of each blob (only one blob for the foot tap-
ping and two blobs for the finger tapping) is computed.
Given the position of the centroid into the image frame,
its depth information and the intrinsic parameters of the
Kinect V2, we then computed the 3D position of the cen-
troid associated to each tracked marker in the camera
reference system. The centroid position has been then
considered as the position of the specific fingertip or the
foot’s toe.

Feature extraction. As shown in Fig. 5, the recon-
structed marker trajectories have been used to extract the
following two signals over time:

• d1(t) - the distance between the index fingers and the
thumb markers (Finger Tapping);

• d2(t) - the distance between the position of the toes’
marker and the position of the same marker when the
toes lie on the ground (Foot Tapping).

Both signals have been normalized to make them range
in [0,1] since the absolute values of the movement ampli-
tude is not meaningful [5]. Given the entire acquired
signal, all the single trials (ten finger tapping and ten foot
tapping) have been extracted for each side. We then imple-
mented a simple procedure that automatically extracts
the same set of features for both computed signals (d1(t)
and d2(t)). The list of features to the time domain, spatial
domain and frequency domain follows:

1 meanTime: averaged execution time of the single
exercise trial;

2 varTime: variance of the execution time of the single
exercise trial;

3 meanAmplitude: averaged space amplitude of the
single exercise trial;
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Fig. 5 Finger Tapping and Foot Tapping: movement extraction. a Finger tapping. The signal d1(t) is the distance between the two centroids (red
filled circles) of the passive finger markers. b Foot tapping. The signal d2(t) is the distance between the centroid of the toes’ marker and the centroid
of the same marker when the toes are completely on the ground

4 varAmplitude: variance of the space amplitude of
the single exercise trial;

5 tremors: number of peaks detected during the entire
acquisition;

6 hesitations: number of amplitude peaks detected in
the velocity signal during the entire acquisition;

7 periodicity: periodicity of the exercise computed as
reported in [52];

8 AxF: (amplitude times frequency) the averaged value
of the division between the amplitude peak reached
in a single exercise trial and the time duration of the
trial.

Classification
In addition to the classification of healthy subjects vs PD
patients that has been quite deeply investigated in pre-
vious studies [9], in this work we also focused on the
classification of PD patients affected by different disease
severity. Then, the following two study cases have been
conducted:

Case A: Healthy Subjects versus Parkinson’s Disease
patients. Dataset consists of a total of 30 records, 16
PD patients (53.3%) and 14 older age healthy subjects
(46,7%). Right and left sides of each subject were sepa-
rately considered, then the final dataset is composed of 60
instances.

Case B: Mild versus Moderate Parkinson’s Disease
patients. Dataset consists of a total of 16 records,
9 mild (56,3%) and 7 moderate (43.7%) PD patients.
Right and left sides of each patient were separately
considered, then the final dataset is composed of 32
instances.

All the analyses have been conducted following two dif-
ferent strategies based on SVMs and ANNs, which repre-
sent state-of-the-art classifiers that have gained popularity

within pattern recognition tasks [53–55] and showed pro
mising result in PD classification using kinematic data [9].

Considering the easy tuning of training parameters,
SVMs classifiers [56, 57] have been considered to realize
a preliminary inspection of the processed data. SVM is
a classifier whose goal is to find the best decision hyper-
plane that separates the training features space. SVMs
have high generalization capability because they can be
extended to separate a space of non-linear input features
[58]. For the purpose of the present work, the train-
ing process was based on 5-fold cross-validation and
evaluate in sequence the following types of SVM clas-
sifiers: (1) linear SVM, (2) quadratic SVM, (3) cubic
SVM, (4) Gaussian SVM. We also tested evolutionary
approaches, and optimization strategies based on proba-
bilistic graphical models [59, 60], for the design of neu-
ral classification architectures [61–64]. In particular, we
applied an improved version of the Genetic Algorithm
(GA) reported in Bevilacqua et al. [65], where the fit-
ness function maximized by the GA consists in the mean
value of accuracy reached by each ANN-based classi-
fier trained with a fixed number of iterations, validated
and tested using a random permutation of the dataset
instances.

Classification based on gait and postural analysis
Concerning the classification based on the features
extracted from the gait exercise, for each case (Case A and
Case B) we derived two subcases depending on the num-
ber of features considered for the classification step (see
Table 1). In particular, we ran a correlation based feature
selection procedure (Weka - Attribute Evaluator: CfsSub-
setEval - Search Method: BestFirst) that has individuated
9 features out of 16 for the Case A and 6 features out of 16
for the Case B:
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• Subcase A.1: all 16 features;
• Subcase A.2: 9 selected features out of 16;
• Subcase B.1: all 16 features;
• Subcase B.2: 6 selected features out of 16.

Classification based on finger tapping and foot tapping
analysis
Regarding the classification based on the features
extracted from both the finger and foot tapping, for each
case (Case A and Case B) we derived three subcases
depending on the number of features considered for the
classification step. Here, we list all the analyzed subcases:

• Subcase A.1: all the 8 finger tapping features;
• Subcase A.2: all the 8 foot tapping features;
• Subcase A.3: both finger and foot tapping features.

• Subcase B.1: all the 8 finger tapping features;
• Subcase B.2: all the 8 foot tapping features;
• Subcase B.3: both finger and foot tapping features.

Classification evaluation metrics
Each analyzed classifier has been tested using 5-fold cross-
validation and evaluated in terms of Accuracy (Eq. 1),
Sensitivity (Eq. 2) and Specificity (Eq. 3), where True
Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN) numbers are computed using
the Confusion Matrix reported in Table 3 for a binary
classifier example.

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Sensitivity = TP
TP + FN

(2)

Specificity = TN
TN + FP

(3)

Results
All the participants were able to complete both clini-
cal and instrumented evaluations. Here we report the
main achievements in terms of Accuracy, Sensitivity and
Specificity for the classification algorithms.

Gait and postural analysis
We reported and compared the results obtained with both
the best SVM-based and optimized ANN classifiers in

Table 3 Confusion Matrix for performance evaluation of a binary
classifier

True condition

Positive Negative

Predicted condition Positive TP FP

Negative FN TN

Table 4. In detail, the comparison has been evaluated
analyzing the average values of Accuracy, Sensitivity and
Specificity across the 5-fold cross-validations.

In Table 4 we reported the classification performance
comparison between ANN and the best SVM-based clas-
sifiers for each studied subcases. The results showed that
the ANN classifier performed the best for each considered
subcase. In particular, when diagnosing PD (Case A), the
ANN reached 89.4% (±8.2%) of Accuracy, 87.0% (±12.7%)
of Sensitivity and 91.8% (±11.0%) of Specificity with only 9
selected features; while, the ANN reached 95.0% (±7.1%)
of Accuracy, 90.0% (±15.7%) of Sensitivity and 99.0%
(±4.3%) of Specificity with the 6 selected features in clas-
sifying mild versus moderate PD patients (Case B). The
optimized topologies of the best ANN classifiers for each
case are reported in Fig. 6.

Finger tapping and foot tapping analysis
Here we reported and compared the results obtained with
the best SVM for each of the three presented subcases.
In detail, the comparison has been evaluated analyzing
the average values of Accuracy, Sensitivity and Specificity
across the 5-fold cross-validations (see Table 5).

Considering the Case A, i.e. "Healthy subjects vs PD
patients" classification, we reported the results of the best
trained SVM-based classifier: (sub-case A.1) the Gaussian
SVM reached an accuracy of 71.0% (±2.4), a sensitivity
of 75.7% (±1.4) and a specificity of 65.5% (±1.4); (sub-
case A.2) the Gaussian SVM reached an accuracy of 85.5%
(±1.7), a sensitivity of 91.0% (±4.2) and a specificity of
79.0% (±5.2); (sub-case A.3) the Quadratic SVM reached
an accuracy of 87.1% (±3.6), a sensitivity of 87.8% (±3.1)
and a specificity of 86.0% (±1.7). Also concerning the
Case B, i.e. "Mild PD patients vs Moderate PD patients"
classification, we reported the results of the best trained
SVM-based classifier: (sub-case B.1) the Gaussian SVM
reached an accuracy of 57.0% (±2.3), a sensitivity of 100%
and a specificity of 0.0%; (sub-case B.2) the Gaussian SVM

Table 4 Postural and gait analysis

Accuracy Sensitivity Specificity

[%] [%] [%]

Subcase A.1 SVM 73.4 ±4.3 78.0 ±5.4 68.2 ±7.3

ANN 84.7 ± 8.6 82.6 ± 14.0 86.7 ± 13.2

Subcase A.2 SVM 78.5 ±3.4 81.7 ±4.9 74.8 ±5.5

ANN 89.4 ± 8.2 87.0 ± 12.7 91.8 ± 11.0

Subcase B.1 SVM 83.6 ±3.9 67.3 ±6.8 96.3 ±4.4

ANN 87.9 ± 9.7 76.5 ± 21.7 97.0 ± 9.3

Subcase B.2 SVM 88.7 ±3.9 78.9 ±6.0 96.3 ±5.1

ANN 95.0 ± 7.1 90.0 ± 15.7 99.0 ± 4.3

ANN and SVM performance comparison with all the features and selected features
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Fig. 6 Optimal ANN topologies. Optimal topologies for ANNs obtained with the procedure based on the genetic algorithm: (top) Case A.2: Dataset
with only 9 Features, (bottom) Case B.2: Dataset with only 6 Features

reached an accuracy of 81.0% (±1.2), a sensitivity of 84.0%
(±1.7) and a specificity of 78.0% (±2.9); (sub-case B.3)
the Gaussian SVM reached an accuracy of 78.0% (±5.2),
a sensitivity of 89.0% (±4.2) and a specificity of 64.0%
(±3.7).

Discussion
In the last decade, ML techniques have been used and
compared for PD classification [9]. However, most of the
published studies investigate two-group classifications,
i.e. PD patients vs healthy subjects, with good results
obtained [10]. In this work, we have also focused on the
classification between groups of patients featuring differ-
ent severity levels.

The Microsoft Kinect v2 sensor has been widely utilized
for PD-related research, however we noticed that most of
the research studies focused on comparisons of the Kinect
device with respect to optoelectronic systems. The previ-
ous studies that focus on the lower limbs usually evalu-
ate only kinematic parameters, whereas we introduced a
vision system that is able to recognize and rate PD’s motor
features taking into account also postural oscillations and

Table 5 Finger tapping and foot tapping analysis

Accuracy Sensitivity Specificity

[%] [%] [%]

Case A A.1 71.0 ± 2.4 75.7 ± 1.4 65.5 ± 1.4

A.2 85.5 ± 1.7 91.0 ± 4.2 79.0 ± 5.2

A.3 87.1 ± 3.6 87.7 ± 3.1 86.0 ± 1.7

Case B B.1 57.0 ± 2.3 100.0 0.0

B.2 81.0 ± 1.2 84.0 ± 1.7 78.0 ± 2.9

B.3 78.0 ± 5.2 89.0 ± 4.2 64.0 ± 3.7

Classification indices: performance comparison among the best classifiers trained
for each studied sub-case

kinematics of upper body parts (trunk, neck and arms)
while walking.

Gait and postural features have been organized by
domains, and classification was carried out considering
either the complete set of extracted features or a subset
of them selected with a correlation based feature selection
algorithm. We found out that:

• the spatial and the angular domains were the most
relevant in terms of information content after feature
selection phase;

• the reduced dataset for Case A (A2) showed better
results in terms of classification with: 89.4% (±8.6%)
of Accuracy, 87.0% (±12.7%) of Sensitivity and 91.8%
(±11.1%) of Specificity;

• the reduced dataset for Case B (B2) performed the
best in terms of classification with 95.0% (±7.1%) of
Accuracy, 90.0% (±15.7%) of Sensitivity and 99.0%
(±4.3%) of Specificity.

Our findings suggest that postural variables were the
most relevant features associated with PD, which con-
firmed the importance of postural attitudes during walk-
ing in the neurodegeneration process. In fact, only 9
features were necessary, i.e. Double Support Phase, Stride
Cadence, Stride Velocity, Swing Velocity, Stride Length,
Trunk and Neck Flexion, Pisa Syndrome and Arm Swing,
to diagnose PD (Case A) and only 6 features, i.e. Dou-
ble Support Phase, Stride Time, Stride Length, Trunk
and Neck Flexion and Arm Swing, were able to rate the
severity level in PD patients (Case B).

Considering the classification based on the finger and
foot tapping exercises, we first investigated the ability of
the extracted features to distinguish between healthy sub-
jects and PD patients using an SVM-based classifier. As
first step, we analyzed the finger tapping (FiT) and the foot
tapping (FoT) features independently, then we analyzed
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the features extracted from both exercises movements
together. The main findings of this analysis indicate that:

• the features extracted from the foot tapping exercise
lead to a better classification in terms of all the three
computed indices when compared with the finger
tapping: accuracy ( FoT: 85.5% (±1.7) vs FiT: 71.0%
(±2.4) ), sensitivity ( FoT: 91.0% (±4.2) vs FiT: 75.7%
(±1.4) ) and specificity ( FoT: 79.0% (±5.2) vs FiT:
65.5% (±1.4) );

• using the features extracted from both exercises (FoT
and FiT) the SVM classifier performs better than the
two classifiers based either on the FiT features or the
FoT features. In particular, the classifier based on
both feature sets reached a better accuracy ( 87.1%
(±3.6)), a better specificity ( 86.0% (±1.7) ) and a
slight lower sensitivity ( 87.7% (±3.1) ).

Hence, analysis of the Case A indicates that the set of
features we selected from the movement acquired during
both the finger and foot tapping can be used to capture
the abnormal motor activity of a PD patient with great
results. We also investigated the contribution of the fea-
tures extracted from the finger and foot tapping exercises
to distinguish between mild PD patients and moderate PD
patients using an SVM-based classifier. As done for the
"Healthy subjects vs PD patients" classification, we first
analyzed the finger tapping (FiT) and the foot tapping
(FoT) features independently, then we analyzed the fea-
tures extracted from both movements together. The main
findings of this analysis indicate that:

• the FiT features are not representative of the
difference between mild and moderate PD subjects
(accuracy 57.0% (±2.3), sensitivity 100% and
specificity 0.0% );

• the FoT extracted features lead to best accuracy
(81.0% (±1.2)) and specificity (78.0% (±2.9));

• the SVM classifier that use both feature sets is
characterized by both a slight lower accuracy (78.0%
(±5.2)) and specificity (64.0% (±3.7)) than the SVM
that uses only the FoT features, and the best
sensitivity level that is equal to 89.0% (±4.2).

Hence, the analysis of the Case B indicates that the set
of features we selected from the movement acquired dur-
ing both FoT and FiT exercises lead to a good "Mild PD
patients vs Moderate PD patients" classification results,
but with classification scores that are slightly lower than
the "Healthy subjects vs PD patients" classification ones.
It is also worth noting that the FoT features are the most
important ones to achieve the best accuracy and speci-
ficity levels, and that the extracted FiT features are not
representative at all of the motor differences between mild
and moderate PD patients since the FiT features lead to

lower accuracy and specificity levels. Only when the FiT
features are used together with the FoT features the SVM
classifier presents a better sensitivity level at the expense
of both the accuracy and specificity.

Even though the number of tested patients is compa-
rable to the number of PD patients involved in previous
published studies [9], the major limitation of the study
regards the analysis of just two levels of PD severity. Future
studies might indeed consider not only mild and moderate
PD patients but also slight and severe ones.

Conclusions
Parkinson’s Disease influences a large part of worldwide
population. About 1% of the population over 55 years of
age is affected by this disease. Most of the current meth-
ods used for evaluating PD heavily, e.g. UPDRS scale, rely
on human expertise. In this work we designed, imple-
mented and tested a low-cost vision-based tool to auto-
matically evaluate the motor abilities of PD patients for
rating the disease severity. We investigated both motor
abilities of the upper (finger and foot tapping analysis) and
lower body (postural and gait analysis). Regarding the pos-
tural and gait analysis, we initially considered sixteen fea-
tures: 7 temporal parameters (i.e., Stance phase %, Swing
phase %, Double Support phase %, Stance time, Swing
time, Strike time, and Stride cadence), 5 spatial parame-
ters (i.e., Step length, Stride velocity, Swing velocity, Stride
length, Step width), and 4 postural parameters (i.e., Aver-
age Trunk and Neck Flexion, Pisa Syndrome, Arm Swing
Range of Motion). Results showed that the ANN clas-
sifier performed the best by reaching 89.4% of accuracy
with only nine features in diagnosis PD and 95.0% of accu-
racy with only six features in rating PD severity. We found
out that postural features were relevant in both cases and
to our knowledge no previous studies have investigated
in depth the role of these components in classification
and rating of PD. Concerning the Finger and Foot tapping
analysis, we extracted eight main features from the trajec-
tories of the acquired movements using image processing
techniques. Several SVM classifiers have been trained and
evaluated to investigate whether the selected sets of fea-
tures can be used to detect the main differences between
healthy subjects and PD patients, and then between mild
PD patients and moderate PD patients. Results showed
that an SVM using the features extracted by both fin-
ger and foot tapping exercises is able to classify between
healthy subjects and PD patients with great performances
by reaching 87.1% of accuracy, 86.0% of specificity and
87.7% of sensitivity. The results of the classification of mild
vs moderate PD patients indicated that the foot tapping
features are the most representative ones compared to the
finger tapping features. In fact, the SVM based on the
foot tapping features reached the best score in terms of
accuracy (81.0%) and specificity (78.0%).
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From our findings, we can conclude that automatic
vision system based on the Kinect v2 sensor together with
the selected extracted features could represent a valid
tool to support the assessment of postural, and spatio-
temporal characteristics acquired from gait, finger and
foot tapping in participants affected or not by the PD. In
addition, the sensitivity of the Kinect v2 sensor could sup-
port medical specialists in the assessment and rating of
PD patients. Finally, the low-cost cost feature and the easy
and fast setup phase of the designed and implemented tool
support and encourage its usability in a real clinical sce-
nario. Feature work will focus on the integrated analysis
of the data acquired during the three exercises. More-
over, a further analysis could consider a higher number of
patients performing more kind of exercises. Finally, deep
learning techniques might be evaluated considering the
amount of big data that could be generated [66, 67].
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