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Abstract

Background: A growing collection of disease-associated data contributes to study the association between
diseases. Discovering closely related diseases plays a crucial role in revealing their common pathogenic mechanisms.
This might further imply treatment that can be appropriated from one disease to another. During the past decades, a
number of approaches for calculating disease similarity have been developed. However, most of them are designed
to take advantage of single or few data sources, which results in their low accuracy.

Methods: In this paper, we propose a novel method, called MultiSourcDSim, to calculate disease similarity by
integrating multiple data sources, namely, gene-disease associations, GO biological process-disease associations and
symptom-disease associations. Firstly, we establish three disease similarity networks according to the three
disease-related data sources respectively. Secondly, the representation of each node is obtained by integrating the
three small disease similarity networks. In the end, the learned representations are applied to calculate the similarity
between diseases.

Results: Our approach shows the best performance compared to the other three popular methods. Besides, the
similarity network built by MultiSourcDSim suggests that our method can also uncover the latent relationships
between diseases.

Conclusions: MultiSourcDSim is an efficient approach to predict similarity between diseases.

Keywords: Disease similarity network, Diffusion component analysis, Integrating multiple data sources

Background
Quantitative measurement of disease similarity is gain-
ing more and more attentions because it helps to reveal
common psychophysiology and improve clinical decision-
making systems, so as to better understand human dis-
eases status and more accurately classify diseases [1]. It
also plays a crucial role in identifying novel drug indi-
cations [2], since diseases may have the same or similar
therapeutic targets, suggesting that they may be treated
with the same or similar drugs [3–6]. In the past few
decades, our understanding of human diseases has made
remarkable progress [7]. For example, the network-based
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approaches [8–11] to calculating the similarity between
diseases is impressive. Constructing a disease similarity
network based on biological data to explore the relation-
ship between diseases has become one of the research
hotspots of modern biology and medicine. At present, the
measurement of similarity disease research is necessary.

In previous studies, various properties of human genes
(such as predicted function or amino-acid sequence
length) and Gene Ontology (GO) [12–14] biological pro-
cesses have been correlated with the chance of causing
a disease [15–17]. The calculation approaches of dis-
ease similarity can be roughly divided into function-based
methods [18, 19] and semantic-based methods [20]. The
functional-based approach calculates similarities between
diseases by comparing genes associated with diseases
[18, 19]. For instance, the BOG [18] method, which was

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-019-0968-8&domain=pdf
mailto: zhangjp@csu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Deng et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 6):269 Page 2 of 10

designed by Mathur and Dinakarpandian, calculates the
similarity between diseases by comparing gene overlaps of
related diseases. Moreover, BOG [18] also considers the
self-information of each disease. However, its shortcom-
ing is that it does not consider the functional link between
disease-related genes. Further, Mathur and Dinakarpan-
dian proposed a method based on process similarity (PSB
[19]). The method provides functions to measure sim-
ilarity, including the similarity function based on GO
terms [12], and the similarity function between entities
annotated with terms extracted from the ontology based
on both co-occurrence and information content. The
semantic-based method is extensively used in biomedi-
cal and bioinformatics. For instance, Resnik’s method [21]
calculates the similarity between diseases according to
the information content of the most informative com-
mon ancestor. Lin’s method [22] incorporates not only
the information content of the most informative common
ancestor but also the the information content of the two
disease terms. Jiang and Conrath et al. [23] represented
the similarity between two terms through the semantic
distance.

In addition, phenotype similarity plays an important
part in a lot of biological similarity and biomedical appli-
cations, and it is also the most common way of classifying
diseases [24]. For example, the Human phenotype ontol-
ogy (HPO) is a controlled and standardized vocabulary
that describes the abnormal phenotype of human dis-
ease. And Medical Subject Headings (MeSH) [25] use this
approach to classify diseases.

Although there are many patterns for measuring simi-
larity between diseases, most of them use a single biologi-
cal data source, and few methods using multiple biological
data sources are proposed. For example, some of the previ-
ous approaches calculate the similarity according to genes
related with diseases. Nevertheless, there exist some dis-
eases which are unrelated or rarely related to genes. Thus,
depending solely on individual biological data associated
with disease might greatly affects the prediction perfor-
mance of the methods. In this work, a novel approach
named MultiSourcDSim is proposed to compute the sim-
ilarity between diseases by integrating multiple biological
datasets. In MultiSourcDSim, firstly, three disease sim-
ilarity networks are respectively built by using a vari-
ety of biological data such as gene-disease associations,
GO biological process-disease associations and symptom-
disease associations. Secondly, the high-dimensional vec-
tor of each node is extracted by running restart random
walks [26] on each network, and low-dimensional vec-
tors that can represent the high-dimensional topological
patterns in each network are learned. Finally, the similar-
ity between diseases is obtained by calculating the cosine
score between two low-dimensional vectors. The exper-
iments demonstrate that disease similarity predicted by

our method is significantly correlated with disease cat-
egory of MeSH, implying that the network constructed
by our method is capable of detecting the latent relation-
ships between diseases. Moreover, the results also show
that MultiSourcDSim outperform the other three popular
methods.

Methods
Datasets
CTD’s MEDIC disease vocabulary which is downloaded in
http://ctdbase.org (March 4, 2018) is chosen as criterion
for describing diseases. CTD’s MEDIC disease vocabu-
lary is a modified subset of descriptors from the Diseases
[C] branch of the U.S. National Library of Medicine’s
MeSH, combined with genetic disorders from the Online
Mendelian Inheritance in Man (OMIM) database, and
we use MeSH to mark disease terms. Each record in
CTD’s MEDIC disease vocabulary contains 9 fields, 4 of
which are retained for calculating disease similarity. They
are respectively DiseaseID, DiseaseName, AltDiseaseIDs
(alternative identifiers) and ParentIDs (identifiers of the
parent terms).

We have collected three data sets associated with
disease, namely gene-disease associations, GO biolog-
ical process-disease associations, and symptom-disease
associations. In the three sets, a great deal of biolog-
ical information bound up with diseases is included.
For instance, each record in the gene-disease associa-
tions contains 9 fields (GeneSymbol, GeneID, Disease-
Name, DiseaseID, DirectEvidence, InferenceChemical-
Name, InferenceScore, OmimIDs, PubMedIDs). In the
three data sets, 3,125,954 gene-disease associations con-
taining 3254 disease terms and 668,760 GO biologi-
cal process-disease associations containing 5720 disease
terms are pooled from http://ctdbase.org(March 4, 2018),
and each record in the two data sets is identified by
MeSH markers. The gene terms and the gene ontology
biological process terms are labeled with the NCBI gene
identifiers and GO identifiers, respectively. The 80,638
symptom-disease associations are collected from paper
[27], which describes 4040 diseases. However, the dis-
eases in the symptom-disease associations are marked by
the MeSH names. To obtain the Mesh identifiers corre-
sponding to the names, we map the disease names in the
symptom-disease associations to the IDs in the CTD’s
MEDIC disease vocabulary. After screening for the co-
occurring diseases term in all associations, 8126 diseases
are extracted.

Overview of MultiSourcDSim
In our method, we combine three disease-related data
sets to calculate the similarity between diseases more
accurately. Specifically, we firstly construct three disease
similarity networks through computing the similarity

http://ctdbase.org
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respectively according to the gene-disease associa-
tions, GO biological process-disease associations, and
symptom-disease associations. Secondly, the compact
low-dimensional feature representations of diseases from
the three similarity networks are learned by running Dif-
fusion Component Analysis (DCA) [28–30]. Finally, the
disease similarity is calculated according to the learned
representations.

Calculate semantic similarity of diseases
MeSH is a vocabulary that gives uniformity and consis-
tency to the indexing and cataloging of biomedical liter-
ature. It is organized in a manner of tree structures with
16 main branches. Category C represents diseases. In our
approach, the semantic similarity of diseases is measured
by using the special structure between MeSH descriptor
[25]. We build a directed acyclic graph (DAG) to clar-
ify the associations among various diseases. The nodes
in the DAG represent the MeSH descriptor. Child nodes
are more specialized (containing more disease informa-
tion) and parent nodes are more generalized (containing
less disease information). In addition to the relationships
of the disease itself, we also combine the relationships
between disease and other biological entity, namely gene,
GO and symptom. The probability of a disease occurs in
a disease-related data set is just its frequency in the data
set. The frequency of a disease term t is calculated as:

f (t) = self (t) +
∑

tc∈children(t)
f (tc). (1)

Here, self (t) represents the number of occurrences of
the disease term t in a single data set, and the disease term
tc is a direct child of the disease item t, belonging to the
children(t) collection. In other words, the frequency of the
disease term t in a single disease-related data set is defined
as the frequency of its own occurrence plus the frequency
of occurrence of all its child nodes. The probability that
the disease term t appears in the disease-related data set
is as follows:

prob(t) = f (t)
N

. (2)

Here, N indicates the frequency of occurrence of the
root node in the corresponding DAG.

Then, the similarity scores are computed according to
the probabilities of diseases based on the metric proposed
by Lin et al. [22]. In Lin’s method, the similarity is mea-
sured in terms of information theory. It is believed that
the similarity between terms is determined by their gen-
erality (information content of common ancestor nodes)
and particularity (their respective information content).
Therefore, the semantic similarity depends on the max-
imum ratio of the information content of the common

ancestor nodes of the two terms to the sum of the infor-
mation content of the two terms themselves. Generally,
the higher the degree of information sharing between two
terms, the higher the semantic similarity score, and on the
contrary, the lower the similarity score. This definition is
as follows:

Score(t1, t2) = max
t∈(LCA(t1,t2))

(
2 ∗ log prob(t)

log prob(t1) + log prob(t2)

)
.

(3)

Here, LCA(t1, t2) is the set of least common ances-
tors of term t1 and t2. The similarity scores fall in the
range [0, 1].

Integrate multiple networks and learn representations
We construct three disease similarity networks according
to the similarity scores. To achieve the compact inte-
gration of multiple similarity network, we adopt DCA
strategy to capture low-dimensional vectors representing
topological patterns of networks. In DCA, the random
walk with restart (RWR) method [26] is firstly employed
to analyze the structure of each network.

The RWR from a node i is defined as:

st+1
i = (1 − a)st

i T + aei. (4)

Here, T denotes the probability transfer matrix. st
i is

specified as an n-dimensional vector, where each entry
is the probability of visiting a node at t iterations from
the initial node i. ei is the initial probability vector, where
ei(i)=1 and ei(j)=0, ∀j �= i. a is the restart probability. After
several iterations, a stable distribution is obtained, and si
is regard as the ’diffusion state’ of the node i.

There exists noise in the diffusion states obtained in
this manner, and the dimensionality is high. To solve this
problem, we utilize fewer dimensions to approximate each
diffusion state si through a polynomial logistic model
based on the potential vector representation of nodes in a
network. Specifically, the probability assigned to node j in
the diffusion state of node i is as follows:

ŝij = exp
{

xT
i wj

}

∑
j′ exp

{
xT

i w′
j

} , (5)

where ∀i, xi, wj ∈ Rd for d � n. xi and wj represent the
node feature and context feature of node i respectively.

The goal is to find the low-dimensional vector represen-
tation of nodes w and x that best approximates a set of
observed diffusion states s = {s1, . . . , sn} according to the
logistic model. To achieve the goal, KL-divergence is used
as the objective function to optimize, which is given by:

min
w,x

C(s, ŝ) = 1
n

∑n

i=1
DKL

(
si||ŝi

)
, (6)
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where n is the number of nodes. By writing out the
definition of KL-divergence, the formula is written as:

C
(
s, ŝ

) =
1
n

∑n
i=1

[
−H(si) −

n∑
j=1

sij

(
xT

i wj − log
(

n∑
j′=1

exp
{

xT
i wj′

}
))]

,

(7)

where H(·) denotes the entropy. In order to combine
the three disease similarity networks, the formula (6) is
modified as follows:

min
w,x

C(s, ŝ) = 1
n

∑M

m=1

∑n

i=1
DKL

(
sm
i ||ŝm

i
)
. (8)

Here, M represents the number of networks. In this
work, M is equal to 3. To minimize the objective function,
we compute the gradients with regard to the parameters
w and x. The low-dimensional vector representations are
obtained by the quasi-Newton L-BFGS method with these
gradients.

To improve efficiency, we can employ singular value
decomposition (SVD) to optimize the alternative objective
function [31].

Calculate the similarity between diseases
After extracting the low-dimensional representations for
all nodes which can best explain the connectivity patterns
in the networks, we utilize the learned representations
as features for calculating the disease similarity. In this
study, the number of nodes in the three networks, namely
the total number of diseases is 8126, and the dimension
of these features is set to 600. The similarity between
diseases is measured through cosine score, which is as
follows:

cosine(dx, dy) =
∑

i dx,idy,i√∑
i d2

x,id
2
y,i

. (9)

Here, dx and dy are two vectors which represent two
disease respectively. Obviously, the similarity is between 0
and 1.

Results
The degree distribution of disease similarity networks
We adopt gene-disease associations, GO biological
process-disease associations and symptom-disease asso-
ciations as the sources of disease similarity network, and
construct the small similarity networks based on the Lin’s
measure separately. In order to better understand the
topology of these networks, we calculate the degree dis-
tribution of nodes in the network. Figures 1, 2 and 3
elucidates the degree distribution of disease node in three
small disease similarity networks.

In the disease similarity network based on gene-disease
association dataset (GDN), there exist 3254 diseases and

Fig. 1 Degree distribution of disease node in the small similarity
network built based on disease-gene association dataset

32733 connections. Marfan Syndrome (MeSH: D008382),
which is the relation with 178 diseases, has the maxi-
mum degree. There are 225 diseases with degree 1 (Fig. 1).
5720 diseases and 249490 relationships make up the dis-
ease similarity network based on GO biological process-
disease association dataset (BPDN). The disease with
the maximum degree is Martin-Probst Deafness-Mental
Retardation Syndrome (MeSH: C564495), the degree is
1024. As shown in Fig. 2, nearly half of the disease nodes
have margins with about 100 other disease nodes. And
similarity values of all disease pairs are computed in
the disease similarity network based on symptom-disease
association dataset (SDN), and the distribution of 48279
similarity values (between 4040 diseases) is acquired.

Fig. 2 Degree distribution of disease node in the small similarity
network constructed based on GO biological process-disease
association dataset
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Fig. 3 Degree distribution of disease node in the small similarity
network constructed based on disease-symptom association dataset

Oculocerebrorenal Syndrome (MeSH: D009800) associ-
ated with 256 diseases has the maximum degree (Fig. 3).
From the above calculation we can draw a conclusion that
the density of GDN is the largest compared to BPDN and
SDN.

After obtaining the integrated disease similarity net-
work (GPSN), the distribution of these similarity scores
are also counted. The distribution is represented in Fig. 4,
the similarity scores for most disease pairs across the net-
work ranges from 0 to 0.6. The number of disease pairs
in the 0.2-0.3 similarity bin is the highest, followed by the
0.3-0.4 bin.

Benchmark
The benchmark set which is adopted in this experiment
contains 40 pairs of highly similar diseases. It is derived
from the work of Suthram et al. [1] and Pakhomov et al.

Fig. 4 Histogram of similarity scores between 8126 disease nodes.
Most disease-disease pairs have a low similarity score

[32], and cancers are deleted. The benchmark set consists
of pairs of diseases that are confirmed to be interrelated,
such as Polycystic Ovary Syndrome(MeSH: D011085) and
Obesity(MeSH: D009765), Chronic Obstructive Airway
Disease(MeSH: D029424) and Asthma (MeSH: D001249).
It also contains some diseases pairs which have no appar-
ent correlations, but have proved to be correlated through
various evidences, such as Obesity and Asthma, Malaria
(MeSH: D008288) and Anemia (MeSH: D000740). More-
over, we randomly choose 500 disease pairs from the
similarity network as a random set, where the disease pairs
in the benchmark set are deleted.

Parameter selection
There are two parameters (α and d) to be tuned in Mul-
tiSourcDSim. The parameter α is the restart probability.
According to previous practical experience [33], it is set
to 0.5. The parameter d denotes the feature dimension
of each node. We compare the performance for different
numbers of dimensions based on the benchmark set. We
calculate the values of AUC when d is increasing from 500
to 800 with step size 100. As shown in Fig. 5, the results
show that the performance of MultiSourcDSim is stable
over a wide range of values for the number of dimensions,
implying that our method is robust to over-fitting. On the
whole, the AUC comes to the max value when d equals
600. Hence, d is set to 600 in this paper.

Performances assessment
To evaluate the disease similarity results calculated by
MultiSourcDSim, we make a comparison on the disease
classification of MeSH. MeSH is an authoritative medical
thesaurus and the basis for biomedical indexing. MeSH
divides the disease (C) sections into 26 categories accord-
ing to the tree code (excluding some ambiguous cate-
gories). To discuss whether GPSN is related to the MeSH
disease category, we examine the difference between the

Fig. 5 Comparision for different numbers of dimensions
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similarity scores of disease pairs belonging to the same
MeSH category and the similarity scores of disease pairs of
different MeSH categories. As demonstrated in Fig. 6, the
average similarity scores for disease pairs from the same
MeSH are significantly higher than those from different
MeSH categories. In conclusion, the experiment demon-
strates that the similarity scores of disease pairs are closely
relevant to MeSH disease category.

Moreover, in order to verify that the performance of the
network integrating the three data sets is better than that
of the network formed by the single data set, we compare
GDN, BPDN, SDN and GPSN based on the banchmark
set and random set. AS shown in Fig. 7, MultiSourcD-
Sim achieves the best AUC of 0.906, and the AUC values
of GDN, BPDN and SDN are 0.771, 0.774 and 0.797,
respectively. This result indicates that compared to indi-
vidual networks without integration, MultiSourcDSim has
a more stable and stronger power for discovering disease-
disease associations. The performance improvement is
partially attributed to the fact that synthetical analyzing
the structure of the the multiple networks can uncover
fine-grained topological patterns. Another important fac-
tor is the compactness of the feature representations,
which help capture the relevant topological patterns apart
from noise in the data.

The performance of MultiSourcDSim is further evalu-
ated by comparing it with other three recent approaches:
the text-based approach, namely MimMiner [34], an inte-
grated semantic and functional approach, called MedNet-
Sim [35], and the web-based approach, HSDN [27].

To fairly compare the performance of these methods,
we select widely used metrics, such as accuracy (ACC),
the area under the ROC curve (AUC), F1-score (F1), the
Matthew’s correlation coefficient (MCC), precision (PRE),
sensitivity (SEN/Recall) and specificity (SPE). Based on
the four approaches, we compute the the similarity scores
of disease pairs in the benchmark set and the random set,
and sort them in descending order, respectively. More-
over, we look on the disease pairs in the benchmark set
and the random set as positive and negative samples,

Fig. 6 Evaluation of MultiSourcDSim against MeSH classification

Fig. 7 Integrating Multiple Networks Outperforms Individual
Networks

respectively. The disease pairs correctly predicted in the
benchmark set are considered to be true positive sam-
ples, and the disease pairs in the random set which are
predicted to be highly correlated are thought of as false
positive samples. The results of the evaluation are shown
in Table 1, where the AUC value of the HSDN method
is the minimum, which is 0.818. The MimMiner method
applies text mining to disease classification and improves
performance, resulting in an AUC of 0.836. The MedNet-
Sim method takes the entire protein interactions and the
biomedical literature corpus into consideration, increas-
ing its AUC to 0.854. Our approach integrates multiple
disease-related data sets and further improves the perfor-
mance with an AUC value of 0.905, which is the best in the
four methods. In addition, our method also achieves the
highest values for ACC, F1, MCC, PRE, and SEN, which
are 0.815, 0.684, 0.273, 0.601, and 0.750, separately.

The results in Table 1 demonstrate that calculating dis-
ease similarity by integrating multiple disease-related data
sources is an effective method. In order to test the sta-
bility of our method, we randomly select 100 disease
pairs and compute their similarity scores. The calcula-
tions are repeated 100 times and the average AUC of
the four methods are depicted in Fig. 8. The average val-
ues are respectively 0.819 (HSDN), 0.835 (MimMiner),
0.855 (MedNetSim) and 0.906 (MultiSourcDsim), which
are consistent with the AUC column in Table 1. We fur-
ther compare the ranking of disease pairs derived from
the benchmark set. As shown in Fig. 9, The number of the
solution disease pairs which are found by MultiSourcDsim
always are the largest in the top 220 disease pairs.

In addition, by using the lowest ranked disease pairs
in 540 disease pairs (500 random disease pairs and 40
benchmark pairs), MultiSourcDSim can find all 40 bench-
mark pairs, which represents quite good performance. For
example, Obesity (MeSH: D009765) and Asthma (MeSH:
D001249) are disease pairs belonging to the benchmark
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Table 1 Prediction performance of MultiSourcDsim in comparison with other three methods on the benchmark set and random set

Methods ACC AUC F1 MCC PRE SEN SPE

MultiSourcDSim 0.815 0.905 0.684 0.273 0.601 0.750 0.656

HSDN 0.688 0.818 0.409 0.263 0.375 0.450 0.750

MimMiner 0.652 0.836 0.400 0.259 0.334 0.500 0.875

MedNetSim 0.630 0.854 0.391 0.224 0.361 0.425 0.874

The black bold fonts represent the optimal value

set, which ranks last in our approach. As shown in Table 2,
the average ranking of Obesity and Asthma is very low
among all the four methods. Nevertheless, compared to
the other three methods, our approach has increased the
ranking of Obesity and Asthma by 9%-14%.

Integrated disease similarity network
We construct a disease similarity network by using the
top-ranking 0.3% of the similarity values in 8126 diseases.
As shown in Fig. 10, there are 2604 diseases in the net-
work and they are connected to each other by 121787
edges. The maximum connected component consists of
283 nodes. Martin-Probst Deafness-Mental Retardation
Syndrome (MeSH: C564495), which is connected to 511
diseases, has the maximum degree. In Fig. 10, nodes in
the network represent diseases, and the nodes are colored
different colors. Each color is corresponding to a differ-
ent MeSH category, such as Virus Diseases (MeSH: C02),
Digestive System Diseases (MeSH: C06), Eye Diseases
(MeSH: C11), Immune System Diseases (MeSH: C20) and
so on. For each classification, diseases in the same MeSH
category are usually similar to each other, such as disease
of Musculoskeletal Diseases (MeSH: C05) category, dis-
ease of Nervous System Diseases (MeSH: C10) category,
and so on. Figure 11 also shows the feature that diseases
within one class are more probable to gather in the same
neighbourhood with each other. For instance, 5 diseases
belonging to the Otorhinolaryngologic Diseases classifi-
cation constitute a small component. As shown in the
Fig. 11a, all of these 5 diseases are deafness. Six diseases

Fig. 8 Average of AUC for 100 permutations

generate another connected component (Fig. 11b), five of
which are Otorhinolaryngologic Diseases and the other is
Stomatognathic Diseases. These demonstrations further
indicate that the similarity scores of disease pairs belong-
ing to the same category in the results computed by Mul-
tiSourcDSim are greater than those between belonging to
different categories.

Besides identifying relationships between diseases
belonging to the same disease classification, our approach
can also find the associations beween diseases belong-
ing to different classifications. For instance, as shown in
Fig. 11c, three Musculoskeletal Diseases are linked to two
Immune System Diseases by our method. Among the
three Musculoskeletal Diseases, it has been reported that
people with Lymphopenia might have immune system
diseases.

Discussion and conclusion
Determining the correlation between diseases helps
to deepen understanding of the potential mechanisms
among diseases. There are many studies about the associ-
ation between diseases, such as predicting disease-related
genes [36–38] and new drug indications [2]. In addition, a
huge challenge for researchers in modern biology [39, 40]
is how to get more information about the disease. In the

Fig. 9 The number of disease-pairs with varying the number of
top-ranking disease pairs
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Fig. 10 An overview of disease similarity network (GPSN) based on our method results. Nodes were coloured according to the MeSH category to
which they belong

past few decades, many researchers have proposed a num-
ber of methods to predict the similarity between diseases
(for example, build a network of disease similarity) based
on biological data and make a great progress. However,
these methods use only a single biological data and do not
consider combining multiple biological data as a basis for
predicting disease similarity.

In this paper, we propose a novel method, MultiSourcD-
Sim, to predict similarity between diseases, which builds
a disease similarity network based on multi-faceted bio-
logical data related to disease. According to the similarity
scores computed by our method, we can conclude that the
similarity scores of disease pairs belonging to the same

MeSH classification are significantly higher than those of
disease pairs belonging to different MeSH classifications.
And, comparing the performance of the MultiSourcDSim
method with the other three methods (MimMiner [34],
MedNetSim [35] and HSDN [27]) under the same bench-
mark set, we have found that our method is superior. Fur-
thermore, the disease similarity network constructed by
our method can also uncover latent relationships between
diseases.

Although multiple disease-related data sources are inte-
grated to compute similarities between diseases, there
may be some bias due to incomplete data. In addition to
considering the integration of multiple biological data, we

Fig. 11 Three connected components from the disease similarity network constructed by our method
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Table 2 The average ranking of the disease pair (Obesity and
Asthma) in 540 disease pairs

HSDN MimMiner MedNetSim MultiSourcDSim

average ranking 252.5 257.4 242.9 220.6

also need to take into account the modular nature of each
disease in further study of the similarities between dis-
eases, since the modularity of each disease module can
give more information [41–43]. Moreover, disease net-
works have proven useful for predicting novel therapeu-
tic applications of known compounds [44] and inferring
novel disease genes [45].
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