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Abstract

Background: Extracting useful information from biomedical literature plays an important role in the development
of modern medicine. In natural language processing, there have been rigorous attempts to find meaningful
relationships between entities automatically by co-occurrence-based methods. It has been increasingly important to
understand whether relationships exist, and if so how strong, between any two entities extracted from a large number
of texts. One of the defining methods is to measure semantic similarity and relatedness between two entities.

Methods: We propose a hybrid ranking method that combines a co-occurrence approach considering both direct and
indirect entity pair relationship with specialized word embeddings for measuring the relatedness of two entities.

Results: We evaluate the proposed ranking method comparatively with other well-known methods such as co-occurrence,
Word2Vec, COALS (Correlated Occurrence Analog to Lexical Semantics), and random indexing by calculating
top-ranked entities related to Alzheimer’s disease. In addition, we analyze gene, pathway, and gene–phenotype
relationships. Overall, the proposed method tends to find more hidden relationships than the other methods.

Conclusion: Our proposed method is able to select more useful related entities that not only highly co-occur but also
have more indirect relations for the target entity. In pathway analysis, our proposed method shows superior performance
at identifying (functional) cross clustering and higher-level pathways. Our proposed method, resulting from phenotype
analysis, has an advantage in identifying the common genotype relating to phenotypes from biological literature.
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Background
With the recent exponential growth of biomedical litera-
tures, extracting useful information from these literatures
has come to play an important role in the development of
modern medicine. In the biomedical domain, information
extraction (IE) is focused mainly on automatically identify-
ing entities and their relationships from biomedical litera-
tures as an aspect of natural language processing (NLP).
Traditionally, detecting biomedical relationships between
entities commonly involves adopting co-occurrence
methods, which are based on the assumption that if two

entities appear in the same sentence, paragraph, or
abstract, these entities would be relevant to each other
and helpful for biomedical knowledge discovery such as
gene–gene interaction and gene–drug association. How-
ever, co-occurrence methods have posed the problem of
generating many false positive relations, since they do not
consider contextual information in a specific text [1].
In addition to simple co-occurrence-based approaches

to measuring the relationship between entities, rule-
based methods using syntactic patterns [2–5] and
machine learning methods [6, 7] have been proposed in
order to tackle this false positive issue. Measures of
semantic similarity and relatedness have been developed
to identify ontological relationships between two entities,
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such as WordNet [8] and UMLS (Unified Medical Lan-
guage System) [9]. Recently, models of semantic word
representations, or word embeddings, have been devel-
oped constructing semantic spaces based on large-scale
corpora. This line of research adopts deep learning
approaches [10–16] such as Word2Vec [17] for auto-
matically learning optimal feature representation. How-
ever, these studies focus only on learning word
embeddings by maximizing raw-text probability, which
does not perfectly capture both similarity and related-
ness [18].
As indicated by previous studies [18–21], incorporat-

ing two or more knowledge sources (e.g. thesaurus,
ontology, and corpus) into word embedding approaches
can produce better results for ranking the results for
relationships between two entities. The present paper
was motivated by the concept of utilizing knowledge
sources for enriching word embeddings. To our best
knowledge, no attempt has previously been made to
combine word embedding based on multiple knowledge
resources with co-occurrence of entity pairs, while
classifying the type of relation by reflecting contextual
information in biomedical literature. Moreover, there is
no previous study that considers both direct and indirect
relationships of entity pairs when calculating co-
occurrence of entity pairs.
Therefore, in this study, we propose a hybrid semantic

relatedness algorithm for biological knowledge discovery.
Our proposed method combines co-occurrence between
entities with specialized word embeddings [18] to calcu-
late the semantic similarity of two entities by capturing
both similarity and relatedness for semantic words,
learning from both a corpus and a thesaurus. In the
proposed method, we also consider both direct and
indirect scores for each entity pair so as to find a more
complex relationship considering not only explicit but
also hidden relationships. We select Alzheimer’s disease
(AD) as a case study for analysis and evaluation. Alzhei-
mer’s disease is a degenerative brain disorder, whose
cause is hard to diagnose accurately. As the number of
AD patients has increased, researchers have striven by
means of medical experiments and literature analysis to
understand the disease’s pathophysiology so as to improve
its diagnosis and treatment. For entity extraction, we used
two approaches, PKDE4J [22] and SemRep [23]. PKDE4J
is an integrated system designed to extract entity and rela-
tion from unstructured biomedical text corpora, whereas
SemRep, a UMLS-based entity and relation extraction ap-
plication, can identify semantic relationships in biomedical
literatures. To evaluate the performance of the proposed
method, we compared it with several well-accepted tech-
niques, namely co-occurrence, Word2Vec [17], COALS
(Correlated Occurrence Analog to Lexical Semantics)
[24], and random indexing (RI) [25]. In addition, to

evaluate the usefulness of the proposed method for other
types of knowledge discovery, we conducted the following
analyses 1) pathways analysis on the Reactome Pathway
database [26] and 2) gene–phenotype relationships ana-
lysis on OMIM (Online Mendelian Inheritance in Man)
[27]. Overall, the proposed method is able to identify more
related genes for pathways than the other methods by dif-
ferentiating rankings for each gene. The proposed method
also finds genes like APOE, which is strongly associated
with familial early-onset AD and coronary heart disease
[28], through analyses of AD-related genes and the gene–
phenotype relationship.

Methods
The present study comprises four steps: data collection,
entity relation extraction, semantic relatedness scoring
calculation, and evaluation. For semantic relatedness
scoring, we consider both direct and indirect connection;
in terms of evaluation, we employ four kinds of analyses,
namely algorithm comparison, AD related–gene analysis,
pathway analysis, and gene–phenotype relation analysis.
Figure 1 illustrates the overall design of this study. A
detailed description of the proposed approach is pro-
vided in subsequent sections.

Data collection
Using ‘Alzheimer disease’ or ‘Alzheimer’s disease’ as search
terms, we retrieved 118,167 abstracts from PubMed, a
search engine indexing more than 29 million citations for
biomedical literature from MEDLINE. The exact query for-
mulation is “Alzheimer disease [Title/Abstract] OR Alzhei-
mer’s disease [Title/Abstract]”.
We did not limit publication by year, so as to get as

much data as possible for our analysis. Figure 2 shows
the distribution of the number of papers by publication
year from 1990 to January 2019.

Entity relation extraction
For PKDE4J [22], the algorithm used for entity relation
extraction can identify the verb located between the two
entities in a sentence and capture relational characteris-
tics. In order to decrease unnecessary indirect connec-
tions, we selected entity by type. Since we focus on
Alzheimer’s disease, we limited the entity type to gene,
drug, and disease. Thus, for entity extraction, we used
the following dictionaries: drug dictionaries, the gene
dictionary collects from UniProt [29], MeSH (Medical
Subject Headings) for disease [30], KEGG (Kyoto
Encyclopedia of Genes and Genomes) for genetics [31],
and DrugBank for medications [32]. We used the same
data collection as the input for SemRep. As output, we
extracted 969,341 entity relations using PKDE4J and
630,054 entity relations using SemRep [23].
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Fig. 1 Overview of the proposed approach

Fig. 2 Number of papers by publication year
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Semantic relatedness scoring calculation
We considered both direct and indirect scoring for each
entity pair. For the direct score, after we extracted the
relations of an entity pair, we looked at the same entity
pairs with different relation types appearing in one
abstract. An example is shown below: the first column is
the PMID (PubMed unique identifier), the second
column is sentence location in that abstract, and the last
column is entity relations:
pmid | sentence location | entity1 | type | entity2 |

type| relations.
19,395,124 | 8 | MCI | DISEASE | depression | DIS-

EASE | CO-OCCUR |.
19,395,124 | 17 | MCI | DISEASE | depression | DIS-

EASE | RESULT_OF |.
Next, we considered only the co-occurrence frequency

of entity pairs. There are two different kinds of direct
relations: 1) co-occurrence of an entity pair in one ab-
stract with frequency greater than one as noted as ‘sum_
same’ in Tables 1 and 2) one-time co-occurrence of an
entity pair in one abstract as noted as ‘sum_different’ in
Table 1. If an entity pair only co-occurs once in an
abstract, the co-occurrence number is the same as the
number of abstracts. Biomedical literatures, like any
other literatures, have skewed distribution. In other

words, much research tends to follow popular diseases,
drugs, and genes. Due to this tendency, it is hard to
identify a new relation by the co-occurrence method.
Thus, we aim to find less visible information from bio-
logical texts. If two-entity pairs co-occur in several
abstracts, it indicates these relations are more popular
and we can infer they are well-known entity pairs. We
give them a low weight, while assigning entity pairs
found in the same abstract a higher weight. Table 1
represents pseudocode for our algorithm.
Therefore, the direct score can be calculated as For-

mula (1):

Ydirect ¼ S A;Cð Þ� 2αþ βð Þ ð1Þ

where S (A, C) is a semantic relatedness score between
entity A and entity C. The semantic relatedness score is
the cosine similarity calculated by corpus- and
thesaurus-trained word embedding, per Kiela et al. [18].
In their method, Kiela et al. use additional contexts
(such as a thesaurus) to supplement the Skip-Gram. For
each target word, they modify the object to include an
additional context, so that each word is sampled uni-
formly from the set of additional contexts. In this case,
the corpus consists of AD-related articles collected from

Table 1 Pseudocode for our algorithm.
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PubMed, while our thesaurus is derived from
PharmGKB’s Variant, Gene and Drug Relationship Data
[33] and a gene synonym thesaurus from UniProt [29]
used to construct a word embedding model for bio-
logical relations.
We denote by α the frequency of entity pairs that co-

occur in one abstract more than once, while β is the
frequency of entity pairs that co-occur in one abstract
only once.
Table 2 shows the direct score of the (Alzheimer’s dis-

ease, APP) entity pair, where APP (for amyloid precursor
protein) an Alzheimer’s-related gene.
Next, we consider the indirect score for each co-

occurrence (Entity A, Entity C). This time we need to
calculate the semantic relatedness score of each indirect
entity pair using Formula (2), with the indirect semantic
relatedness for each intermediate entity B defined as a
weighted average of the direct semantic relatedness
scores:

Sindirect A;Cð Þ ¼ S A;Bð Þ�aþ S B;Cð Þ�b
� �

= aþ bð Þ ð2Þ

where a and b are the co-occurrence frequencies be-
tween entities A and B and between entities B and C,
respectively.
Then we calculate the indirect averaged semantic

relatedness score over all possible intermediates B for
the entity pair. We used indirect averaged similarity
multiplied by the links count (a + b) for each indirect
link path score X.
As shown in Table 3, the entity pair of Alzheimer’s

disease and APP has 1834 “B” entities which are inter-
mediate for them. Note that, for convenience, we only
show five indirect link paths in Table 3. For example, if
we apply the proposed method to (Alzheimer’s disease,
BACE1), they co-occur 692 times (the a value), whereas
(BACE1, APP) co-occurs 1294 times (the b value).
Then we accumulate the score of all indirect link paths

of two entities as the indirect score, using Formula (3):

Y indirect ¼
Xn

i¼1
Xi

¼
Xn

i¼1
1=2 S A;Bið Þ�a A;Bið Þ þ S Bi;Cð Þ�b Bi;Cð Þ

� �

ð3Þ

where n is the number of indirect paths or the number
of intermediate entities, Bi is the intermediate entity,
SðA;BiÞ is the semantic relatedness score between entities
A and Bi, and SðBi;CÞ is the semantic relatedness score be-
tween entities Bi and C; aðA;BiÞ is the co-occurrence fre-
quency between A and Bi, while bðBi;CÞ is the co-
occurrence frequency between Bi and C.
Finally, we sum the direct score Ydirect and indirect

score Yindirect together as a semantic relatedness score
for each entity pair (Formula (4)):

Y ¼ Ydirect formula 1ð Þ þ Yindirect formula 3ð Þ ð4Þ

where Ydirect and Yindirect are calculated using Formulas
(1) and (3), respectively.

Results and discussion
To measure the performance of the proposed method,
we compared it on the top 20 entity pairs with co-
occurrence, Word2Vec similarity, COALS, and random
indexing. Rohde et al. [24] proposed a model of semantic
relatedness based on lexical co-occurrence, known as
COALS. COALS is a vector space method for deriving
word meanings from large corpora. First, co-occurrence
counts are gathered. Next, common words are selected
to create a co-occurrence matrix with word pair correla-
tions converted to counts, setting negative values to 0
and taking square roots of positive values. After that,
they summed the correlation of each word line in the
matrix as the semantic similarity. Sahlgren [25] intro-
duced a random indexing word space approach. Random
indexing achieves high processing efficiency by only
requiring a small amount of calculation. It uses context
information to express the word vector of the characteristic

Table 2 Alzheimer’s disease–APP direct entity pairs

Entity(A) Entity(C) Direct Frequency pmid_same pmid_different relatedness Direct score (Ydirect)

Alzheimer’s disease APP 5126 4123 1003 0.427029 3949.592

Table 3 Indirect entity pairs scores

Entity A Co-occurrence
(A, B)

relatedness (A, B) Middle word B Co-occurrence
(B, C)

Relatedness (B, C) Entity C Score X

Alzheimer’s disease 1750 0.434575 PSEN1 1562 0.712967 APP 1874.1596

Alzheimer’s disease 692 0.398862 BACE1 1294 0.774334 APP 1278.0003

Alzheimer’s disease 3470 0.546675 amyloid beta 652 0.706621 APP 2357.6781

Alzheimer’s disease 471 0.449012 PSEN2 648 0.703564 APP 667.3944

Alzheimer’s disease 5107 0.464037 tau 526 0.628522 APP 2700.4406

Heo et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 5):240 Page 5 of 15



word. However, the randomness of the vector elements (−
1, + 1, 0) may lead to additive subtraction in the calculation
of feature word context vectors, with a resulting loss of
potential semantic information. For comparison with the
proposed method, we used COALS and random indexing
to calculate semantic relatedness scores for each entity pair.
We analyzed the relation results between AD and

genes by five methods: the proposed method, co-
occurrence, Word2Vec [17], COALS [24], and random
indexing [25]. In addition, we conducted pathway ana-
lysis and gene–phenotype relationship analysis to exam-
ine whether the proposed approach can be applied for
other types of biological knowledge discovery.

Top 20 entity pairs analysis
We calculated co-occurrence between entities extracted
by PKDE4J. Table 4 shows the top 20 entities relating to
Alzheimer’s disease by our proposed method. We used a
min-max normalization method to generate each rank-
ing score.
From Table 4, we can see that Tau (No. 1), CSF (No.

5), APOE (No. 7), and MRI (No. 20) have high semantic
relatedness. In order to show the difference clearly we
list the top 20 Alzheimer’s disease-related entities by
each method in Table 5.

As shown in Table 5, we can see that for Tau (No. 1),
CSF (No. 5), APOE (No. 7), cognitive impairment (No.
11), and MRI (No. 20) the proposed method achieves a
higher ranking than other methods. Specifically, among
the top 20 entities lists, MRI (magnetic resonance
imaging) only appears in our proposed method. This is
attributed to the fact that these entities are either core
proteins, genes related to AD, or diagnostic methods for
AD, all of which may have many intermediate entities
helping them link with AD so that they tend to gain a
higher semantic relatedness score. Tau protein is a
microtubule-associated protein (MAP) involved in
microtubule stabilization. It is also a multifunctional
protein that plays a key role in certain neurodegenerative
diseases such as AD [34]. AD and Tau have 3568 co-oc-
currences in our dataset, with 236 different intermediate
entities to help them link together. For CSF (cerebro-
spinal fluid), there is strong evidence that special CSF
tests may be helpful in diagnosis. AD and CSF have
1968 co-occurrences, with 288 different intermediate en-
tities. APOE gene polymorphism is closely related to
AD, coronary heart disease, hyperlipidemia, cerebral in-
farction, and other diseases. Through the detection of
APOE gene type, the incidence probability of senile
dementia, cardiovascular and cerebrovascular diseases,
and other diseases can be predicted at an early stage, to

Table 4 Alzheimer’s disease top 20 related entity scores (PKDE4J)

No Entity A Entity C Proposed Co-occurrence Word2Vec COALS Random
indexing

1 Alzheimer’s disease TAU 1 0.6181 0.607 0.6424 0.6188

2 Alzheimer’s disease MCI 0.99 1 0.7571 0.1408 0.084

3 Alzheimer’s disease Memory 0.9873 0.5843 0.6139 0.6618 0.6395

4 Alzheimer’s disease Parkinson’s disease 0.935 0.5004 0.8704 1 1

5 Alzheimer’s disease CSF 0.9072 0.4738 0.5717 0.1133 0.0547

6 Alzheimer’s disease APP 0.9062 0.6204 0.5685 0.3317 0.2876

7 Alzheimer’s disease APOE 0.8879 0.4328 0.606 0.1214 0.0633

8 Alzheimer’s disease Neurodegenerative diseases 0.8689 0.4348 0.7678 0.11 0.0512

9 Alzheimer’s disease Impairment 0.8035 0.1258 0.7224 0.9951 0.9948

10 Alzheimer’s disease Amyloid beta 0.8024 0.4199 0.615 0.0777 0.0661

11 Alzheimer’s disease Cognitive impairment 0.8002 0.1237 0.7617 0.1019 0.0426

12 Alzheimer’s disease Neurodegeneration 0.7984 0.1464 0.7375 0.233 0.1823

13 Alzheimer’s disease Neurodegenerative disorders 0.7863 0.2935 0.767 0.1521 0.0961

14 Alzheimer’s disease Depression 0.7827 0.241 0.6844 0.4013 0.3617

15 Alzheimer’s disease Oxidative stress 0.782 0.2512 0.6038 0.1084 0.0495

16 Alzheimer’s disease Hippocampus 0.7794 0.0856 0.6091 0.1553 0.0995

17 Alzheimer’s disease Vascular dementia 0.7683 0.3273 0.7796 0.6845 0.6636

18 Alzheimer’s disease Patients 0.7589 0.016 0.9726 0.1235 0.0661

19 Alzheimer’s disease Neurofibrillary tangles 0.7448 0.3975 0.6191 0.1553 0.0995

20 Alzheimer’s disease MRI 0.7405 0.1315 0.5843 0.1472 0.0909

Heo et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 5):240 Page 6 of 15



achieve early detection and intervention and to maximize
a patient’s survival period. Studies have found that APOE
is closely related to the incidence of AD, and the E4 allele
of APOE is a high-risk factor for AD, especially in female
patients [24]. AD and APOE entity pairs have 1401 inter-
mediate entities to link them together.
While some entities rank higher by other methods,

senile plaques only show in the co-occurrence top 20
results. The top Word2Vec results are all phrases contain-
ing “Alzheimer’s disease.” Regarding COALS and random
indexing methods, the COALS-ranked terms Hunting-
ton’s disease (No. 10), diabetes (No. 12), schizophrenia
(No. 13), and stroke (No. 14) only appear in these two
rankings. COALS and RI seem to have better perform-
ance, yet their calculation principles allow the top 20 en-
tities to have almost identical semantic relatedness scores;
thus, it is hard to use COALS and RI to rank the entities.
We also examined the top 50 entities by each method,

omitted here due to space limitations; the results are
publicly available at http://informatics.yonsei.ac.kr/se-
mantics/Top_50_entity_pair_result.xlsx.
For the top 20 entities, the APOE gene is 7th by our

method. However, the APOE gene is not shown by
COALS, Word2Vec, or random indexing in the top 20
ranking list. For the top 50 entities, dementia with Lewy
bodies and FTD (frontotemporal dementia) are ranked
high only by our proposed method. Alzheimer's disease,

vascular dementia, and Lewy body dementia are seen as
the top three most common causes of dementia. How-
ever, memantine (a drug) is shown by co-occurrence only.
Multiple sclerosis (MS; a disease) only appears through
COALS and random indexing.
Regarding the SemRep results, since we did not select

the entity type, there are many words in common in the
top 20 and top 50 lists. For example, as shown in Table 6,
brain (No. 3), Alzheimer’s disease can affect memory in the
patient’s brain; these entity pairs are already well known.
As shown in Table 7, APP gene (No. 11), Apolipopro-

tein E (No. 14), and Parkinson’s disease (No. 15) have a
higher score by the proposed method than by the other
methods, due to intermediate entities. The top 20 en-
tities in the Word2Vec ranking are all disease-related
entities. However, there are many drug names that only
appear in random indexing methods, such as donepezil
(No. 6) and rivastigmine (No. 17).

Alzheimer’s disease-related gene analysis
For the PKDE4J results, we identified 8696 entities which
co-occur with Alzheimer’s disease. For evaluation, we
collected the related genes for Alzheimer’s from KEGG
and calculated the ranking of each rated gene using co-
occurrence frequency, our ranking method, and Word2-
Vec [17], COALS [24], and random indexing [25]. Figure 3
shows the Alzheimer’s disease-related gene ranking in

Table 5 Top 20 Alzheimer’s disease–related entities by each method (PKDE4J)

Entity A Proposed

Alzheimer’s
disease

[1] TAU [2] MCI [3] Memory [4] Parkinson’s disease [5] CSF [6] APP
[7] APOE [8] Neurodegenerative diseases [9] Impairment [10] Amyloid beta
[11] Cognitive impairment [12] Neurodegeneration [13] Neurodegenerative disorders [14] Depression [15] Oxidative stress [16]
Hippocampus
[17] Vascular dementia [18] Patients [19] Neurofibrillary tangles [20] MRI

Entity A Co-occurrence

Alzheimer’s
disease

[1] MCI [2] APP [3] TAU [4] Memory [5] Parkinson’s disease [6] CSF
[7] Neurodegenerative diseases [8] APOE [9] Amyloid beta [10] Neurofibrillary tangles [11] Vascular dementia [12]
Neurodegenerative disorders [13] Senile plaques [14] Oxidative stress [15] Neurodegenerative disorder [16] Depression [17] PD [18]
PSEN1 [19] Amyloid plaques [20] Neurodegenerative disease

Entity A Word2Vec

Alzheimer’s
disease

[1] Asymptomatic Alzheimer’s disease [2] Alzheimer’s disease pathophysiology [3] Alzheimer’s disease neuropathology [4] Sporadic
Alzheimer’s disease [5] Alzheimer’s disease patients [6] Early Alzheimer’s disease [7] Depression in Alzheimer’s disease [8] Late-onset
Alzheimer’s disease [9] Incipient Alzheimer’s disease [10] Sporadic Alzheimer’s disease patients [11] Asymptomatic Alzheimer’s dis-
ease [12] Preclinical Alzheimer’s disease [13] Alzheimer’s disease dementia [14] Prodromal Alzheimer’s disease [15] Severe Alzhei-
mer’s disease [16] Typical Alzheimer’s disease [17] Mild Alzheimer’s disease [18] Alzheimer’s disease with diabetes [19] Presenile
Alzheimer’s disease [20] Familial Alzheimer’s disease

Entity A COALS

Alzheimer’s
disease

[1] Parkinson’s disease [2] Impairment [3] Vascular dementia [4] Memory [5]TAU [6] Neuronal [7] Increased [8] Dementias [9] Mild
cognitive impairment [10] Huntington’s disease [11] Depression [12] Diabetes [13] Schizophrenia [14] Stroke [15] APP [16]
Accumulation [17] Cancer [18] Down syndrome [19] Neurodegeneration [20] Caregivers

Entity A Random indexing

Alzheimer’s
disease

[1] Parkinson’s disease [2] Memory [3] TAU [4] Neuronal [5] Increased [6] Dementias [7] Mild cognitive impairment [8] Impairment
[9] Vascular dementia [10] Biomarkers
[11] Huntington’s disease [12] Depression [13] Diabetes [14] Schizophrenia [15] Stroke [16] APP [17] Accumulation [18] Cancer [19]
Downs syndrome [20] Neurodegeneration
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Table 6 Alzheimer disease top 20 related entity scores (SemRep)

No Entity A Entity C Ranking score Co-occurrence Word2Vec COALS Random indexing

1 Alzheimer’s disease Patients 1 1 0.5444 0.0413 0.0206

2 Alzheimer’s disease Disease 0.9065 0.1167 0.98 0.8615 0.8585

3 Alzheimer’s disease Brain 0.5989 0.023 0.6085 0.1052 0.0859

4 Alzheimer’s disease Dementia 0.5902 0.1187 0.733 0.6591 0.6518

5 Alzheimer’s disease Impaired cognition 0.5013 0.0637 0.6737 0.0413 0.0206

6 Alzheimer’s disease Therapeutic procedure 0.4828 0.0512 0.6606 0.0413 0.0206

7 Alzheimer’s disease Neurodegenerative disorders 0.4371 0.0444 0.7707 0.0413 0.0206

8 Alzheimer’s disease Persons 0.408 0.0879 0.6314 0.0413 0.0206

9 Alzheimer’s disease Amyloid 0.4018 0.0357 0.6118 0.1159 0.0968

10 Alzheimer’s disease Pharmaceutical preparations 0.394 0.03 0.7011 0.0413 0.0206

11 Alzheimer’s disease APP gene 0.3845 0.0098 0.5346 0.0413 0.0206

12 Alzheimer’s disease Amyloid beta-protein precursor 0.3751 0.0211 0.3492 0.0413 0.0206

13 Alzheimer’s disease Functional disorder 0.3746 0.0354 0.7702 0.0413 0.0206

14 Alzheimer’s disease Apolipoprotein E 0.3707 0.0292 0.5656 0.052 0.0315

15 Alzheimer’s disease Parkinson’s disease 0.3702 0.0052 0.9802 0.0413 0.0206

16 Alzheimer’s disease Population group 0.3692 0.0464 0.629 0.0413 0.0206

17 Alzheimer’s disease Pathogenesis 0.3685 0.0405 0.7519 0.0413 0.0206

18 Alzheimer’s disease Dementia, vascular 0.3552 0.0095 0.7878 0.6494 0.5067

19 Alzheimer’s disease Nerve Degeneration 0.3546 0.0282 0.712 0.0413 0.0206

20 Alzheimer’s disease Entire hippocampus 0.3541 0.0038 0.5782 0.0413 0.0206

Table 7 Top 20 Alzheimer’s disease–related entities by each method (SemRep)

Entity A Proposed

Alzheimer’s
disease

[1] Patients [2] Disease [3] Brain [4] Dementia [5] Impaired cognition [6] Therapeutic procedure [7] Neurodegenerative disorders [8]
Persons [9] Amyloid [10] Pharmaceutical preparations [11] APP gene [12] Amyloid beta-protein precursor [13] Functional disorder
[14] Apolipoprotein E [15] Parkinson’s disease [16] Population group [17] Pathogenesis [18] Dementia, vascular [19] Nerve degener-
ation [20] Entire hippocampus

Entity A Co-occurrence

Alzheimer’s
disease

[1] Patients [2] Dementia [3] Disease [4] Persons [5] Individual [6] Impaired cognition [7] Therapeutic procedure [8] Population
group [9] Neurodegenerative disorders [10] Elderly [11] Pathogenesis [12] Amyloid [13] Senile plaques [14] Functional disorder [15]
Pharmaceutical preparations [16] Apolipoprotein E [17] Nerve degeneration [18] Brain [19] Participant [20] Woman

Entity A Word2Vec

Alzheimer’s
disease

[1] Tangier disease [2] Lyme disease [3] Binswanger disease [4] Parkinson’s disease [5] Disease [6] Huntington’s disease [7]
Autosomal recessive juvenile Parkinson’s disease [8] Disease progression [9] Alzheimer’s disease, late onset [10] Alzheimer’s disease,
early onset
[11] Familial Alzheimer’s disease [12] Progressive disease
[13] Alzheimer’s disease assessment scale [14] Genetic predisposition to disease [15] Chronic disease [16] Pick disease of the brain
[17] Disease model
[18] Chronic obstructive airway disease [19] Psychic disease [20] Motor neurone disease

Entity A COALS

Alzheimer’s
disease

[1] Response [2] Patients [3] Impaired cognition [4] Therapeutic procedure [5] Neurodegenerative disorders [6] Persons [7]
Pharmaceutical preparations [8] APP gene [9] Amyloid beta-protein precursor [10] Functional disorder [11] Parkinson’s disease [12]
Population group [13] Pathogenesis [14] Nerve degeneration [15] Entire hippocampus [16] Memory impairment [17] Senile plaques
[18] Proteins [19] Nervous system disorder [20] Genes

Entity A Random indexing

Alzheimer’s
disease

[1] Response [2] Inhibitors [3] Cohort [4] Tomography [5] Disease [6] Donepezil [7] Neuroimaging [8] Receptor [9] Dementia [10]
Dementia, vascular [11] Presenilin [12] Network [13] Presenilin-1 [14] Follow-up [15] Sex [16] DNA [17] Rivastigmine [18] Investiga-
tion [19] Density [20] Hyperphosphorylation
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each ranking list. The horizontal axis shows the gene
name, while the vertical axis shows the ranking of each
entity.
Since the vertical axis shows the ranking for each

gene, a small number means the ranking is high.
With Word2Vec, gene rankings are always lower than
for other methods; the COALS and random indexing
methods have similar gene rankings. For COX1 and
PSENEN genes, our method shows a higher ranking
than the others. For the (AD, COX1) entity pair, the
number of co-occurrences is only 6 in our database.
However, there are 72 different intermediate entities
to help them link together. For the (AD, PSENEN)
entity pair, the number of co-occurrences is only 3 in
our dataset with 12 intermediate entities (so there are
12 indirect paths).
We summarize the results of the gene analysis shown

in Fig. 3 in Table 8. At first sight, our proposed method
seems not much different from co-occurrence, COALS,
and random indexing, but these methods share the
weakness that many entities have the same score. Thus,
it is hard to interpret these entities’ rankings effectively.
In the PKDE4J result, with 19 AD-related genes, we

found 8696 entities co-occurring with AD. To analyze
how many AD-related genes occur in the top 20% of
(top 1740 ranked) entities, we calculated precision,
recall, and F-measure for each method. As shown in
Table 9, our proposed method achieved the joint highest
F-measure of 65.94% together with the co-occurrence
method.

Pathway analysis
In bioinformatics research involving an intricate network
of interactions, pathways analysis is often quite useful.
Pathways can help to explain gene function in the con-
text of biological processes.
We applied the proposed method, co-occurrence,

COALS [24], and Word2Vec [17] to select the top 20
genes in each ranking list, and used Reactome to do
pathway analysis; Fig. 4 shows a genome-wide overview
for each method.
Figure 4 shows that a series of genes are involved in

pathways. The yellow marks are pathways that at least
have one of the genes in our gene list. Pathways in Reac-
tome are arranged in a hierarchy, the center of each

Fig. 3 Alzheimer’s disease–related gene ranking (PKDE4J)

Table 8 Comparison of Alzheimer’s disease–related gene
ranking (PKDE4J)

Pair rank Co-
occurrence

COALS Random
indexing

Word2Vec Proposed

1–10 1 0 0 0 1

11–100 2 2 2 0 1

101–500 4 1 1 0 5

501–
2000

6 6 6 1 5

2000–
3999

2 5 5 6 4

4000–
5999

3 2 2 7 2

6000–
9000

1 1 1 5 1
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cluster being the root of one top-level pathway. Each
step away from the center represents the next level
lower in the pathway hierarchy.
In this genome-wide overview, Word2Vec has fewer

pathways than the other methods. In the developmental
biology cluster, only the proposed method and COALS
have related pathways. However, in the hemostasis clus-
ter, only COALS has genes which can be mapped to
pathways. In addition, in the signal transduction and
immune system clusters, our proposed method has path-
ways from the root or top-level pathway, and also has a

Table 9 Quantitative evaluation in PKDE4J

Method name Precision*102 Recall F-Measure

Proposed 68,97% 63.16% 65.94%

Word2Vec 5.74% 5.26% 5.30%

Co-occurrence 68,97% 63.16% 65.94%

COALS 51.72% 47.37% 49.45%

RI 45.98% 42.10% 43.95%

Fig. 4 Genome-wide overview
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pathway which connects the signal transduction cluster
to the metabolism cluster.
The top 20 gene list genome-wide overview shows that

from the pathway perspective, our proposed method has
better performance for genes identified in (functional)
cross clustering and higher-level pathways.
We now analyze these pathways in detail. Table 10

shows the top five most significant pathways by p-value
in each gene list [26]. “Entities” are the input genes. “Re-
actions” can be regarded as the ‘steps’ of pathways: any
biological event that changes the state of a biological
molecule. “Entities found” is the number of common
entities between the submitted data set and the pathway.
“Entities ratio” is the proportion of pathway molecules
represented by this pathway. “p-value” is the result of
statistical testing for over-representation of entities. “Re-
actions found” counts pathways with at least one mol-
ecule in the submitted data set represented. “Reactions

ratio” is the proportion of all reactions represented by
reactions from this pathway.
We can see that our proposed method has a higher

probability that many entities are found in the same
pathways. For example, “Signaling by interleukins” has 7
genes (input gene is 20). However, the gene list selected
by Word2Vec has greater dispersion. This may imply
that if a disease-related gene is over-represented in the
same pathway, then other genes in that pathway may
have an impact on the disease.
Table 11 shows the gene rankings by five methods for

the top 10 gene rankings by number of pathways.
We summarize the results as shown in Table 11 as

Table 12. Our proposed method has clear advantages in
selecting genes that can act through more pathways.
Genes in the same pathway may have proximate gene
expression. Gene expression provides a fundamental
basis for genotype to trigger phenotype. Our analysis

Table 10 Top five important pathways sorted by p-value for each gene list

Proposed

Pathway name Entities Reactions

found ratio p-value FDR* found ratio

Nuclear signaling by ERBB4 3 / 35 0.002 5.37e-05 0.012 3 / 22 0.002

Signaling by interleukins 7 / 640 0.046 2.60e-04 0.019 6 / 491 0.041

MECP2 regulates transcription of neuronal ligands 3 / 61 0.004 2.74e-04 0.019 3 / 37 0.003

Signaling by receptor tyrosine kinases 2 / 13 9.25e-04 3.41e-04 0.019 2 / 8 6.68e-04

NRIF signals cell death from the nucleus 6 / 521 0.037 5.89e-04 0.023 71 / 633 0.053

Co-occurrence

MECP2 regulates transcription of neuronal ligands 2 / 13 9.25e-04 3.18e-04 0.036 2 / 8 6.68e-04

RUNX1 and FOXP3 control the development of
regulatory T lymphocytes (Tregs)

2 / 17 0.001 5.41e-04 0.036 2 / 20 0.002

NRIF signals cell death from the nucleus 2 / 18 0.001 6.06e-04 0.036 4 / 7 5.84e-04

Amyloid fiber formation 3 / 88 0.006 7.15e-04 0.036 16 / 33 0.003

Neurodegenerative diseases 2 / 30 0.002 0.002 0.056 2 / 22 0.002

COALS

Plasma lipoprotein assembly 3 / 30 0.002 4.18e-05 0.01 8 / 19 0.002

MECP2 regulates transcription of neuronal ligands 2 / 13 9.25e-04 3.91e-04 0.042 2 / 8 6.68e-04

HDL assembly 2 / 18 0.001 7.44e-04 0.042 7 / 9 7.51e-04

NRIF signals cell death from the nucleus 2 / 18 0.001 7.44e-04 0.042 4 / 7 5.84e-04

Amyloid fiber formation 3 / 88 0.006 9.67e-04 0.044 16 / 33 0.003

Word2Vec

Transfer of LPS from LBP carrier to CD14 1 / 3 2.13e-04 0.005 0.075 2 / 2 1.67e-04

NTF3 activates NTRK2 (TRKB) signaling 1 / 4 2.85e-04 0.006 0.075 3 / 3 2.50e-04

NTF4 activates NTRK2 (TRKB) signaling 1 / 4 2.85e-04 0.006 0.075 3 / 3 2.50e-04

BDNF activates NTRK2 (TRKB) signaling 1 / 4 2.85e-04 0.006 0.075 3 / 3 2.50e-04

Defective GSS causes glutathione synthetase
deficiency (GSS deficiency)

1 / 4 2.85e-04 0.006 0.075 1 / 1 8.34e-05

* False Discovery Rate
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seems to imply that similar gene expressions may have a
homogeneous impact on gene–phenotype association.
These genes with similar phenotype associations tend to
have a higher chance of co-occurrence in the biological
literature. Since our method also considers indirect
relations, which can help to link these co-occurrences,
the genes which participate in many pathways get higher
scores by our method.

Gene–phenotype relationship analysis
Phenotype is the result of comprehensive regulation of
molecular events at all levels. Different genotypes can
produce the same phenotype, while the same genotype
can produce different phenotypes, which makes the sci-
entific problem of genetic regulation from genotype to
phenotype highly complex. Therefore, studying the

genotype-to-phenotype aspect of genetic regulation is of
critical scientific significance, particularly as the bio-
logical literature continues to grow exponentially. Genes
with the same phenotype are more likely to be researched
in one paper, which increases the possibilities for co-
occurrence. Our proposed method considers both direct
and indirect relations and semantic relatedness for entity
pairs, which makes it easier to find genes controlling the
same phenotype; this kind of knowledge discovery can
help biologists to find new regulatory pathways and mech-
anisms. Moreover, summarizing the genetic “rules” of
disease allows targeting to improve prevention, treatment,
and comprehensive measures to reduce morbidity.
For example, the presence of the APOE4 allele is

strongly associated with the onset of early-onset familial
Alzheimer’s disease. The APOE4 allele is also an import-
ant gene for coronary artery disease; in other words,
APOE4 has an impact on two phenotypes. Therefore,
Alzheimer’s disease and coronary artery disease may
share some relations.
Table 13 shows the indirect score for Alzheimer’s

disease and coronary artery disease entity pairs by our
proposed method. We show the top 20 results by co-
occurrence between intermediate entity B and entity C.

Table 11 Gene rankings for each method, ordered by pathway number

Extraction Ranking Numbers

Gene Proposed Co-occurrence Word2Vec COALS Random Indexing Pathway

PKDE4J *TNF 361 742 4876 548 851 57

*EGFR 1468 2063 5550 2391 3381 43

*GSK3B 990 1374 2341 2119 2349 39

*CREB1 6298 8240 6792 6468 7460 39

IL1B 2401 1292 3451 3043 3733 37

*SRC 3854 8230 3984 4257 5257 36

*ATF4 2890 6965 4204 3430 4538 32

MYC 6531 4909 4957 6688 6578 32

*IGF1 446 463 3410 1940 2040 30

IGF1R 1868 1397 3697 519 1119 29

SemRep MAP 2 K1 3466 3462 3433 1.5 1.2 80

PRKACB 3952 2131 3444 1.5 1.2 67

*MAPK8 253 1004 3410 1.5 1.2 59

*TNF 731 3564 2460 1.5 1.2 57

JUN 2428 1804 2799 1.5 1.2 49

*TP53 399 724 2492 1.5 1.2 48

*IL6 925 1012 2816 1.5 1.2 43

EGFR 3201 3032 2497 1.5 1.2 43

*BAX 2099 3643 2780 1.5 1.2 41

IL1B 2264 1910 2246 1.5 1.2 37

The genes with the asterisk (*) symbol indicate that our method generates better ranking than the other methods do

Table 12 Top 10 genes ordered by pathway number

System Co-
occurrence

COALS Random
indexing

Word2Vec Proposed

PKDE4J 3 0 0 0 7

SemRep 3 – – 2 5
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APOE has high co-occurrence with these two diseases,
implying that our method can be used to find the related
genes for a given phenotype.
We collect the phenotypes of Alzheimer’s disease co-

occurrence genes from the OMIM database, ranking by
number of common-phenotype genes. Table 14 shows
an example. The second column is the co-occurrence
gene. The last column is the number of genes.
In Table 15, we compare the top 10 gene rankings,

ranked by number of common phenotype genes, and
can clearly see that our proposed method has obvious
advantages.

Conclusion
With the growth in biomedical literature, how to identify
meaningful information effectively from this literature
becomes a crucial question. In this paper, we pro-
posed a new semantic relatedness scoring algorithm
for entity pairs by incorporating co-occurrence with
consideration of both direct and indirect relations via
specialized word embeddings. In addition, we used
corpus and thesaurus to train word embeddings in
order to calculate the semantic relatedness of each
entity pair for ranking. We conducted evaluation in
four ways:

Table 13 Indirect relations for Alzheimer’s disease and coronary artery disease

Entity A Co-occurrences of (A,
B)

Relatedness Intermediate entity B Co-occurrences of (B,
C)

Relatedness Entity C

Alzheimers
disease

1128 0.65167 Diabetes 14 0.75549 Coronary artery
disease

Alzheimers
disease

409 0.61262 Hypertension 13 0.78521 Coronary artery
disease

Alzheimers
disease

687 0.46660 Cholesterol 10 0.54389 Coronary artery
disease

Alzheimers
disease

1789 0.49688 APOE 9 0.55493 Coronary artery
disease

Alzheimers
disease

452 0.68793 Atherosclerosis 7 0.81259 Coronary artery
disease

Alzheimers
disease

437 0.65669 Type 2 diabetes 7 0.74681 Coronary artery
disease

Alzheimers
disease

1166 0.73817 Schizophrenia 6 0.66643 Coronary artery
disease

Alzheimers
disease

408 0.66002 Diabetes mellitus 6 0.75417 Coronary artery
disease

Alzheimers
disease

28 0.64372 Atrial fibrillation 6 0.70951 Coronary artery
disease

Alzheimers
disease

147 0.69426 Bipolar disorder 4 0.66286 Coronary artery
disease

Alzheimers
disease

49 0.66373 Heart failure 4 0.78867 Coronary artery
disease

Alzheimers
disease

27 0.52386 PON1 4 0.59528 Coronary artery
disease

Alzheimers
disease

4135 0.97112 Parkinson’s disease 3 0.84996 Coronary artery
disease

Alzheimers
disease

1992 0.58868 Depression 3 0.55049 Coronary artery
disease

Alzheimers
disease

357 0.63473 Obesity 3 0.72262 Coronary artery
disease

Alzheimers
disease

221 0.50534 APOE4 3 0.54360 Coronary artery
disease

Alzheimers
disease

165 0.73497 Osteoporosis 3 0.75669 Coronary artery
disease

Alzheimers
disease

58 0.64033 Genome-wide association
study

3 0.65748 Coronary artery
disease

Alzheimers
disease

4414 0.66884 Mild cognitive impairment 2 0.61373 Coronary artery
disease
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1) We analyzed the top 20 and 50 entities ranked by
our proposed method and compared them with
co-occurrence, Word2Vec, COALS, and random
indexing. The proposed method was able to select
the entities that not only highly co-occur but also
have more indirect relations for the target entity (in

this paper, we used Alzheimer’s disease). For
example, the APOE gene is top-ranked by our
method but not by the other methods.

2) We collected the Alzheimer’s disease related genes
from the KEGG database and examined them for
ranking positions generated by the five approaches.
Our method does not have a great advantage over
the others, but it does generate distinct scores for
entity pairs, whereas the other methods such as
COALS and random indexing produce the same
ranking scores, making it difficult to differentiate
the degree of association of one entity pair from
another.

3) We adopted pathway analysis for the top 20 genes
listed by four different methods. Pathways allow us
a macro perspective on the gene list. Our proposed
method achieves better performance at identifying
(functional) cross clustering as well as higher-level
pathways.

4) We also conducted gene–phenotype relationship
analysis to examine whether our method has an
advantage. We found that the APOE4 gene plays a
role in two phenotypes: Alzheimer’s disease and
coronary artery disease. The results show that an
indirect relation exists between the common gene
and these two phenotypes. This means that if
phenotypes are given, their common genotype can
be identified by our method, which helps to
uncover the genetic laws of heredity disease, and
can offer better treatments.

This study has two major limitations. First, selection
of entity type in the SemRep results was not properly
done so as to reduce unnecessary indirect relations. Due
to this, the most common entity, brain, achieves a higher
score by our ranking method, which considers indirect
relations, than by the other methods. Another major
limitation is the lack of in-depth analysis of pathway. In
a follow-up study, we plan to conduct laboratory experi-
ments on the results identified by the proposed method.
In addition, we plan to improve the quality of semantic
relatedness scores by incorporating other lexical proper-
ties and contextual information for entities buried in
biomedical literatures.
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Table 14 Gene–phenotype ranking by number of common-
phenotype genes (PKDE4J)

Entity A Entity
C
(Gene
Only)

Phenotype Phenotype-
Related
Gene

Common
Phenotype
Genes

Alzheimers
disease

CD36 Platelet glycoprotein IV
deficiency

CD36 17

Macrothrombocytopenia –

Coronary heart disease CD36

Malaria, cerebral ACKR1,
FCGR2A,
FCGR2B,
FCGR2A,
FCGR2B,
CR1, GYPC,
CISH, GYPB,
GYPA, TNF,
HBB, TIRAP,
NOS2A,
SLC4A1,
ICAM1,
G6PD,
CD36

Alzheimers
disease

IL10 Graft-versus-host disease IL10 13

HIV-1 CXCR1,
CX3CR1,
TLR3,
HLAC,
CXCL12,
IFNG, IL4R,
CCL3L1,
CCL2,
CCL11,
CCL3,
CD209,
KIR3DL1,
IL10

Rheumatoid arthritis –

Alzheimers
disease

ABCA1 HDL deficiency APOA1,
ABCA1

2

Tangier disease ABCA1

Coronary artery disease,
familial

LDLR,
ABCA1

Table 15 Top ten gene rankings, ranked by number of
common-phenotype genes

System Co-
occurrence

COALS Random
indexing

Word2Vec Proposed

PKDE4J 2 0 0 2 6

SemRep 0 – – 2 8
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