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Abstract

Background: Gender information frequently exists in the eligibility criteria of clinical trial text as essential information
for participant population recruitment. Particularly, current eligibility criteria text contains the incompleteness and
ambiguity issues in expressing transgender population, leading to difficulties or even failure of transgender population
recruitment in clinical trial studies.

Methods: A new gender model is proposed for providing comprehensive transgender requirement specification. In
addition, an automated approach is developed to extract and summarize gender requirements from unstructured text
in accordance with the gender model. This approach consists of: 1) the feature extraction module, and 2) the feature
summarization module. The first module identifies and extracts gender features using heuristic rules and automatically-
generated patterns. The second module summarizes gender requirements by relation inference.

Results: Based on 100,134 clinical trials from ClinicalTrials.gov, our approach was compared with 20 commonly applied
machine learning methods. It achieved a macro-averaged precision of 0.885, a macro-averaged recall of 0.871 and a
macro-averaged F1-measure of 0.878. The results illustrated that our approach outperformed all baseline methods in
terms of both commonly used metrics and macro-averaged metrics.

Conclusions: This study presented a new gender model aiming for specifying the transgender requirement more
precisely. We also proposed an approach for gender information extraction and summarization from unstructured
clinical text to enhance transgender-related clinical trial population recruitment. The experiment results demonstrated
that the approach was effective in transgender criteria extraction and summarization.
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Background
Clinical trials are observations or experiments carried out
in clinical research. Under efficacious guidance and strict
administration, they can generate reliable testimony and
contribute remarkably to evidence-based medicine [1, 2].

To a large extent, obtaining satisfactory outcomes from
clinical trials depends on the effectiveness of identifying
and recruiting suitable participants [3, 4]. However, the re-
cruitment of target population has turned into a main im-
pediment in clinical trials due to the time-consuming
labor, great cost of fund, and rising complexity [5–9]. The
unsatisfactory result of recruitment can bring tremendous
trouble to clinical investigators and omitted opportunities
to patients [4, 10–12].
In the recruiting phase, eligibility criteria evaluate the

qualification of participants for certain clinical care or
research. Gender is a widely-used and core criterion for
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electronic prescreening and the gender requirement is ap-
proximately defined as structured information by every
clinical trial [13–15]. Besides, gender is widely utilized for
clinical data searching and processing, e.g., the gender
identification in Electronic Medical Record (EMR) data
[16], the transgender status estimation using EMR data
[17], and the core data element for clinical retrieval [18].
Thus, the explicit gender type requirement is essential for
enrolling proper participants in clinical trials.
However, prevalent applied gender-required criteria in

clinical trial may contain gender issues including incom-
pleteness and ambiguity issues, particularly for
transgender-recruiting trials. Transgender is an umbrella
term denoting the population whose gender identity or
expression is different from their assigned sex at birth
[19, 20]. Existing websites for registry of clinical trials
only define Male, Female and Both as structured infor-
mation in the gender requirement. Whereas, the trans-
gender type is generally neglected in gender
specification during registration.
Taking ClincialTrials.gov,1 the largest official registry

of clinical trials in the world, as an example. Clinical-
Trials.gov, sponsored by the United States National In-
stitutes of Health (NIH), provides a summary for each
registered clinical trial [21]. In this registry, clinical trials
recruiting certain types of transgender population need
to clarify gender requirements in sex eligibility section.
Nevertheless, only “Male”, “Female”, and “All” are listed
as the structured gender types alternatives for trial regis-
tration, which may induce unsuitable recruitment for
transgender population. For example, in the clinical trial
NCT01880489,2 eligible participants need to be trans-
gender female according to “Identify as a transgender
woman (assigned male at birth and currently identify as
female)” from inclusion criteria section. However, the
gender requirement is incorrectly registered as “Female”
in the structured section “Sexes Eligible for Study” due
to lack of the “transgender” option on the website. For
trials recruiting transgender populations (e.g., clinical tri-
als studying Human Immunodeficiency Virus), the in-
correct transgender information issue is much common.
As a result, this incorrect gender registration may cause
wrong information in clinical trial text processing and
negative influences in clinical trial electrical recruitment.
Meanwhile, the population of transgender and the num-

ber of trials requiring for transgender has been increasing.
As reported in 2011, around 700,000 transgender adults
(about 0.3% of total adult population) were identified in
the United States [22]. This number rose rapidly to almost
1.4 million in 2016 [23] and was nearly twice as high as
the number in 5 years ago. To explore the demographic
changes of transgender population in clinical trials, we
conducted a manual investigation on ClinicalTrials.gov.
We used keyword searching combined with manual

review to identify transgender-recruiting trials from all
277,012 clinical trials on ClinicalTrials.gov as to 2018/07/
10. With respect to the “first posted” and “last update
posted” dates of the clinical trials during 2000 to 2017, the
number of trials recruiting transgender population was
calculated and reported in Fig. 1, demonstrating an up-
ward trend. This growth trend illustrates the increasing
importance of the identification of transgender-recruiting
trials for transgender population in the participation of
clinical trials. Therefore, the data quality issue caused by
inappropriate gender registration may lead to more incor-
rect transgender population recruitment cases among
clinical trial studies. Thus, it is imperative and urgent to
deal with the transgender data quality issues.
To that end, focusing on improving transgender

related-trials searching and recruiting, we designed a vir-
tual gender model to present more complete and explicit
gender requirement information. In addition, an auto-
mated approach was developed for transgender informa-
tion extraction and summarization from unstructured
clinical trial text. This approach consists of the feature
extraction module and the feature summarization mod-
ule. The feature extraction module utilizes patterns
automatically learned from annotated clinical trial text
and combines with a list of heuristic rules to extract
gender features from clinical trials. The second module
computes these features and summarizes gender re-
quirements by relation reasoning for a clinical trial.
We further treated the whole procedure of gender infor-

mation extraction and summarization as a multi-classifi-
cation task and compared our approach with 20 machine
learning methods on the same clinical text datasets, which
incorporate transgender-recruiting trials and
non-transgender-recruiting trials together. Based on the
largest dataset containing 100,134 trials, our approach
achieved a macro-averaged precision of 0.885, a macro-av-
eraged recall of 0.871 and a macro-averaged F1-measure
of 0.878. The results outperformed all the other baseline
methods and demonstrated the effectiveness of the ap-
proach in gender information extraction and
summarization.

Methods
To solve the transgender-related issues, a virtual gender
model is proposed, as shown in Fig. 2. This model ex-
tends the widely and commonly used conventional gen-
der types in ClinicalTrials.gov registration options
(‘Male’, ‘Female’, and ‘All’). To include transgender types,
13 specific gender criteria types are defined. Since the
model mainly focuses on transgender criteria problem,
all the non-transgender-recruiting types are assigned as
one type [‘Biological’]. The type [‘Transgender All, Bio-
logical All’] represents that the gender criteria type in
the clinical trial aims to recruit the populations with
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transgender male & female and biological male & fe-
male. Similarly, the reminder 11 types are [‘Transgender
All, Biological Male’], [‘Transgender All, Biological Fe-
male’], [‘Transgender All’], [‘Transgender Male, Bio-
logical All’], etc.
Based on the gender model, we further propose an auto-

mated approach for extracting and summarizing gender
information from free clinical trial text. This approach
comprises the feature extraction module for extracting
gender features and the feature summarization module for
concluding final gender requirements based on the

proposed gender model. The overall framework of the ap-
proach is shown as Fig. 3.

Feature extraction
Clinical trial text frequently contains gender mentions.
The feature extraction module utilizes a group of heuris-
tic rules to identify, extract and verify gender informa-
tion features from clinical trial text including “Study
Description” and “Eligibility Criteria” sections. These
rules consist of predefined logical relations, a list of gen-
der mention features from clinical trials, and regular

Fig. 1 The number of clinical trials recruiting transgender population on ClincialTrial.gov
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expressions. Then, a set of structural patterns is auto-
matically generated from clinical text based on trans-
gender mention annotations. After that, the heuristic
rules and the patterns are combined to be applied to
gender information extraction and verification from clin-
ical trial text.

Heuristic rule generation
According to the investigation of existing clinical trial
text, a variety of gender mention features is categorized
into distinct gender mention types. We treat the gender
mention detection as a process of feature identification.
The examples of some gender mention types and the
corresponding features are listed as Table 1. For in-
stance, the feature extraction module regards features
‘males’, ‘male’, ‘man’, ‘men’, ‘gay’, ‘gays’ and ‘masculine’ as
the gender mention type [Male].
Combining with the defined gender mention types, we

develop a set of heuristic rules to detect the mentions in
clinical trial text. The rules contain logical relations such as
“If (gender X) in exclusion criteria, then output (Not gender
X)” and regular expressions such as “match ‘([Transgender]
[Female]) or ([Female] [Transgender])’ as <Transgender Fe-
male>”, where ‘[Transgender]’ and ‘[Female]’ are two
pre-defined gender mention types. Given a sentence “Self
identify as a transgender woman” (NCT032709693), the
gender mention “transgender woman” is identified using
the regular expression and is annotated as “<Detected Gen-
der Mention = Transgender Female>”.

Transgender pattern learning
Identifying transgender features by utilizing heuristic
rules only may lead to erroneous extraction. For in-
stance, in sentence “ … Participants who were female at
birth, who now identify as male, will not be excluded … ”
(NCT023563024), the “male” indicates transgender male
rather than biological male from the context. However,
it is wrongly regarded as not transgender features by
heuristic rule as this sentence does not contain any
transgender-specific key words. Thus, we incorporate
automatic structural pattern learning to improve feature
extraction performance. The essential notion of the pat-
tern learning is to extract all pattern candidates based
on original annotated text and to filter patterns which
may have less significance to feature extraction.
To automatically generate the transgender matching

patterns, the clinical trial text with transgender feature
annotations is split into sentences initially. The feature
extraction module leverages a sentence boundary identi-
fication algorithm by rule-based matching to split text
into individual sentences, especially for the text lacking
full stop symbols. Those sentences are verified by
pre-defined rules to rectify incorrect cases, such as treat-
ing the “.” in “e.g.,” as stop symbols. Then, the original

Fig. 2 The virtual gender model and its mapping relations with
conventional gender types
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transgender mention annotation tags are replaced with a
specified tag “<TG_Start > <TG_End>” for context ex-
traction. For example, a sentence is processed as “ …
Participants who were female at birth, <TG_Start>who
now identify as male<TG_End>, will not be excluded …
” (NCT023563025).

After replacement, a list of pattern candidates is ex-
tracted by setting a word window length as a parameter
β. The optimized value of β is empirically chosen as 7,
presenting that the number of words around the trans-
gender tag is not larger than 7. All patterns containing
the tags and their surrounding words are extracted and

Fig. 3 The framework of our approach

Table 1 The gender mention types and their related gender mention features

Gender mention types Gender mention features

[Male] ‘males’, ‘male’, ‘man’, ‘men’, ‘gay’, ‘gays’, ‘masculine’

[Female] ‘females’, ‘female’, ‘woman’, ‘women’, ‘lesbians’, ‘lesbian’, ‘les’, ‘feminine’

[Two_Gender] ‘m/f ’, ‘m&f ’, ‘both genders’, ‘two genders’, ‘two-gender’, ‘all genders’, ‘all-gender’

[Biological] ‘biologically’, ‘biological’, ‘cisgender’

[Transgender] ‘transgender’, ‘transsexual’, ‘transsexuals’, ‘transsexualism’, ‘change sex’,
‘changed sex’, ‘sex changed’, ‘change gender’, ‘changed gender’, ‘gender
changed’, ‘transgendered’

[Male_Abbreviation] ‘msm’, ‘msw’, ‘msm/w’, ‘msw/m’, ‘ymsm’

[Partner] ‘partner’, ‘partners’, ‘sexual partner’, ‘sexual partners’, ‘wife’, ‘husband’

[Negation_Word] ‘no’, ‘not’, ‘except’, ‘besides’, ‘rather’, ‘rather than’, ‘neither’, ‘not identify as’, ‘not identified as’
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regarded as candidate patterns. Each candidate pattern is
further matched back to the training clinical trial text. For
example, the pattern “female at birth, <TG>, will not” can
be matched with “ … Participants who were female at
birth, <TG_Start>who now identify as male<TG_End>,
will not be excluded … ” (NCT023563026), “ … Partici-
pants who are female at birth, <TG_Start>who now iden-
tify as male<TG_End>, will not be excluded … ”
(NCT0346734777) and “… Participants who are female at
birth, <TG_Start > who now identify as male < TG_End>,
will not be excluded …” (NCT032344008). The confidence
and support values of each candidate pattern are calcu-
lated after matching. We define a support metric ∂S as the
count of correct matches and a confidence metric ∂C as
the rate of correct expression matches among all matches.
The candidate patterns with confidence or support values
lower than the two metrics are regarded as invalid pat-
terns and are filtered out. To enlarge the matching cover-
age of the generated patterns, ∂C is set as 0.7 and ∂S is set
to 4 empirically in this study.

Gender mention verification
The automatically learned patterns and heuristic rules
are utilized to identify gender mention features from free
clinical trial text sequentially. After the detection, the
mentions are identified and annotated with correspond-
ing gender types. A context-based method is then pro-
posed to verify the gender mention annotations. In
certain cases, some identified mentions are not adaptive
to context information and should be excluded. For ex-
ample, the “male” identified in “male sex partners”
(NCT027042089) and the “female” identified in “Male
Patients with female sexual partners” (NCT0023146510)
do not represent required target population and should
be removed from the annotations. Therefore, we develop
a list of regular expressions to verify the annotations.
The rule “<Detected Gender Mention> ([Partner])” thus
is used to detect the identified “male” and “female” in
similar examples.
In addition, some identified mentions are associated

with negation words, which may change the meaning of
required gender types. To detect and rectify those neg-
ation cases, a list of negation features as [Negation_Word]
is defined, as listed in Table 1. The module identifies the
negation features and filters out irrelevant gender men-
tions in sentence-level context. For example, the rule
“[Negation_Word] <Detected Gender Mention>” can be
used to identify “transgendered” in “Biologically male (not
transgendered)” (NCT0102362011), where “transgendered”
should be annotated together with “not”.
Algorithm 1 illustrates the feature extraction module

for extracting gender information. Firstly, an unstruc-
tured clinical trial text is split into sentences. The algo-
rithm then detects and extracts gender mentions from

each sentence by incorporating the generated trans-
gender patterns and heuristic rules. At this step, we
apply the patterns from Generated_Patterns and heuris-
tic rules from Heuristic_Rules to annotate gender fea-
tures from each sentence. Generated_Patterns are
patterns generated automatically from clinical trial text
with manual annotations, as shown in line 5. Then rules
from Verification_Rules are used to remove marked
mentions that should not be included. Those extraction
and verification procedures are shown as line 7–22.

Gender summarization
Gender mention inference
Since different gender types have internal relations, we
design a list of gender inference functions for relation
calculation and deduction. These functions are com-
posed of logical judgment functions and transformation
functions.
The logical judgment function determines whether

gender types are conformed to a certain relation. Some
examples of logical judgment functions are shown as
Table 2 and each function contains a function descrip-
tion in logical way. For example, we used SuperJudge-
ment function to determine whether a gender type has
superior relation with the other or another. Using this
function, ‘Transgender All’ can be treated as superior
gender of ‘Transgender Male’ or ‘Transgender Female’,
and the model can therefore compute the relations
among those gender types.
With the logical judgment functions, we further de-

velop a list of transformation functions to operate and
transform different gender types for concluding final
gender requirements. The examples of transformation
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functions are shown as Table 3, where some of them con-
tain parameter restrictions of logical judgment functions.
For example, ‘Transgender All’ can be split into ‘Trans-
gender Male’ and ‘Transgender Female’ using the function
Split(‘Transgender All’). ‘Biological Male’ and ‘Biological
Female’ can be merged into ‘Biological All’ using the func-
tion Merge(‘Biological Male’, ‘Biological Female’). ‘Bio-
logical Female’ can be converted into ‘Transgender Male’
using the function TransConstrain(‘Biological Fe-
male’). The function TransConstrain can be applied
to transform biological gender into transgender types
while the context is identified as transgender
condition.

Gender requirements summarization
To conclude the required gender types of a clinical trial,
all the mapped gender types with valid annotations are
split into a list of meta gender types, i.e., ‘Biological Male’,
‘Biological Female’, ‘Transgender Male’ and ‘Transgender
Female’ according to the gender relations defined in the
feature summarization model. For example, ‘Biological All’
is split into ‘Biological Male’ and ‘Biological Female’.
Since a text may contain multiple gender types while

some of them may be noise, we design a strategy using
majority rule to detect frequently mentioned gender types
considering that some meta gender types are predominant
in a text. All meta gender types are then sorted by their
frequencies in descending order. If the frequency of a
meta gender type ranked at top i + 1 multiplies a threshold
μ is lower than the previous meta gender type ranked at i,
the feature summarization module treats the meta gender
types from i + 1 to n as noise. Using MGi to present the
frequency of a meta gender type ranked at top i and μ to
denote the threshold, the final predominant score as Pred
is calculated using Eq. (1). If Pred < 1, the module treats
(MG1, … MGi) as predominant gender types and treats
the reminder as noise. The optimization of μ is presented
in Experiment and Result section.

Pred ¼ MGiþ1

MGi
� μ ð1Þ

Taking clinical trial NCT0240186712 as an example.
The study description contains the statement “among
sexually active female-to-male (FTM) transgender
adults”, “among 150 FTM patients in Boston”, “online
focus groups with FTMs” and “to gather information on
the sexual health needs of FTM individuals”. The study
population description contains the statement “enroll
150 female-to-male (FTM) individuals”, “recruited from
the existing FTM patient population” and “recruit 40%
racial/ethnic minority FTMs”. The inclusion criteria

Table 2 Examples of logical judgment functions and their
descriptions

Function name Description Example

SubJudgement
(G1, G2)

If G1 is subordinate
gender of G2:
return True
Else:
return False

G1 = ‘Transgender Male’
G2 = ‘Transgender All’
Return True

SuperJudgement
(G1, G2)

If G1 is superior
gender of G2:
return True
Else:
return False

G1 = ‘Transgender All’
G2 = ‘Transgender Male’
Return True

ReverseJudgement
(G1, G2)

If G1 is NOT G2:
return True
Else:
return False

G1 = ‘Transgender Female’
G2 = ‘Transgender Female’
Return False

SimilarJudgement
(G1, G2, …)

If G1, G2, … is
similar types:
return True
Else:
return False

G1 = ‘Transgender All’
G2 = ‘Transgender Male’
Return True
G1 = ‘Transgender All’
G2 = ‘Biological Male’
Return False

SplitJudgement
(G1)

If G1 can be split:
return True
Else:
return False

G1 = ‘Transgender All’
Return True
G1 = ‘Transgender Male’
Return False

Table 3 Examples of transformation functions and their descriptions

Function Description Parameter Restriction Example

Split(G1)→
(G2, G3)

Splitting G1 into G2 and G3 SplitJudgement(G1) == True Input
G1 = ‘Transgender All’
Ouput
G2 = ‘Transgender Male’
G3 = ‘Transgender Female

Merge(G1, G2)
→G3

Merging G1 and G2 into G3 SplitJudgement(G1) == False
SplitJudgement(G2) == False
SimilarJudgement(G1, G2) == True
ReverseJudgement(G1, G2) == True

Input
G1 = ‘Biological Male’
G2 = ‘Biological Female’
Ouput
G3 = ‘Biological All’

TransConstrain
(G1) → G2

G1 is transformed into the transgender type G2 Input
G1 = ‘Biological Male’
Ouput
G2 = ‘Transgender Female’
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includes “Assigned a female sex at birth and now
self-identifies as a man, trans masculine, trans man,
FTM, transgender, genderqueer/non-binary, transsexual,
male, and/or another diverse transgender identity or ex-
pression”. After gender information extraction and verifi-
cation of the above text, the identified and valid
‘Transgender Male’ type occurs 10 times, while ‘Trans-
gender All’ twice, ‘Biological Male’ twice and ‘Biological
Female’ once. After splitting ‘Transgender All’ into two
meta gender types, ‘Transgender Male’ is counted as 12
times and ‘Transgender Female’ as 2. According to the
Eq. (1), ‘Transgender Male’ is treated as MGT1 while
‘Transgender Female’, ‘Biological Male’ and ‘Biological Fe-
male’ are treated as MGT2, MGT3 and MGT4. By using
the threshold μ as 5, the Pred of MGT1 is lower than 1.
Therefore, the feature summarization module takes
‘Transgender Male’ as the predominate gender type and
ignores the rest gender types.
The module treats all kept meta gender types as equal

and merges them using the transformation function
Merge(G1, G2) for generating a final gender conclusion.
For example, the meta gender types ‘Transgender Fe-
male’ and ‘Transgender Male’ are merged into the finial
gender ‘Transgender All’.
Algorithm 2 defines the feature summarization mod-

ule for concluding transgender-requiring clinical trials.
All the extracted gender-related mentions all_gender_-
mentions from Algorithm 1 are transformed into meta
genders MetaGenders by the gender inference functions.
The MetaGenders are then sorted by their count of oc-
currences in text in descending order, as presented in
Line 6. The final gender requirement summary is ob-
tained based on the result of comparison between Meta-
Gender [i] and MetaGender [i + 1]*threshold, where the
steps are shown as line 7–11.

Experiment and result
Evaluation metrics
For performance evaluation, we treat the gender information
identification and summarization as a multi-classification
task. As commonly used as performance evaluation metrics

in Nature Language Processing (NLP) and information re-
trieval tasks, precision, recall and Fβ-measure are adopted in
the experiment [24, 25]. Typically, in a binary classification
task, a data is labeled as either positive or negative (where
positive and negative represent two generic categories). A
confusion matrix can be generated according to True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). In the matrix, precision represents the
percentage of correctly classified positive data divided by the
total number of data classified as positive (Precision=TP/
(TP+ FP)). Recall is the percentage of correctly classified
positive data divided by the total number of data expecting
to be classified as positive (Recall=TP/(TP + FN)). Fβ-mea-
sure is the harmonic mean of precision and recall (Eq. 2).
Non-negative real value β enables Fβ-measure to bal-
ance emphasize precision or recall. We empirically
use F1-measure by setting β = 1 to equal the weights
of precision and recall.

Fβ−measure ¼ 1þ β2
� �� Precision� Recall

β2 � Precision
� �þ Recall

ð2Þ

In addition, the proportion of non-transgender-recruiting
clinical trials is much higher than transgender-recruiting
trials. The results of precision, recall, and F1-measure may
be affected by such an unbalanced data. We thus use
micro-averaged values as additional metrics to reduce the
effect of unbalanced quantity of predominated gender
types. The macro-averaged metrics assign equal weights to
categories in the evaluation to discount the performance of
better-populated categories [24, 25]. The calculations of
macro-averaged precision, macro-averaged recall, and
macro-averaged F1-measure are shown as Eqs. 3, 4, and 5,
respectively, where n denotes the number of gender types.

Precisionmacro ¼ 1
n

Xn

i¼1

Precisioni ð3Þ

Recallmacro ¼ 1
n

Xn

i¼1

Recalli ð4Þ

F1−measuremacro ¼ 2 � Precisionmacro � Recallmacro

Precisionmacro þ Recallmacro

ð5Þ

Dataset
The 277,012 clinical trials on the ClinicalTrials.gov as to
2018/07/10 were used as experimental data. All
transgender-related keywords were used to match the
trial text to retrieve transgender-recruiting clinical trials
as a candidate dataset. Three human annotators includ-
ing one clinician and two clinical researchers manually
annotated the dataset independently using the proposed
gender data model. The inter-agreement rate was 73%
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using Fleiss Kappa. After discussion, the three annotators
solved all disagreements and formed the final gold stand-
ard for transgender criteria in clinical trials. As a result,
134 clinical trials were identified as transgender-recruiting
trials, generating a dataset TG.
To generate transgender annotation dataset for auto-

mated transgender patterns learning, we leveraged a
bootstrap method which reduced the impact of dataset
size difference and increase the efficiency of experimen-
tal estimation [26]. The bootstrap method is useful when
the scale of dataset was not large and effectively parti-
tioning training sets was difficult [26]. Based on the
dataset TG, we used a bootstrap method to generate a
transgender dataset TG’. One trial from TG was ran-
domly selected and its copy was sent into TG’. This exe-
cution will repeat until the scale of TG’ is equal to TG.
Then, we randomly extracted 10,000 clinical trials con-
taining non-transgender-related features. These clinical
trials were added into TG’ to form transgender patterns
learning training dataset with better validation by enlar-
ging data scale. Based on transgender patterns learning
training dataset with manually annotated transgender
features, our approach extracted all pattern candidates
from this dataset and calculated the confidence and sup-
port by matching back to original annotated training
dataset. After calculation, the patterns with a confidence
and a support lower than a threshold were filtered out.
As a result, the approach generated 14 patterns.
To expend the experiment dataset for better evaluating

the performance of our approach, we randomly extracted
5000, 10,000, 20,000, 40,000, 60,000, 80,000 and 100,000
non-transgender-recruiting trials and combined into the
dataset TG respectively to form seven datasets: dataset
A(134 transgender-recruiting trials + 5000 non-transgender-
recruiting trials), dataset B(134 transgender trials-recruiting
+ 10,000 non-transgender-recruiting trials), dataset C(134
transgender trials-recruiting + 20,000 non-transgender-
recruiting trials), dataset D(134 transgender trials-recruiting
+ 40,000 non-transgender-recruiting trials), dataset E(134

transgender-recruiting trials + 60,000 non-transgender-
recruiting trials), dataset F(134 transgender-recruiting trials
+ 80,000 non-transgender-recruiting trials), and dataset
G(134 transgender-recruiting trials + 100,000 non-transgen-
der-recruiting trials). k-fold cross-validation strategy was
used in the evaluation and k was set as 10 empirically.

Result
To optimize the threshold μ described in the Method
section, the performances in terms of F1-measure values
were calculated by setting the threshold from 1 to 10 le-
veraging 10-fold cross-validation. Taking dataset G as an
example, as shown in Table 4, the results showed that
the F1-measure obtained the different values when the
threshold increased from 1 to 10 in round 1 to 10 on
the training datasets (nine of ten using 10-fold), respect-
ively. We thus selected μ = 5 in round 1–3 and 5–10
while μ = 4 in round 4 as the optimized parameters.
Eventually, μ = 5 was chosen as the best parameter value
for the following experiments.
To test the stability of our approach, it ran on all the

datasets A to G. The macro-averaged precision, recall
and F1-measure in each round were calculated. The
values were further averaged based on ten rounds and
were reported in Fig. 4. The macro-averaged precision
values were 0.868, 0.869, 0.883, 0.891, 0.89, 0.886 and
0.885; the macro-averaged recall values were 0.848,
0.851, 0.863, 0.868, 0.863, 0.867 and 0.871; and the
macro-averaged F1-measure values were 0.858, 0.860,
0.873, 0.879, 0.876, 0.876 and 0.878. Since the seven
datasets reflected the increasing number of clinical trials
(from 5134 trials to 100,134), the macro-averaged preci-
sion, recall and F1-measure values had 0.8, 0.8 and 0.6%
variance on the dataset C to G. Based on the largest
dataset G, the approach achieved a macro-averaged pre-
cision of 0.885, a macro-averaged recall of 0.871, and a
macro-averaged F1-measure of 0.878.
In addition, to compare our approach with state-of-th-

e-art methods, we applied 20 widely used machine

Table 4 The parameter training using F1-measure with three-fold cross-validation

μ Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10

1 0.162 0.163 0.174 0.157 0.159 0.162 0.162 0.158 0.157 0.156

2 0.599 0.563 0.659 0.599 0.611 0.618 0.555 0.607 0.591 0.616

3 0.741 0.724 0.830 0.747 0.726 0.769 0.731 0.745 0.748 0.763

4 0.866 0.849 0.853 0.873 0.859 0.888 0.863 0.877 0.872 0.879

5 0.873 0.855 0.857 0.869 0.864 0.892 0.867 0.886 0.878 0.882

6 0.854 0.835 0.834 0.846 0.844 0.873 0.855 0.880 0.858 0.861

7 0.838 0.820 0.834 0.828 0.830 0.858 0.840 0.860 0.843 0.843

8 0.838 0.822 0.836 0.829 0.831 0.859 0.842 0.862 0.845 0.845

9 0.838 0.822 0.836 0.829 0.831 0.859 0.842 0.862 0.845 0.845

10 0.840 0.824 0.837 0.831 0.833 0.861 0.844 0.863 0.847 0.845
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learning algorithms as baselines. These baselines were
implemented in a suite of machine learning toolkit -
Weka 3.8 [27], including Bayesian Network [28], Naive
Bayes [29], SMO (Sequential Minimal Optimization)
[30], Random Forest [31], LMT (Logistic Model Tree)
[32], and J48(C4.5) [33]. The same features were proc-
essed by those baseline algorithms in WEKA using the
same 10-fold cross-validation strategy. Our approach
was compared with those algorithms using macro-aver-
aged F1-measure on the dataset A to G. The perform-
ance greater than 0.6 in terms of macro-averaged
F1-measure were reported in Table 5. Classical Random
Forest, LMT, and Bayes Net achieved the macro-aver-
aged F1-measure 0.765, 0.665 and 0.655 on dataset G, re-
spectively. Our approach achieved the highest

macro-averaged F1-measure score, outperforming all the
baselines on every dataset.

Discussion
Our approach was proposed for automatically extracting
and summarizing transgender information from unstruc-
tured clinical trial text. On the basis of our previous
work at [34], we improved the transgender extraction
method by introducing an automatic pattern learning
method. Compared with the previous work, the new ap-
proach intentionally applied the macro-averaged metric
in order to better validate the approach considering that
the experiment datasets contain much less transgender-
recruiting trials than non-transgender-recruiting trials.
Besides, the new approach was compared with 20
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Fig. 4 The performance of our approach on different datasets

Table 5 The performance comparison on the datasets (A to G) using Macro-averaged F1-measure

Method A B C D E F G

Logit Boost 0.637 0.674 0.681 0.639 0.667 0.636 0.628

Logistic 0.745 0.735 0.693 0.667 0.678 0.706 0.646

Bayes Net 0.680 0.662 0.652 0.624 0.665 0.665 0.655

Simple Logistic 0.761 0.668 0.697 0.684 0.644 0.685 0.658

LMT 0.772 0.668 0.643 0.686 0.625 0.686 0.665

Random Committee 0.728 0.738 0.696 0.695 0.688 0.750 0.673

Decision Table 0.637 0.609 0.590 0.599 0.605 0.617 0.675

Random Tree 0.674 0.667 0.661 0.646 0.652 0.668 0.718

Random Forest 0.774 0.739 0.760 0.698 0.733 0.747 0.765

Our approach 0.858 0.860 0.873 0.879 0.876 0.876 0.878
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commonly applied machine learning algorithms on the
same experiment datasets and achieved higher perform-
ance. The overall micro-averaged F1-measure and
macro-averaged F1-measure of our approach on the lar-
gest dataset G was 0.98 and 0.878, respectively, achieving
0.02 and 0.113 higher compared with the best baseline
algorithm Random Forest. According to the results, the
approach could remain stable when the number of clin-
ical trials was increasing.
To demonstrate the effectiveness of integrating

pattern-learning method, we compared the performance
of our approach with or without pattern matching on
the dataset A to G. The macro-averaged F1-measure
values without pattern matching were 0.791, 0.804,
0.801, 0.807, 0.813, 0.803 and 0.813 respectively. The re-
sults illustrated that the performances of the approach
with pattern matching were consistently higher than
using heuristic rule only.
To understand the weakness of our approach for fur-

ther improvement, we analyzed all error cases and iden-
tified the following error types:

1. Context verification errors: The incorrect gender
mention identifications incurred when context
containing irrelevant information. For example, in
“The specific objectives of this study are reduce
stigma towards lesbian, gay, bisexual, and
transgender persons in Swaziland and Lesotho”
(NCT0241043413), the “lesbian, gay, bisexual, and
transgender persons” was annotated as [‘Transgender
All, Biological All’] by the approach, while human
annotators treated it as irrelevant information. In
“this is a process that provides an opportunity to
study the sex hormone dependent influences that
explain differences in morbidity in men and women
respectively” (NCT0251800914), the approach
treated “men and women” as [“Biological Both”]
while human annotators treated it as irrelevant
information.

2. Pattern matching errors: While matching the
correct features, the pattern might also identify the
wrong information. For instance, the pattern “with
men (msm) and <TG> (” correctly identified the
transgender feature “transgender women” in “ …
thai men who have sex with men (msm) and
transgender women (tg) … ” (NCT0186959515).
However, this pattern incorrectly matched the non-
transgender information “female sex workers” in “ …
including early injectors, men who have sex with
men (msm) and female sex workers (fsw) … ”
(NCT0257394816). We intend to open the source
code of the proposed approach in this paper. The
code is publicly available at https://github.com/
Tony-Hao/GenX.

Conclusions
This paper focused on gender, fundamental information
in clinical trial for electrical prescreening to recruit ap-
propriate participants. To facilitate transgender popula-
tion recruitment, a virtual gender model was developed.
An automated approach was further proposed for gen-
der information extraction and gender summarization
from unstructured clinical trial text. Based on 100,134
real clinical trials, our approach was compared with 20
machine learning algorithms. The results presented that
our approach achieved the best performance using both
widely adopted metrics and macro-averaged metrics,
demonstrating the effectiveness of the approach in gen-
der information processing.
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