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Abstract

Background: Drug development is an expensive and time-consuming process. Literature-based discovery has
played a critical role in drug development and may be a supplementary method to help scientists speed up the
discovery of drugs.

Methods: Here, we propose a relation path features embedding based convolutional neural network model with
attention mechanism for drug discovery from literature, which we denote as PACNN. First, we use predications from
biomedical abstracts to construct a biomedical knowledge graph, and then apply a path ranking algorithm to extract
drug-disease relation path features on the biomedical knowledge graph. After that, we use these drug-disease
relation features to train a convolutional neural network model which combined with the attention mechanism.
Finally, we employ the trained models to mine drugs for treating diseases.

Results: The experiment shows that the proposed model achieved promising results, comparing to several random
walk algorithms.

Conclusions: In this paper, we propose a relation path features embedding based convolutional neural network with
attention mechanism for discovering potential drugs from literature. Our method could be an auxiliary method for
drug discovery, which can speed up the discovery of new drugs for the incurable diseases.

Keywords: Literature-based discovery, Drug discovery, Knowledge graph, Path ranking algorithm, Convolutional
neural network

Background
Despite the unprecedented advances in biotechnology,
drug discovery is still a lengthy and expensive process
with low rate of new therapeutic discovery [1]. Develop-
ment of a new drug is estimated to take 14 years and
cost approximately $1.8 billion [2]. In contrast, Literature-
based Discovery (LBD) is a safe and low-cost technique
that links the existing knowledge reported in unrelated lit-
erature sources for discovering new relationships [3, 4].
It generates scientific hypotheses that may help scientists,
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especially biomedical scientists, to accelerate the process
of scientific discovery [5]. For example, Swanson first pro-
posed the assumption that fish oil can treat Raynaud’s
disease by employing LBD in 1986 [6]. Two years later,
this hypothesis was verified via medical experiments [7].
Since then, a variety of automatically LBD approaches
have been introduced to mine potential associations from
literature, including statistics-based and co-occurrence
based methods [8]. Such methods typically search for a
set of intermediate terms that frequently co-occur with
a source term and a target term. However, these existing
LBD methods have several limitations. Statistics-based
LBD relies on the number of word frequencies in co-
occurrence terms, which may make it difficult to find
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meaningful associations for low-frequency terms [9]. Co-
occurrence methods typically suffers from the imprecise
meaning of such co-occurrences and logic errors [8]. Hris-
tovski et al. introduced a semantic pattern-based LBD
method which may be used to find more complex hidden
associations from literature [10]. Semantic pattern-based
methods could select more plausible associations between
a source and a target concept. But the limitation is that
the semantic patterns are manually selected and defined
[11]. In addition, a number of recent LBD methods have
been proposed which utilize certain graph data struc-
tures for discovering potential associations. For example,
Cameron et al. proposed to automatically constructing a
biological entity sub-graph through the context informa-
tion of a large-scale knowledge graph, which result in a
sub-graph containing complex and important information
among biological entities. According to the authors, this
information can promote LBD [12]. To handle large-scale
knowledge graphs, random walks algorithm are often used
instead of enumerating all sub-graph structures. Liu et al.
proposed a method of random walks on a heterogeneous
graph for drug repositioning [13]. However, due to the
completely randomized mechanism, random walks are
inefficient for discovering new drugs. The above method
ignores the relation path features information which plays
an important role in LBD. Despite these considerable
advances, there is still a significant room for improvement
in mining drug therapies from literature.

In this paper, we propose a convolutional neural net-
work (CNN) model with attention mechanism method

that exploits the drug-disease relation path features for
drug discovery. The contributions of this paper are as
follows: First, We commenced by constructing a biomed-
ical knowledge graph with predications extracted from
PubMed. Second, the path ranking algorithm (PRA) was
adopted to generate drug-disease relation path features
from the knowledge graph. Finally, a CNN based on atten-
tion mechanism model was trained as a drug discovery
model. Then, we used the trained model to discover
potential treatments for new diseases. To the best knowl-
edge, this is the first method that employs CNN model
with attention mechanism combined with relation path
feature for drug discovery.

Methods
In this section, the datasets and related tools are briefly
introduced. We firstly construct the biomedical knowl-
edge graph. Then, we introduce the process of PRA
obtaining data features based on the knowledge graph.
After that, we use drug-disease path features to train a
model, which is subsequently implemented to discover
potential drugs for diseases. Finally, several metrics are
introduced to measure the performance of our model and
the baseline methods. Our experiment process is shown
in Fig. 1.

Datasets
PubMed
PubMed is a free search engine that provides biomedi-
cal paper searches and abstracts which has increased the

Fig. 1 The basic process of PACNN for drug discovery
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number of entries from 17 million to more than 23 million
in just eight years [14, 15]. The MEDLINE database (2013
version) was the main resource for our work.

Therapeutic target database
The Therapeutic Target Database (TTD) provides a
wealth of information relating drugs and targets, as well as
targets and diseases. The TTD produces a large number of
drug-target-disease triplets that served as an appropriate
resources for our work [16]. We used the standard drug-
disease provided by the TTD as both training data and test
data [17].

Related tools and techniques
SemRep
SemRep is a Unified Medical Language System (UMLS)-
based program that identifies semantic predications in
biomedical texts. In this study we used SemRep to extract
semantic predications from MEDLINE database [18].
Predications contain two entities and a relation, with
Triamtereneentity − Treatrelation − Edemaentity being an
examples of predications. Lexical ambiguity is a univer-
sal feature of natural language, similarly, there will be
ambiguous words in the biomedical literature, in order to
map the entities in the TTD to the knowledge graph effec-
tively, we also used SemRep to reduce words ambiguity
from TTD [19].

Path ranking algorithm
Path ranking algorithm (PRA) calculates the feature
matrix on the pair of nodes in the graph with labeled
edges. This method has strong logical reasoning ability
[20]. PRA was originally used for knowledge reasoning
and knowledge recommendation tasks [21, 22]. The PRA
is divided into two processes, whereby all the relation
types that connect a pair of nodes are enumerated in the
first step. This is followed by calculating the relation path
feature by performing a random walk on the graph. Once
the path feature has been calculated, it can be used for any
classification model, although in almost all previous appli-
cations, PRA works only used logistic regression [20]. In
this paper, the relation path features generated by PRA is
used to perform the drug discovery task.

Convolutional neural network
The convolutional neural network model has achieved
remarkable results in image, speech and natural language
processing (NLP) [23]. The core point of the convolutional
neural network is that the convolutional layer can capture
the local correlation of features, and the convolutional
kernel of the convolutional layer realizes the function of
receptive field. Finally, local information of the lower layer
is extracted to reach a higher level through the convolu-
tion kernel [24]. For example, in a drug discovery task,

information on a single relation path can determine
whether a drug-disease relationship is correct or not. A
certain path relation is a good indicators of drug-disease
classification [25]. In this paper, we propose a CNN
structure to capture relation path information for drug
discovery.

Attention mechanism
In order to capture the most important feature of a path
from a drug to a disease, we also introduce attention
layer as one of the model layers. The attention mecha-
nism was first applied to the image area and subsequently
applied to the NLP, but attention mechanism has never
been employed in the hypothesis discovery context. In this
work, we used attention mechanism to identify impor-
tant relation path features during the training in order to
improve model power [26].

Knowledge graph construction
In general, knowledge graph (KG) comprises of different
nodes and edges. In this work, we firstly obtained the
predications extracted by SemRep from the biomedical
text. Then, a knowledge graph was constructed by the
predications. Specifically, in the KG, let E = {e1, e2, ..., en}
denote the nodes and R = {r1, r2, ..., rn} denote the edges,
where e and r represent entity and relation, respectively.
The KG structure (like a tree structure) is shown in Fig. 2,
this is a two-level relation tree example of the KG.

The path ranking algorithm extract drug-disease feature
Given a KG, we define P as a relation path which is only
composed of relations. For example:

1 P1 : e1 inhibits−−−−→ e2
2 P2 : e1 inhibits−−−−→ e2 inhibits−−−−→ e3
3 P3 : e4 inhibits−−−−→ e5 inhibits−−−−→ e6
4 P4 : e1 inhibits−−−−→ e2 stimulates−−−−−−→ e3
5 P5 : e1 stimulates−−−−−−→ e2 inhibits−−−−→ e3

In the above example, P2 and P3 are the same relation path,
because P2 and P3 contain the same relations although
they contains different entities. In contrast, P4 and P5 are
different relation paths due to the order of relations is dif-
ferent. Based on the above cases, we obtained 4 types of
relation paths:

1 P1 : inhibits−−−−→
2 P2 : inhibits−−−−→ inhibits−−−−→
3 P4 : inhibits−−−−→ stimulates−−−−−−→
4 P5 : stimulates−−−−−−→ inhibits−−−−→

In this work, each type of relation path is considered as a
feature for training our drug discovery model. The PRA
firstly enumerates all relation paths connecting two nodes.
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Fig. 2 Knowledge graph structure

Then, the PRA recursively calculates the probability hi,P(j)
of the two nodes under each relation

hi,P(j) =
{

1, if j = i
0, otherwise (1)

Nonempty relation path P = R1, R2, ..., Rn, and we let P′ =
R1, R2, ..., Rn−1

hi,P(j) =
∑

j′∈range(P′)
hi,P′(j′) · P(j|j′; Rn) (2)

Where range
(

P′) represents that under the relation Rn,

the set of entities connected to the j. Where P
(

j|j′ ; Rn
)

is

the probability of entity j reaching to entity j′ under the

relation Rn, P
(

j|j′ ; Rn
)

= Rn
(

j′ ,j
)

Rn
(

j′ ,∗
) , Rn

(
j′ , ∗

)
is the out-

degree of j′ under R, R
(

j′ , j
)

presents whether exists an
edge connect i to j under the relation R.

For example, the number of relation types is m, and
the length of the relation path is l. The feature length
L = ∑l

l=1 ml. Each hi,Pk(j) as a feature for i and j.

π = [
hi,P1(j), hi,P2(j), ..., hi,PL(j)

]
(3)

Given a drug-target-disease triplets, which provides the
information concerning targets and their corresponding
drugs and diseases. The process of feature extraction by
PRA is as follows: First, PRA obtains the a vector of
relation path features between drug and target, which
is denoted as πdrug−target . Similarly, we then obtain the
feature vector πtarget−disease which denotes the relations
path features between target and disease. After that, the
concatenation of two feature vectors πdrug−target−disease

is considered as the features for the given drug-target-
disease triplet. Therefore, for each drug-target-disease, a
training data (πtrain, y) is constructed, where y is a boolean
variable indicating whether the case is positive.

Training model
This work employs CNN based on attention mechanism
as the basic model. The neural network model structure is
shown in Fig. 3, our model is trained to predict conditional
probability P(y|π ; θ). where θ are parameters of our model
for the relation path features. Let pi be the path feature of
drug-target-disease, a set of path feature represents as

pk:n = p1 ⊕ p2 ⊕ ... ⊕ pn (4)

Where ⊕ indicate concatenation, the CNN sliding win-
dow size is k, the vectors became as follows after falling
into sliding windows,

Pk = [
pk , pk+1, ..., pk+m−1

]
(5)

Combine the window with the filter to convolutional
operation for obtaining new features.

Yk = f (Pk � W + b) (6)

Where f is a nonlinear activation function, in this exper-
iment, we utilize the ReLU activation function; � is the
convolution operator; W is the convolution kernel; b is
bias term. Then, this operation makes a feature map,
such as

C = [
c1, c2, ..., cn−k+1

]
(7)

Where C ∈ Rn−k+1, we employ max pooling layer on the
feature map which keeps the most important feature for
each map. Not all relation path features contribute equally
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Fig. 3 The architecture of neural networks for drug discovery

to the representation of the drug-disease relation. Here,
we employ attention mechanism to extract relation path
that are important to the association of the drug-disease
[27]. Due to the drug-disease relation types are too many,
three-layer CNN are used to compress the number of
relation types. We get hit from CNN max pooling layer,
t ∈[ 0, L], L is the number of relation types after compres-
sion, the attention layer calculations formula is as follows

uit = tanh (Wwhit + bw) (8)
Where Ww is the attention layer weights matrix, bw is
bias term.

αit = exp
(
uitT us

)
∑

t exp
(
uitT us

) (9)

si =
∑

t
αithit (10)

Then we measure the significance of the relation path fea-
ture, weight is obtained by calculating the similarity of uit
to the relation context vector us, and the softmax method
generate a normalized significance weight αit . After that,
we obtain the relation path vector si through a weighted
sum of the relation path based on the weights. In the
end of the neural networks, we combine with fully con-
nected layer and softmax layer, the softmax layer classify
the drug-disease feature into two categories and give the
probability for each category. While training the model,
tune model parameters by gradient descent and back
propagation.

Implementation for drug discovery
In order to determine the effectiveness of drug treatment
for a particular disease, whereby all drugs may become
candidates for the discovery of drugs that can treat dis-
eases. Every drugcandidate−targetcandidate−disease relation
path feature as πcandidate. A candidate drug produce many
sets of relation paths features as ¶candidate = [π1, π2, ..., πn]

by aforementioned method, whereby the candidate drug
score is defined below

score
(
drugcandidate

) = 1
η

∑
sorted(d(y ≥ 0.5|¶, θ))[ : η]

(11)

Where d is discriminate methods with parameter θ . Our
method gives every case positive category probability, and
all cases are ranked from large to small according to the
probability y. Thus, all cases probability ranked in the top
η% are selected. Finally, the candidate drugs are ranked
according to their scores.

Random walk baseline method
Here, we compare our method with some baseline which
use the Random Walk (RW), the RW generates Markov
chains on a directed graph and will reach a equili-
birum state in a certain number of steps [28]. We define
a state transition probability matrix P, and Pij indi-
cates the probability of the two-node connection on the
graph [29].

Pij =
{

1/di, j ∈ Adj(i)
0, j /∈ Adj(i) (12)

Where node i out-degree is di, Adj(i) is the set of adjacent
nodes of i,

∑N
j=1 Pij = 1, within one step, the probability

of a node jumping to all neighboring nodes are the same.
We define M = (Pij)i, j ∈ N as Markov start chain [30].
Matrix transfer rules are as follows

Mt+1 = PT Mt (13)

In the matrix Mt , the Mt
ij is the probability of starting node

i reaches node j in t steps. Figure. 4 shows how the drug
‘chlorpromazine’ random walks to the disease ‘cardiachy-
pertrophy’. Figure. 4a is a semantic graph with weights.
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Fig. 4 Random Walk for drug discovery a is semantic graph, b is the results of the random walks

Figure. 4b shows the results of random walks with differ-
ent steps. In this example, ‘chlorpromazine’ as the initail
node can not reach the ‘cardiachypertrophy’ in step-1,
thus, the score of candidate drug ‘chlorpromazine’ is 0.
When the number of steps exceeds 2, the ‘chlorpromazine’
can reach the ‘cardiachypertrophy’. The 0.665, 0.165, and
0.0825 represent the scores of the ‘chlorpromazine’ treat-
ing the ‘cardiachypertrophy’ in different steps, respec-
tively. RW calculates the candidate drugs score for the
disease, and the candidate drugs are ranked according to
the score.

Results
In this section, we first introduce the details of the KG
and the training data, followed by several metrics used
to measure the performance of our method. Finally, we
present several cases to show the ability of our model for
discovering potential drug.

Data preparation
In this work, we extracted 1,714 drug-target-disease cases
from TTD as golden standard cases, see Additional file 1.
It is necessary to ensure that the nodes of triplet exist in
the KG, and set the path relation length l to 2 and relation
types m to 52, each data feature length is (52+522)+(52+
522), KG materials shown in Table 1. The number of false
samples is the same as that of positive samples, which is
randomly selected where they not exist in TTD.

Table 1 Corpus materials statistics

KG materials Number

PubMed abstracts 22,769,789

Predications 39,133,975

Entities 658,151

Relation types 52

Implementation details
We implemented our methods using the Scikit-learn and
Keras library [31, 32]. We used softmax for drug-disease
relation classifiers, the filter numbers of the three CNNs
were 128, the number of neurons of attention layer is 128
and Softmax layer is 256, the mini-batch size was set as 52,
the model was trained for at most 12 epochs.

Ten-fold cross-validation
We conducted ten-fold cross validation to evaluate the
performance of our method. The data set was divided into
ten parts, and nine of which were taken as the training
data and one was used as the test data. Each test will result
in a corresponding predicted score. The average of the
predicted score of the 10 results is used as an estimate of
the algorithm performance. The experiment uses the pre-
cision rate (P), recall rate (R), and f-score (F) to evaluate
the model effectiveness. The specific calculation formula
is as follows

P = NTP
NTP + NFP

(14)

R = NTP
NTP + NFN

(15)

F = 2P · R
P + R

(16)

Define a data set: The number of samples is represented
by N , NTP represents positive samples and prediction is
positive samples too; NFN represents positive samples but
prediction is negative samples. NTN represents negative
samples and prediction is negative samples. NFP is actually
a negative sample, but the prediction is a positive sample.

Table 2 shows the results of a comparison between our
PACNN model and other state-of-the-art methods.
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Table 2 The performance of different model

Methods Precision(%) Recall(%) F-score (%)

SVM 78.55 71.69 69.73

RF 84.73 84.49 84.38

LR 87.00 86.30 86.14

CNN 90.81 90.82 90.76

PACNN 91.50 91.50 91.46

From Table 2 we can see that PACNN model outper-
forms Support Vector Machine, Random Forest, Logistic
Regression and Convolutional Neural Network. The input
features of the machine learning model are the same as the
PACNN, and the parameters of machine learning meth-
ods are set according to the best experimental results.
The PACNN model and the CNN model have the same
parameter settings, except that the PACNN adds an atten-
tion layer behind the CNN. We argue that PACNN model
classify drug-disease more effectively. It can not only
extract more abundant features with CNN from a drug-
disease, but also capture important path features with the
attention layer. In order to verify that the relation path
feature is more suitable for our proposed model, we use
two alternatives to verify the validity of the feature. In
one method, we convert the path non-zero feature to a
random value between 0 and 1, while in the other, we
convert all non-zero features to 1. Our proposed relation
path feature has greatly improved, comparing to the other
features. Table 3 shows the results, indicating that the
PRA not only keeps the inference mode, but the relation
path feature preserves the significant information about
drug-disease.

Drug rediscovery
To verify the ability of the model to discover new drugs
for known disease, we selected 300 gold standard drug-
disease from TTD, see Additional file 2, while there are
96 drug-disease directly connected in the KG, resulting in
204 cases. For a new disease, we randomly selected 100
candidate drugs as potential drugs, while also including
standard drugs for treating diseases. Since the mecha-
nism by which the drug acts on the disease is not clear,
in order to ensure that the drug candidate can be linked
to the disease under the corresponding target, we selected

Table 3 The PACNN model with different embedding feature

Methods Precision(%) Recall(%) F-score(%)

PACNN-random 83.21 82.68 82.53

PACNN-one 86.43 85.79 85.56

PACNN-pra 91.50 91.50 91.46

3,564 targets from TTD as candidate targets. The valida-
tion criteria for drug discovery experiments are candidate
drug score mean rank and hit@10, indicating that the can-
didate drug score rank in top 10. In fact, the scores of
candidate drugs are ranked in top, indicating that the can-
didate drug is closer to the real therapeutic drug. If a
drug for treating the disease is not found, the correspond-
ing drug score and mean rank are not considered in the
total number.

NRWRH and TP-NRWRH are additional baseline
methods, both of which are drug repositioning methods
employing random walks with heterogeneous network.
The difference is that TP-NRWRH uses two-pass random
walks [13, 33]. For the drug-disease score and ranking,
this work set the RW maximum steps size is 5, and the
parameters of other baseline methods are set the recom-
mended settings in their experiment. In Table 4 methods
column, RW-2 represents random walks algorithm step is
2, if a drug reach to a disease in 1 step, it indicates that
the drug has a therapeutic effect on the disease. The ‘Not
Found’ column indicates that the current method cannot
find the known drug number. Table 4 shows that, if the
number of the walk steps exceeds 3, all drugs can be found
by the RW. This means that all drugs and diseases are con-
nected in at least 3 steps in the KG. On the other hand,
20 and 13 drugs are not found by the NRWRH and TP-
NRWRH, respectively. Although the number of walking
steps of these two methods is 3, due to they use restart
random walks on the heterogeneous network, the drug
can not reach the disease accurately. In Table 4, the best
result of ‘Mean Ranking’ column RW method is 55.26 by
the RW-2. When the steps increase, the more candidate
drug will be found, this will increase the mean ranking of
the RW. NRWRH and TP-NRWRH outperform the RW,
as the random walks are based on specific a heterogeneous
network. In addition, in the column ‘Hits@10’, the perfor-
mance of NRWRH and TP-NRWRH is still better than
RW. We see that, when the steps increase, the mean rank-
ing and hit@10 score approach the steady state. Finally,
from Table 4 we see that PACNN shows the best perfor-
mance on two tests, as the ‘Mean Ranking’ is 37.53 and
‘Hit@10’ is 38.23%. Compared with random walk based

Table 4 Drug rediscovery performance

Methods Not found Mean ranking Hit@10(%)

RW-2 33 55.26 17.54

RW-3 0 63.28 11.76

RW-4 0 64.04 10.78

RW-5 0 64.57 10.78

NRWRH 20 58.14 21.19

TP-NRWRH 13 41.54 29.31

Our method 0 37.53 38.23
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methods, our method not only finds all candidate drugs
but produces the best results. Additionally, we vary the
settings of η to see how different percentage data affects
the results. A set of scores are produced by a candidate
drug and we would normally select the greatest among
these values for the candidate drug. Due to the same
scores are produced in 100 candidate drugs, while the
number of intermediate candidate targets for each can-
didate drug and disease is uncertain. Thus, we chose the
average of the different proportions of a set of scores as
the final candidate drug score. We set η as top 5%, 10%,
20%, 50%, and 100% respectively. In addition, when the
model prediction case is negative, we filter out data with
the probability less than 0.5. In Fig. 5, we can see that when
the data reached top 20%, the best results were achieved
in both tests.

Case study
To demonstrate the capabilities of our model, we show
12 samples that ranked in top 10. PACNN can predict
candidate drug that is reported by TTD as capable of
curing a disease. From Table 5 we can see that the drug
‘Typherix’ treats disease ‘Salmonella infection’, it ranked
1st as the candidate drug and TTD provides a research
phase in the treatment of diseases at the column ‘Drug
Status’.

Discussion
According to the experimental results, our proposed
model can effectively carry out the LBD task. This is the
first attempt to employ PRA and attention mechanism
for LBD. However, there are several limitations affecting
our works. First, the data set used to train the model is
small, and this will lead to weaker generalization. Thus, it
would be useful to combine other drug-disease databases,

such as Comparative Toxicogenomics Database (CTD)
and Drugbank for addressing this limitation [34, 35]. In
order to maintain the great connectivity of the KG, we
have chosen all the predications as graph components.
Since a predication may be erroneous, this will reduce the
efficiency of our model. This limitation can be eliminated
by improving the NLP technology. Another limitation
is that PACNN needs to obtain all the relation paths
between drugs and diseases. When the size of the knowl-
edge base is large, it is difficult for our method to produce
a more complex relation path. When the PRA is faced with
a larger knowledge base, the computational efficiency will
be greatly reduced, which must also be solved in future
studies.

Conclusion
In this study, we presented a relation path features embed-
ding based CNN with attention mechanism for discover-
ing potential drugs from literature. Relation path feature
embedding proved to be effective for capturing the asso-
ciation about drug-disease, thus we utilized PRA to get
drug-disease relation path feature. Compared with other
methods, the CNN based on attention mechanism can
better identify the important relation feature of drug-
disease, so that new drugs can be accurately discovered.
Our method could be an auxiliary method for drug dis-
covery, which can speed up the discovery of new drugs for
the incurable diseases.

For the future work, we plan to explore an effi-
cient path walk algorithm that is better adapted to
large knowledge base. We are interested in applying our
model to literature mining in other fields, such as eco-
nomics. We will continue to explore the innovation and
application of deep learning and machine learning on
LBD tasks.

Fig. 5 The performance of different percentage data
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Table 5 Case study: rediscover known drugs for diseases

Drug Disease Rank Drug status

Typherix Salmonella infection 1 Approved

INS-1 Metabolic disease 2 Approved

Triamterene Edema 5 Approved

Triamterene Congestive heart failure 3 Approved

Anapsos Atopic dermatitis 3 Approved

Brevenal Cystic fibrosis 2 Investigative

Diphencyprone Alopecia 7 Phase 2

ECFCs Cardiovascular disorder 7 Investigative

Pneumovax 23 Otitis media 1 Approved

Mesoglycan Cerebrovascular disorders 1 Approved

LASSBio-294 Hypertension 6 Investigative

Simethicone Dyspepsia 9 Approved

Additional files

Additional file 1: The 1714 drug-target-disease cases which are extracted
from Therapeutic Target Database(TTD) as true cases for constructing
training data. (TXT 87 kb)

Additional file 2: The gold standard drug-disease cases extracted from
TTD. There are 300 drug-disease case are selected from TTD as gold
standard test data for drug rediscovery. (TXT 11 kb)
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