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Abstract

Background: Reinforcement learning (RL) provides a promising technique to solve complex sequential decision
making problems in health care domains. To ensure such applications, an explicit reward function encoding domain
knowledge should be specified beforehand to indicate the goal of tasks. However, there is usually no explicit
information regarding the reward function in medical records. It is then necessary to consider an approach whereby
the reward function can be learned from a set of presumably optimal treatment trajectories using retrospective real
medical data. This paper applies inverse RL in inferring the reward functions that clinicians have in mind during their
decisions on weaning of mechanical ventilation and sedative dosing in Intensive Care Units (ICUs).

Methods: We model the decision making problem as a Markov Decision Process, and use a batch RL method, Fitted
Q Iterations with Gradient Boosting Decision Tree, to learn a suitable ventilator weaning policy from real trajectories in
retrospective ICU data. A Bayesian inverse RL method is then applied to infer the latent reward functions in terms of
weights in trading off various aspects of evaluation criterion. We then evaluate how the policy learned using the
Bayesian inverse RL method matches the policy given by clinicians, as compared to other policies learned with fixed
reward functions.

Results: Results show that the inverse RL method is capable of extracting meaningful indicators for recommending
extubation readiness and sedative dosage, indicating that clinicians pay more attention to patients’ physiological
stability (e.g., heart rate and respiration rate), rather than oxygenation criteria (FiO2, PEEP and SpO2) which is supported
by previous RL methods. Moreover, by discovering the optimal weights, new effective treatment protocols can be
suggested.

Conclusions: Inverse RL is an effective approach to discovering clinicians’ underlying reward functions for designing
better treatment protocols in the ventilation weaning and sedative dosing in future ICUs.
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Background
Emerging in recent years as a powerful trend and
paradigm in machine learning, reinforcement learning
(RL) [1] has achieved tremendous achievements in solving
complex sequential decision making problems in vari-
ous health care domains, including treatment in HIV
[2], cancer [3], diabetics [4], anaemia [5], schizophre-
nia [6], epilepsy [7], anesthesia [8], and sepsis [9], just
to name a few. However, all the existing RL applications
are grounded on an available reward function, either in
a numerical or an qualitative form, to indicate the goal
of treatments by clinicians. Explicitly specifying such a
reward function not only heavily requires prior domain
knowledge, but also relies on clinicians’ personal expe-
rience that varies from one to another. Thus, consistent
learning performance might not be always guaranteed. In
fact, even some components of reward information can
be manually defined, it is usually ambiguous to specify
exactly how such components should be traded off in an
explicit and effective manner. As such, in situations when
no explicit information is available regarding the reward
function, it is then necessary to consider an approach
to RL whereby the reward function can be learned from
a set of presumably optimal treatment trajectories using
retrospective real medical data.

The problem of deriving a reward function from
observed behaviors or data is referred to as inverse rein-
forcement learning (IRL) [10], which has received an
increasingly high interest by researchers in the past few
years. These methods have achieved substantial suc-
cess in a wide range of applications, from imitation of
autonomous driving behaviors [11, 12], control of robot
navigation [13] to high dimensional motion analysis [14].

Despite the above tremendous progress, there is sur-
prisingly quite limited work on applying IRL approaches
in clinical settings. We conjecture that such an absence
might be due to the inherent complexity of clinical data
and its associated uncertainties in the decision making
process. In fact, medical domains present special chal-
lenges with respect to data acquisition, analysis, inter-
pretation and presentation of these data in a clinically
relevant and usable format [15]. Medical data are usu-
ally noisy, biased and incomplete, posing significant chal-
lenges for existing RL methods. For example, many studies
are conducted with patients who fail to complete part of
the study, or, because of the finite duration of most stud-
ies, there is often no information about outcomes after
some fixed period of time. The missing or censoring data
will tend to increase the variance of estimates of the value
function and the policy in RL [16]. This problem becomes
even more severe in the case of IRL, where algorithms
not only need to learn a policy using RL, but also need
to learn a reward function using data characterized by the
above notorious features. The errors brought in during the

policy learning and reward learning intertwine with each
other in IRL, potentially leading to divergent solutions that
are of little use in practical clinical applications [17].

In this paper, we aim to apply IRL methods in solving
a specific clinical decision making problem in ICUs, i.e.,
the management of invasive mechanical ventilation, and
the regulation of sedation and analgesia during ventilation
[18]. Since prolonged dependence on mechanical ventila-
tion can cause higher hospital cost while increased risk of
complications may occur if premature extubation is con-
ducted, it is pressing to develop an effective protocol for
weaning patients off from a ventilator by properly trading
off these two aspects and making optimal sedative dosing
during this process. By using sets of real treatment trajec-
tories, we infer the reward functions that clinicians have in
mind during their decisions of mechanical ventilation and
sedative dosing in ICUs. Experiments verify the effective-
ness of IRL in discovering clinicians’ underlying reward
functions, which are then exploited for designing better
new treatment protocols in ICUs.

Related work
With the development in ubiquitous monitoring tech-
niques, a plethora of ICU data has been generated in a
variety of formats such as free-text clinical notes, images,
physiological waveforms, and vital sign time series, enable
optimal diagnose, treat and mortality prediction of a
patient in ICUs [15]. Thus far, a great deal of theoreti-
cal or experimental studies have employed RL techniques
and models for decision support in critical care. Nemati
et al. developed deep RL algorithms that learn an opti-
mal heparin dosing policy from real trails in large elec-
tronic medical records [19, 20]. Sandu et al. studied the
blood pressure regulation problem in post cardiac surgery
patients using RL [21]. Padmanabhan et al. resorted to
RL for the control of continuous intravenous infusion
of propofol for ICU patients by both considering anes-
thetic effect and regulating the mean arterial pressure to
a desired range [8]. Raghu et al. proposed an approach to
deduce treatment policies for septic patients by using con-
tinuous deep RL methods [22], and Weng et al. applied
RL to learn personalized optimal glycemic treatments for
severely ill septic patients [9]. The most related work is
that by Prasad et al., who applied batch RL algorithms,
fitted Q iteration with extremely randomized trees, to
determine the best weaning time of invasive mechani-
cal ventilation, and the associated personalized sedative
dosage [18]. Results demonstrate that the learned poli-
cies show promise in recommending weaning protocols
with improved outcomes, in terms of minimizing rates of
reintubation and regulating physiological stability. How-
ever, all these studies are built upon a well predefined
reward function that requires heavy domain knowledge
and manual engineering.
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Ng and Russell first introduced IRL to describe the prob-
lem of recovering a reward function of an MDP from
demonstrations [10]. Numerous IRL methods have been
proposed afterwards, including Apprenticeship Learning
[11], Maximum Entropy IRL [23], Bayesian IRL [24], and
nonlinear representations of the reward function using
Gaussian processes [25]. Most of these methods need
to solve an RL problem in each step of reward learn-
ing, requiring an accurate model of the system’s dynamics
that is either given a priori or can be estimated well
enough from demonstrations. However, such accurate
models are rarely available in clinical settings. How to
guarantee the performance of the RL solutions in an IRL
process is an unsolved issue in IRL applications, espe-
cially in clinical settings where the only available infor-
mation is the observations of a clinician’s treatment data
that are subject to unavoidable noise, bias and censoring
issues.

Methods
In this setion, we investigate the possibility of applying
IRL approaches in solving complex clinical decision mak-
ing problems, that is, automated weaning of mechanical
ventilation and optimal sedative dosage in ICUs. To this
end, the critical care data set and its preprocessing are
introduced first. The decision making framework and its
associated RL components are then discussed. Finally, an
IRL method is applied to refer the reward functions used
by clinicians.

Preprocessing of critical care data
We use the Medical Information Mart for Intensive
Care (MIMIC III) database [26], which is a large, freely
accessible database comprising identified health-related
information from nearly forty thousand distinct adult
patients and eight thousand neonates who stayed in crit-
ical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. The database is mainly

for academic and industrial research purpose, offering a
variety forms of data in critical care including demograph-
ics, vital signs, laboratory tests, diagnoses, medications,
and more.

To acquire the data for our purpose, we first extract
8860 admissions from adult patients undergoing invasive
ventilation in MIMIC III database. In order to focus on
weaning ventilation and sedative dosing, we further fil-
ter these data by excluding those admissions when the
patient was kept under ventilation for less than 24 hours,
or unsuccessfully discharged from the hospital by the end
of the admission. This allows us to exclude those admis-
sions when ventilation was applied during a short period
of time (e.g., after a surgery), or when a patient expired
in the ICUs due to many other factors unrelated merely
to the ventilator support and sedative dosing [18]. In this
paper, we mainly focus on learning policies for wean-
ing of ventilation and sedative dosing, thus, prolonged
ventilation, administration of unsuccessful spontaneous
breathing trials, or reintubation within the same admis-
sion are considered to be the main factors during decision
makings.

Data in critical care are characterized by issues of com-
partmentalization, corruption and complexity [15]. Mea-
surements of vital signals and lab results may be irregular,
sparse, and error-prone. Some physiological parameters
are taken several times an hour, such as heart rate or
respiratory rate, while other physiological parameters are
measured only once in several hours, such as arterial pH
or oxygen pressure. Changes in body state occur all the
time, and naive methods for interpolation do not meet
the necessary accuracy at higher temporal resolutions.
Therefore, we use support vector machines (SVM) to fit
the physiological parameters according to measurement
time. After preprocessing, we obtain complete data for
each patient, at a temporal resolution of 10 minutes, from
admission time to discharge time. Figure 1 shows exam-
ple trajectories of three vital signs (Heart Rate, SpO2 and

Fig. 1 Example trajectories of three vital signs (Heart Rate, SpO2 and Respiratory Rate) after preprocessing. a Heart Rate b Sp02 c Respiratory Rate
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Respiratory Rate) after preprocessing. It shows that the
predicted trajectories can fit the sample trajectories at a
high accuracy.

MDP formulation and the RL solution
The decision making process of our problem is modeled as
a Markov Decision Process (MDP) by a tuple of 〈S, A, P, R〉,
in which st ∈ S is a patient’s state at time t, at ∈ A is
the action made by clinicians at time t, P(st+1|st , at) is the
probability of the next state after given the current state
and action, and r(st , at) ∈ R is the observed reward fol-
lowing a transition at time step t. The goal of an RL agent
is to learn a policy to maximize the expected accumulated
reward over time horizon T by:

Rπ (st) = lim
T→∞

Est+1|st ,π(st)

T∑

t+1
γ tr(st , at),

where the discount factor γ determines the relative weight
of immediate and long-term rewards.

The patient’s response to sedation and extubation
depends on many different factors, from demographic
characteristics, pre-existing conditions, and comorbidities
to specific time-varying vital signs, and there is consid-
erable variability in clinical opinion on the extent of the
influence of different factors [18]. We extracted the most
important 13-dimensional features, including respiration
rate, heart rate, arterial pH, positive end-expiratory pres-
sure (PEEP) set, oxygen saturation pulse oxymetry (SpO2),
inspired oxygen fraction (FiO2), arterial oxygen partial
pressure, plateau pressure, average airway pressure, mean
non-invasive blood pressure, body weight (kg), age, and
ventilation. In designing the set of actions, two actions
are defined to indicate a patient off or on the ventilator,
respectively. As for the sedative, we focus on a com-
monly used sedative, the propofol, and separate the dosage
into four different levels of sedation. Thus, the action set
defined includes eight combinational actions in total.

The formulation of reward function is the key in suc-
cessful applications of RL approaches. Here, we design a
reward function rt+1, under the guidance of clinicians at
the Hospital of University of Pennsylvania (HUP). Current
extubation guidelines at HUP must meet the following
two main conditions: the physiological stability (respira-
tory rate ≤ 30, heart rate ≤ 130 , and arterial pH ≥ 7.3),
and the oxygenation criteria ( PEEP (cm H2O) ≤ 8), SpO2
(%)≥ 88, and FiO2 (%) ≤ 50 ). Following previous work
[18], the reward function rt+1 is defined as rt+1 = rvitals

t+1 +
rventoff

t+1 + rventon
t+1 to reward physiological stability and suc-

cessful extubation while penalizing adverse events (i.e.,
failed spontaneous breathing trials SBTs or reintubation).

Reward component rvitals
t+1 evaluates how the actions

perform regarding the patient’s physiological stability in

terms of staying within a reasonable range and having not
changed drastically:

rvitals
t+1 =C1

∑

vsta
t

[
1

1 + e−(vsta
t −vsta

min)
− 1

1 + e−(vsta
t −vsta

max)
+ 1

2

]

− C2

[
max

(
0,

|vsta
t+1 − vsta

t |
vsta

t
− 0.2

)]
,

where values vsta
t are the measurements of physiolog-

ical vitals in the state definition (i.e., respiratory rate,
heart Rate, and arterial pH) at time t, which are believed
to be indicative of physiological stability. When vsta

t ∈[
vsta

min, vsta
max

]
, the patient is considered to be in a physiolog-

ically stable state. The second part on the right indicates
the negative feedback when consecutive measurements
had a sharp change, which is detrimental to the patient.

Reward component rventoff
t+1 evaluates the performance of

weaning ventilation at time t + 1:

rvent off
t+1 = 1[st+1(vent on)=0]

⎡

⎣C3 · 1[st(vent on)=1]

+C4 · 1[st(vent on)=0] − C5
∑

vext
t

1[vext
t > vext

max || vext
t < vext

min]

⎤

⎦,

where vext
t are parameters related to the conditions for

extubation (i.e., FiO2, SpO2, PEEP), and 1[con.] is an indi-
cator function that returns 1 if the condition con. is true,
and 0 otherwise. If vext

t /∈ [
vext

nim, vext
max

]
, which means the

condition is not suitable for extubation, the agent will get
negative rewards when extubation has been conducted.
Otherwise, a positive reward will be given at the time of
successful extubation (i.e., the C3 component).

The last reward component rventon
t+1 simply indicates the

cost for each additional hour spent on the ventilator:

rvent on
t+1 =1[st+1(vent on)=1]

[
C6 · 1[st(vent on)=1]

−C7 · 1[st(vent on)=0]
]

.

Constants C1 to C7 are weights of the reward func-
tion (C1 + . . . + . . . C7 = 1), which determine the
relative importance of each reward component. Given
a predefined weight vector, existing RL methods can
be applied to learn an optimal policy for the deci-
sion making problem. Due to its data efficiency, we
adopt an off-policy batch-mode RL method, the Fit-
ted Q-iteration (FQI) [27], to solve the learning prob-
lem. FQI uses a set of one-step transition tuples F ={(〈

sn
t , an

t , sn
t+1

〉
, rn

t+1
)

, n = 1, . . . , |F |} to learn a sequence
of function approximators of the Q values (i.e., the
expected value of state-action pairs) by iteratively solv-
ing supervised learning problems. The Q values are
updated at each iteration according to the Bellman
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equation: Q̂k(st , at) ← rt+1 + γ max
a∈A Q̂k−1(st+1, a), where

Q̂1(st , at) = rt+1. The approximation of the optimal policy
after K iterations is then given by:

π̂∗(s) = arg max
a∈A

Q̂K (s, a).

Although various existing supervised learning methods
are available for regression in FQI, including kernel-based
methods and decision trees, in this paper, we use the
Gradient Boosting Decision Tree (GBDT) [28] method as
the regression method due to its supreme performance in
generalization.

A Bayesian IRL solution
The direct application of RL approaches requires pre-
defined weight parameters such that a feasible policy
can be learned. Although, generally, the reward function
can be formulated according to some domain knowl-
edge, in many situations, an explicit formulation of reward
functions is difficult or even impossible, even with the
guidance of experts. In response to this problem, an
apprenticeship learning algorithm was proposed [11],
which learns the reward function from the trajectory of
an expert’s demonstration, so that the learned policy can
match the expert’s policy most [11]. Although the basic
reward components for the ventilation weaning and seda-
tive dosing problem in ICUs have been formulated based
on the guidance of expert doctors, how to derive the
weights to trade off these components is still a challenging
issue to be resolved.

To this end, we first intend to use the apprenticeship
learning algorithm to learn the complete reward func-
tion (i.e., values for C1, . . . , C7) from the cases treated by
expert clinicians and then optimize the policies learned by
using this reward function. To use apprenticeship learn-
ing algorithm, a concept called feature expectation should
be defined, which can be simply understood as the expec-
tation of the corresponding environmental feature under
the current policy. The algorithm then proceeds as fol-
lows. The reward function is initialized first, randomly
or preferentially according to some prior knowledge, and
then any RL algorithm can be used to compute an inter-
mediate policy. By assuming an accurate model of the
system’s dynamics that can be either given a priori or can
be estimated well enough from the data trajectories, the
feature expectation for the intermediate policy can be cal-
culated. After that, it calculates the weight of the reward
function to ensure that the closest feature expectation
between the expert policy and the intermediate policy be
maximized. Then the new reward function can be applied
to compute a new policy and a new feature expectation.
This process iterates until the resulting policy is close
enough to the expert’s policy.

Algorithm 1 Bayesian IRL with Fitted Q-Iteration
Input:
One-step transitions F = {〈sn

t , an
t , sn

t+1〉, rn
t+1}n=1:|F |;

Action space A;
Subset size N ;
Regression parameters θ ;
Initialize:
Reward function R; Strategy π ; Probability P(O|R);
Repeat:
Randomly choose an R′ from the neighbors of R in R

|S|
δ );

Initialize Q0(st , at) = 0 ∀st ∈ F , at ∈ A
for iteration k = 1 → K do

subsetN ∼ F ;
S ←[ ];
for i ∈ subsetN do

Qk(si, ai) ← r′
i + γ max

a′∈A
(
predict(〈si+1, a′〉, θ)

)
;

S ← append(S, 〈(si, ai), Q(si, ai)〉);
end
θ ← regress(S);

end
π ← classify

(〈
sn
t , an

t
〉
, θ

)
;

Evaluate Qπ (s, a, R′) and compute P(O|R′);
p ← P(O|R′)

P(O|R)
;

R ← R′ with probability min{1, p};
Output: R

However, after applying apprenticeship learning algo-
rithm in the ICU problem, the learned policy could not
converge at all. After a deeper analysis, we found that
the reason was attributed to correlation of state features
in the reward function with the length of patient’s stay
in ICUs and the number of inbutation and exbutation.
These factors are affected by many other issues such as the
patient’s personal situation, the degree of shortage in ICU
wards, and the personal treatment strategy preference,
which cannot effectively distinguish the expert’s polices
and non-expert policies. Particularly, naive apprenticeship
learning algorithms that are built on the comparison of
feature expectations are unsuited for problems of bivari-
ate features with a varying length of trajectories, since
this would cause significant bias in computing the expec-
tations for such features, leading to divergence of final
learning performance.

To avoid the above problems, we exploited the Bayesian
IRL algorithm [24] to learn the reward function. The
whole learning procedure is given by Fig. 2. We assume
that under the reward value function R, the possi-
bility of the agent performing the expert trajectory
O = {(s1, a1), . . . (sk , ak)} is given by Pr(O|R) =∏k

i=1 Pr((si, ai)|R), in which the possibility for each (si, ai)
is assumed to follow the Boltzmann distribution as
Pr((si, ai)|R) = 1

Ci
eαQ∗(si,ai,R), where Q∗(s, a, R) is a
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Fig. 2 The process of IBL

potential function (the action value function) under the
optimal policy for R, Ci = ∑

a∈A eαQ∗(si,a,R) is the nor-
malization constant, and α is a parameter to adjust the
possibility of the expert’s choice of action. Combined with
the prior distribution of the reward function R, the pos-
terior probability of R under the observation and action
sequence O can be computed using Bayes’ theorem as
Pr(R|O) = 1

Z eα
∑

i Q∗(si,ai,R)Pr(R), where Z is another nor-
malization constant. When no other information is given,
we assume that reward value function Pr(R) obeys a
uniform distribution.

In order to compute the posterior distribution of R, we
use a Markov Chain Monte Carlo (MCMC) algorithm
(GridWalk) as the sampling method, which generates a
Markov chain on the intersection points of a grid of length
δ in the region R

|S| (denoted as R
|S|
δ ). Algorithm 1 gives

the main procedure of the Bayesian IRL method with
FQI as the RL algorithm in each inner iteration of policy
learning.

Results
As there are six commonly used sedatives in the MIMIC
III data set, we extract 707 admissions that the propo-
fol was applied as the sedative. These data are then split
into the training set with 566 admissions and test set with
the remaining 141 admissions. The radial basis function
is used as the kernel function in SVM with regularization
coefficient C being 25. After data preprocessing, 285.5 and
150.1 thousands one-step transitions are generated in the
training set and test set, respectively. In order to ensure
faster training speed, we take 10000 one-step transitions
for training in each iteration of FQI. The number of boost-
ing stages is 100, and learning rate is 0.1. All the samples
are used for fitting the individual base learners, and the
least squares loss function is to be optimized. For each

base learner, all the features are considered when looking
for the best split. The maximum depth is 3, the minimum
number of samples required to split an internal node is 2,
and at least one sample is required to be at a leaf node.
Other hyper-parameters are set as default values.

First, we would like to evaluate whether the FQI method
combined with GBDT as the regressor, and its inverse
version are capable of learning any effective solutions.
For each weight Ci (i ∈ {1, . . . , 7}), we constrain its
value in between [0,1] to indicate different levels of
importance. We test FQI-GBDT using a weight vector
of [1/7,1/7,1/7,1/7,1/7,1/7,1/7] (i.e., πBL), and the other
three different weight vectors that are generated randomly
from the range of [0,1], corresponding to πBL1 , πBL2 , and
πBL3 , respectively. Table 1 presents the parameter set-
tings for RL policies. In order to use the Bayesian IRL
with FQI-GBDT, we choose the initial weight vector as
[0,0,0,0,0,0,0] to indicate none prior knowledge about the
value functions. After each exploration of the weights in
the IRL process, the weights are then normalized such
that their sum is equal to 1. Figure 3 plots the conver-
gence of the learning processes in terms of difference
of Q values in two consecutive iterations. Both the RL
methods and the IRL method are capable of achieving a
convergence after around 40 iterations, which verifies the
effectiveness of the application of RL and IRL methods

Table 1 Weight vectors for different RL policies

Policy Weight of reward function

πBL [ 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7]

πBL1 [ 0.14, 0.24, 0.15, 0.19, 0.07, 0.07, 0.14]

πBL2 [ 0.08, 0.17, 0.16, 0.18, 0.29, 0.10, 0.02]

πBL3 [ 0.07, 0.19, 0.12, 0.21, 0.26, 0.04, 0.11]



Yu et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 2):57 Page 117 of 197

Fig. 3 Convergence of Q̂ using FQI-GBDT and the inverse FQI-GBDT
methods

in solving the ventilation and sedative dosing problems
in ICUs. Since IRL method involves a process of esti-
mating the reward function during learning, it can bring
about a more efficient and robust learning process than
the RL methods that are based on predefined fixed reward
functions.

Figure 4 plots the convergence of probability P(O|R)
using Bayesian IRL, where W1 =[ 0, 0, 0, 0, 0, 0, 0] and W2 :
[ 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7]. As the number of iter-
ations increases, the policies learned by using πIBL are
getting closer to the expert’s policy. However, weight W2
enables a better initial performance than W1 due to less
exploration in the reward function space. Note that P(O|R)
is not a probability converging to 1, since it is a proportion
value that an action’s potential function (i.e., Q function)
accounts for the potential functions of all the actions.
Results in Fig. 4 thus indicate that the efficiency of a Baye-
sain IRL method closely depends on the initial weights
of the reward functions. If some prior knowledge about
the reward functions is available, learning efficiency can

Fig. 4 The convergence of P(O|R) using different initial values of the
weights

be greatly improved by initializing weights to those spec-
ified by this prior knowledge. Enabling the integration of
domain knowledge into the learning process for perfor-
mance improvement is also a major merit of Bayesain IRL
methods.

In order to assess how well the policies learned match
the true policies of the doctors, we validate all the policies
on the test set of real medical data. As shown in Table 2,
the performance of RL methods heavily depends on the
choice of initial reward weights. Policy πBL matches 53.5%
of the joint action of doctors, with 99.6% consistency in
ventilation action and 53.9% in sedative action, while pol-
icy πBL2 can only matches averagely 14.1% of the joint
action. The IRL method is consistent with doctors’ actions
in ventilation by 99.7% and in sedative dosing by 54.2%,
achieving an overall consistency of 53.9%.

We further divide the test data set into two main
sub-groups: expert data set, in which inbutation was
conducted only once and the SBTs were successful, and
non-expert data set in which inbutation was conducted
only once but the SBTs failed (i.e., Ordinary Single Intu-
bation Data) or inbutation was conducted more than once
(i.e., Multiple Intubation Data). The latter two data sets
are considered to be non-expert data sets because wrong
decisions of weaning the ventilation or sedative dosing
caused the failure of SBTs or inbutation more than once.
Table 3 shows the results of πIBL and πBL in these test data
sets in terms of match of sedative dosing actions. As πBL
is the best policy among all the RL polices, it can achieve
a comparable correctness against πIBL. However, the cor-
rectness of the non-expert sets, particularly the multiple
intubation data set, is much higher than the expert test set.
This is because it is more difficult to derive the experts’
reward functions compared with non-experts, since non-
experts’ reward functions (i.e., clinical decisions) usually
deviate far away from the true ones expressed by experts.
The larger bias thus enables IRL methods to explore the
whole reward function space more easily.

Discussion
Current extubation guidelines provide precise conditions
for clinicians to determine when extubation is most
preferable. However, the priorities of these conditions

Table 2 The correctness of learned polices using RL and IRL
methods in the test data set

Policy Overall Action Ventilation Sedative

πIBL 53.9% 99.7% 54.2%

πBL 53.5% 99.6% 53.9%

πBL1 23.5% 45.7% 51.0%

πBL2 14.1% 35.5% 39.1%

πBL3 17.2% 34.9% 54.1%



Yu et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 2):57 Page 118 of 197

Table 3 The correctness of sedative dosing polices using RL and
IRL methods in the test data set

Policy Expert Data Ordinary Single
Intubation Data

Multiple
Intubation Data

πIBL 44.5% 48.5% 63.4%

πBL 44.4% 48.4% 62.8%

are usually based on clinicians’ personal experience, thus
having not been explicitly specified. Figure 5 compares
the importance of patients’ physiological indicators and
ventilator parameters using the policies learned by the
four RL methods and IRL method. It is clear that the
feature importance of the policies learned by different
reward weights and learning methods differ from each
other a lot. For example, the top three important fea-
tures are (FiO2, MAP and age), (FiO2, MAP and PEEP
set), and (FiO2, MAP and SpO2) for policy πBL3 , πBL2 , and
πBL1 , respectively. However, results in Fig. 3 show that the
three RL methods perform poorly in terms of slow con-
vergence rate and unstable learning process, indicating the
limitations of such feature priorities.

To provide a deeper insight, we compared the impor-
tance of related features using the two more efficient
methods of πBL and πIBL. Figures 6 and 7 show that the

importance of related features shares quite similar pat-
terns. The top three important features are age, heart
rate and respiratory rate, and these three features together
account for a large proportion of all the features. Partic-
ularly, the age of a patient is strongly correlated with the
patient’s ability to recover, and thus is given the highest
priority when considering ventilation and sedative treat-
ment policies in ICUs. Besides, heart rate and respiration
rate are two main factors in maintaining physiological
stability. Paying special attention to these factors is con-
tradictory to the other three RL methods (i.e., πBL1 , πBL2 ,
and πBL3 ) that pay more attention to oxygenation criteria
of FiO2, PEEP and SpO2.

Although πIBL and πBL methods share similar learning
performance, surprisingly, the learned weights differ a lot.
The weights of the reward function using πIBL is finally
stabilized at [ 0.26, 0.06, 0.18, 0.12, 0.08, 0.28, 0.02]. Com-
pared with the weights [ 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7]
using the πBL method, weights C2, C5 and C7 using πIBL
are much smaller, while weights C1 and C6 are much
larger. This indicates that, rather than considering all the
seven factors equally, doctors give higher priorities to the
patient’s physiological stability in terms of staying within
a reasonable range (i.e., higher C1), and the cost for each
additional hour spent on the ventilator (i.e., higher C6),

Fig. 5 Comparison of feature importance using different RL and IRL policies
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Fig. 6 Feature importance using πBL

but lower priorities to other factors. These results sug-
gest helpful insights into the development of new effective
treatment protocols for intelligent ventilation and sedative
dosing in ICUs.

Conclusions
In this work, a data-driven approach is proposed to the
optimization of weaning mechanical ventilation and seda-
tive dosing for patients in ICUs. We model the decision
making problem as an MDP, and use a batch RL method,
FQI with GBDT, to learn a suitable ventilator weaning
policy from real trajectories in historical ICU data. A
Bayesian IRL method is then applied to infer the latent
reward functions in terms of weights in trading off vari-
ous aspects of evaluation criterion. We demonstrate that
the approach is capable of extracting meaningful indica-
tors for recommending extubation readiness and sedative
dosage, on average outperforming direct RL methods in
terms of regulation of vitals and reintubations. Moreover,

Fig. 7 Feature importance using πIBL

by discovering the optimal weights using IRL methods,
new effective treatment protocols can be suggested in
the intelligent decision making of ventilation weaning and
sedative dosing in future ICUs.

Although our work has verified the effectiveness of IRL
methods in complex clinical decision making problems,
there are a number of issues that need to be carefully
resolved before these methods can be meaningfully imple-
mented in a clinical setting. First, in this paper, the two
main processes of data preprocessing and data learning
are conducted separately. There is no doubt that the errors
brought in the preprocessing process will affect the learn-
ing accuracy in the data learning period. It is thus neces-
sary to enable IRL methods to directly work on the raw
noisy and incomplete data. Moreover, most existing IRL
methods require an accurate model to be given before-
hand or estimated from data. This is infeasible when such
a model is lacking or accurate estimation of the model is
infeasible directly from expert demonstrations, particu-
larly in clinical settings where the model always involves
a large volume of continuous states and actions. It is thus
valuable to apply IRL methods that are capable of esti-
mating the rewards and model dynamics simultaneously.
Some theoretical research on IRL [17, 29] has investi-
gated these issues recently and can be investigated in the
clinical settings here. These issues are left for our future
work.
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