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Abstract

Background: De-identification is the first step to use these records for data processing or further medical
investigations in electronic medical records. Consequently, a reliable automated de-identification system would be
of high value.

Methods: In this paper, a method of combining text skeleton and recurrent neural network is proposed to solve
the problem of de-identification. Text skeleton is the general structure of a medical record, which can help neural
networks to learn better.

Results: We evaluated our method on three datasets involving two English datasets from i2b2 de-identification
challenge and a Chinese dataset we annotated. Empirical results show that the text skeleton based method we
proposed can help the network to recognize protected health information.

Conclusions: The comparison between our method and state-of-the-art frameworks indicates that our method
achieves high performance on the problem of medical record de-identification.
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Background
Electronic Medical Records (EMRs), due to the large
amount of information they contain, are valuable
resources worth studying. However, because of the large
number of Protected Health Information (PHI) existing
in EMR, it is difficult for researchers or organizations to
obtain these records. Therefore, de-identification of such
records is an essential step for using EMRs outside
hospitals. Figure 1 shows a sample record with private
information, including name, age and record number of
patients (highlighted in Fig. 1).
Dorr et al. [1] have evaluated the time cost to manually

de-identify narrative text notes (87.2 ± 61 s per note).
They concluded that the problem of de-identification was

time-consuming. Therefore, a de-identification system is
required to automatically detect the personal identifiers.
Most of the state-of-the-art systems adopted heuristic or
hand-made rules for improving the performance, but the
rules are difficult to generalize.
In early 1996, a system named Scrub was proposed by

Sweeney [2], through a rule-based approach to hide PHI.
In the same year in United States, the Health Insurance
Portability and Accountability Act (HIPAA) was passed.
18 categories of information, such as the patients’
names, ID numbers, dates, locations, etc., were defined
within the scope of its protection and must be removed
from the clinical data before it can be safely de-
identified. Since then, many pattern-matching-based and
data-driven systems have been introduced [3–6].
To accelerate automated de-identification research, a

unified platform to evaluated different systems was firstly
provided by the 2006 i2b2 de-identification challenge [7].
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In this challenge, eight PHI categories, Patients, Doctors,
Hospitals, IDs, Dates, Locations, Phone numbers and
Ages, were used to annotate Partner Healthcare data. The
competing systems employed rule-based [8] and statistic-
based methods. Some researchers considered the challenge
as a problem of classification, while others considered it as
a sequence labeling problem. These methods include Hid-
den Markov Models (HMM), Conditional Random Fields
(CRFs) [9], Support Vector Machines (SVM) [10], and
Decision Trees [11]. Compared with other researches, the
results manifested that machine learning-based systems
were the best [7].
Along with some recent studies [12], researchers

reached an agreement that it is necessary to build a
stricter standard than HIPAA. To achieve the goal,
the 2014 i2b2 de-identification challenge for longitu-
dinal clinical narratives focused on 25 PHI types,
inclusive of 12 types as defined by HIPAA [13, 14].
Some well performing systems submitted to the 2014
i2b2 de-identification track, employed CRFs mixed
with dictionaries and regular expressions [15–17].
Li et al. [18] introduced a Stackelberg game to balance

risk and utility in EMRs de-identification, they believe
their approach is a clear example of risk management
approaches to medical data de-identification. Dernoncourt
et al. [19] introduced the first de-identification system
based on artificial neural network (ANN) and achieved
state-of-the-art results on two English datasets.
In this paper, we propose a novel method, which has

strong generalization ability, to figure out the de-
identification challenge. The method combines text
skeleton (TS) and recurrent neural network (RNN) to
identify private information in EMRs. The framework,
without any structure changed, does well on 2006 i2b2
de-identification challenge, 2014 i2b2 de-identification
challenge and a Chinese EMRs dataset annotated by
ourselves. The experimental results show that our
method is competitive and outperforms the state-of-the-
art frameworks at binary token-level. Specifically, the
performance on two different i2b2 datasets as well as
the Chinese dataset demonstrated an F-score of about
0.98 consistently.

Methods
Datasets
We evaluate our model on three datasets: two English
datasets from the 2006 i2b2 [7] and the 2014 i2b2 [14]
de-identification challenges, one Chinese dataset we
annotate by ourselves. The Chinese EMRs come from a
maternal and child health-care hospital consisting of
9700 medical records of 485 gravidas. The PHI categor-
ies which include dates, IDs, patients, doctors, locations,
hospitals and ages are the same as the 2006 i2b2 de-
identification dataset. In this work, our dataset is anno-
tated after Chinese word segmentation. Hence the PHIs
would not be sliced by mistake. The sizes of the datasets
and the distributions of primary PHI categories are
presented in Table 1.

RNN model
We first present a de-identification system based on
RNN as a challenging baseline. RNN is a class of artificial
neural network architecture which uses iterative function
loops to store information [19]. The long-distance history
is stored in a recurrent hidden vector which is dependent
on the immediate previous hidden vector. Long Short-
Term Memory (LSTM) [20] is one of the most popular
variations of RNN. There are several multiplicative gates
in LSTM memory cells which can store and access

Fig. 1 A snippet of an EMR

Table 1 Overview of the datasets

i2b2–2006 i2b2–2014 Chinese

Number of records 669 1304 9700

Number of tokens 560,852 1,005,582 3,026,944

Number of PHIs 19,498 28,862 48,072

Number of PHI tokens 29,917 38,435 137,496

Vocabulary Size 20,254 41,879 32,265

Percentage of ID 24.6% 3.6% 8.8%

Percentage of DATE 36.4% 43.2% 38.9%

Percentage of HOSPITAL 12.3% 8.0% 2.2%

Percentage of DOCTOR 19.2% 16.6% 14.7%

Percentage of PATIENT 4.7% 7.6% 17.3%

Percentage of AGE 0.1% 6.9% 16.1%
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information over long periods of time. Cho et al. proposed
Gated Recurrent Unit (GRU) [21] which is a simplification
of the LSTM architecture. Cho and his colleagues used
neither peephole connections nor output activation func-
tions, but they combined the forget gate and the input
gate into a single update gate. They also merged the cell
state with hidden state, thus the final model is simpler
than standard LSTM models. The GRU architecture can
be precisely specified as following equations:

rt ¼ σ Wr � ht−1; xt½ �ð Þ; ð1Þ

zt ¼ σ Wz � ht−1; xt½ �ð Þ; ð2Þ

ht ¼ 1−ztð Þ � ht−1 þ zt
� tanh W � rt � ht−1; xt½ �ð Þ; ð3Þ

where functions σ and tanh are non-linear activation
functions. rt is reset gate, zt is update gate, and W repre-
sent weights.
A bidirectional GRU consists of a forward GRU that

moves forward through time beginning from the start of
the sequence with another GRU that moves backward
through time beginning from the end of the sequence.
This structure can provide the output layer with whole
past and future context for each point in the input
sequence.
The RNN model for de-identification uses the bidirec-

tional GRU, as shown in Fig. 2. xt is a word of the

medical record, E is mapping from words to word em-
beddings, yt is the predicted label of the i-th word.

Text skeleton
Compared with normal articles or records, there are a
mass of short sentences and abbreviations in EMRs. In
addition, there are a great number of table-like texts and
special writing formats. Therefore, EMRs are a kind of
semi-structured text and the efforts to solve the problem
of de-identification can also focus on the text structure
of the records.
Because the forms of EMRs are different from normal

traditional text, the skeleton of a record, which helps to
privacy information recognition. A statistical approach,
proposed by us, extracts the skeletons of records, which
reveal the different format and punctuation usage
between corpora. Especially, only words that appear
more than t times during training will be retained and
the rest of the words are marked as <UNK> (words in
both training set and test set). It should be clearly noted
that not only named entities retain but also other words,
such as stop words. A text skeleton sample shows in
Fig. 3.
We can get various amount of information different

skeletons by tuning t. In fact, the scope of t cannot be
easily estimated. Therefore, we propose a method to de-
termine the value of t as in Eq. (4). Here vocabSize is the
vocabulary size of the dataset, fi is the number of words
whose frequency equal to i, maxFreq is the maximum

Fig. 2 The RNN model for de-identification

Fig. 3 A sample of the text skeleton
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frequency. r, a factor which value of is between 0 and 1,
which determines the vocabulary size of the skeleton ap-
proximately. Thus, appropriate value of t can be ob-
tained by tuning r.

t ¼ arg min
n

Xn

i¼t

f i−r � vocabSize
�����

�����; ð4Þ

s: t: 0 < n < max Freq;

0 < r < 1;

This approach avoids searching in a large range: by
adopting (4) the appropriate t often falls in a small
range. In different datasets, the best t can be smaller
than 15 or larger than 100 but the corresponding r
frequently falls between 0.1 and 0.3.
Sentence is the processed unit, within which the

named entities are searched for by many existing
systems. If we use the sentence context for the EMRs
de-identification, there will be one problem is that there
is only one or two words in many sentences. Especially
in some extreme cases, a PHI instance is the whole sen-
tence. In order to solve this problem, we concatenate all
sentences which come from a record to a unique string,
and add a “#RETURN” symbol between every two
sentences. Digits whether from training data or from test
data are converted into the string DIGIT. For example,
“a 46 year old male” we mentioned above will be
converted to “a DIGITDIGIT year old male”.

Combine RNN and text skeleton
We propose TS-RNN (Text Skeleton- Recurrent Neural
Network) by combining RNN with text skeleton. The
TS-RNN model is summarized in Fig. 4. There are two

branches at the input layer of TS-RNN, which receive
original medical record and the text skeleton respect-
ively. Each branch has its own word embedding layer
and RNN layer. Through the Softmax layer, each word
of the medical record generates a corresponding label.
Since the output of the labels are mutually exclusive, we
apply Softmax regression after the RNN layer. A label
dictionary, which generative process can be combined
with the automatic generation of word dictionary, is
considered as a necessary condition for determining the
Softmax output dimension.
Once the word embeddings have been learned in an

unsupervised fashion [22], fine-tuning them during
supervised training on the task of interest is possible and
has some advantages [23]. Note that there are two
dictionaries D1 and D2, which are used to map words to
the index. Therefore, the two embedding layers are also
different. In Fig. 4, the left input branch receives the
original text of medical records, and the right branch
receives the text skeleton we have introduced. The
output labels use BIO tagging scheme to identify PHIs.
A context window is essential for scanning the record,

as a record is too long for RNNs. The size of the context
window should be selected carefully: a small window size
cannot contain enough context information while a large
window goes against the learning of model.

Fig. 4 The structure of TS-RNN model

Table 2 Comparison with the i2b2 shared task submissions

2006 i2b2 2014 i2b2

Entity-level Token-level Entity-level Token-level

Submissions 0.76–0.96 0.80–0.97 0.44–0.93 0.58–0.96

TS-GRU 0.9452 0.9540 0.9344 0.9401
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Parameters of the model
Through training subsets of i2b2 datasets, we acquired
optimized parameters of the TS-RNN model. The model is
trained using Keras [24] with the RMSprop optimizer.
Dropout is applied before Softmax for regularization. We
used the early-stopping to choice suitable hyperparameters
of model on validation set (20% of the training data).
Here are some optimized parameters:

� Dropout: 0.5
� RNN architecture: GRU
� Hidden dimension: 150
� Embedding dimension: 150
� Early-stopping epoch: 8
� Window size: 7
� r: 0.25 (0.1 for 2014 i2b2 dataset and 0.14 for

Chinese dataset)

Results
PHI identification results on token-level and entity-level
The i2b2 de-identification challenge evaluated at token-
level and entity-level, and we used the same way to
evaluate our model [7, 14]. Meantime, it is significant to
evaluate at binary token-level (PHI token versus non-
PHI token). Obviously, the EMRs can be displayed for
its completeness. The comparison result is shown in
Table 2. Table 2 presents the comparison of F1-scores at
entity-level and token-level between the i2b2 submis-
sions and the TS-GRU model. Our goal is to retain non-
PHI and to use the complete de-identified EMRs for
further medical research.

PHI identification results on different datasets
Here are some the novel models and frameworks for
PHI identification. We compare them with our frame-
work, and the results, including the binary token-based
precisions, recalls and F1-scores, are shown in Table 3.
In the i2b2 2006 de-identification challenge, Wellner et
al. [9] achieved the best results, there is no results on
the 2014 i2b2 dataset. The Nottingham system [17] was

the best system in i2b2 2014 de-identification challenge.
Because it’s not publicly available, the system has no re-
sults on 2006 i2b2 dataset. MIST [25] is an off-the-shelf
program for de-identification and CRF + ANN was
proposed by Dernoncourt et al. [19]. CRF is the
model based on Conditional Random Field, Bi-LSTM
(Bidirectional Long Short-Term Memory) and Bi-GRU
(Bidirectional Gated Recurrent Unit) are classic bidir-
ectional RNN models. TS-GRU is the model we
proposed in this work.
From the binary token-based results we can conclude

that the TS-GRU model outperform classical models
and previous RNN-based models. Moreover, the TS-
GRU model is also competitive at token-level and entity-
level. There is an interesting phenomenon: precision of
machine learning methods is generally higher than the
corresponding recall value but handmade rules can
achieve a better recall. Most of medical records are
edited on templates, therefore they are semi-structured
text. An elaborated regular expression set can work
effectively, but these over-complicated rules can match
many non-PHIs by mistake.

Influence on the results by using different factor r value
Figure 5 shows the impact of the factor r on the per-
formance of our model on the 2006 i2b2 dataset. When

Table 3 Comparison between the state-of-the-art methods and our framework

Model 2006 i2b2 2014 i2b2 Chinese

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Wellner 0.9870 0.9750 0.9810 – – – – – –

Nottingham – – – 0.9900 0.9640 0.9768 – – –

MIST – – – 0.9529 0.7569 0.84367 – – –

CRF 0.9640 0.9371 0.9504 0.9842 0.9663 0.9752 0.9863 0.9705 0.9783

CRF + ANN – – – 0.9792 0.9784 0.9788 – – –

Bi-LSTM 0.9723 0.9656 0.9689 0.9878 0.9389 0.9627 0.9908 0.9584 0.9743

Bi-GRU 0.9871 0.9664 0.9766 0.9750 0.9704 0.9727 0.9898 0.9624 0.9759

TS-GRU 0.9903 0.9855 0.9879 0.9889 0.9723 0.9805 0.9875 0.9719 0.9797

Fig. 5 Impact of the value of r
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r is between 0.15 and 0.35, the model performs better. If
r is very small (0.05 or smaller), the dictionary of the
skeleton would be small and then the remaining words
of a medical record could not reveal the structure of this
record. On the other hand, if r is very big (bigger than
0.3), the text skeleton will degrade into the original text.
The maximum value of r in this experiment is 0.4, as the
corresponding t equals to 2 when r is larger than 0.4.

Influence on the result by setting different window size
Figure 6 shows the impact of the size of context window
on the performance. With the increasing of the window
size, precision, recall and F1-measure increase as well.
Yet after 7, F1-score begins to fluctuate slightly around a
fixed value.

Discussion
Figure 7 shows the token-level F1-scores for all PHI
categories on the 2006 i2b2 challenge dataset. Due to
the relatively small number of i2b2 datasets in 2006 (the
percentages 1% and 0.1% respectively), the LOCATION
and AGE categories performed significantly lower than
the other categories. Compared with the recall, the pre-
cision is higher on most categories except ID. On the
category of ID, the recall is about 0.4 higher than the

precision. This is due to the fact that all numbers were
replaced with the string DIGIT, so the ID numbers can
be recognized more easily. In Figs. 6 and 7, the results
on the 2014 i2b2 dataset and the Chinese dataset also
show that recall is higher than precision on the ID
category, which highlights the point.
Table 4 presents the results on the Chinese dataset at

entity-level and token-level. In the early stage of our
work, the system, based on rule, was established by
dictionaries and regular expressions.
Figure 8 shows the token-level F1-scores for all PHI

categories on the 2014 i2b2 challenge dataset. The
performance of HOSPITAL, CITY and STATE are
lower than others because these three categories are
quite similar. Sometimes, it’s also hard for humans to
classify these words. The performance of AGE is re-
markable higher than that in 2006 i2b2 dataset. And
because LOCATION is divide into CITY, STATE and
so on, the performance of these location names are
also superior.
Figure 9 shows the token-level F1-scores for all PHI

categories on our own dataset. Compared with recall ob-
tained for other categories, the recall of the PATIENT
category is clearly lower. Due to China’s cultural habits,
there is no contextual explanation that the patient’s
name information does not appear on the record with a
uniform format. A more serious problem is that most of
the names only appear once in the dataset, and <UNK>
information is an important factor in reducing the size
of the dictionary. Perhaps it is another reason the names
are hard to recognize.

Fig. 7 Token-level F1-scores for each PHI category on 2006
i2b2 dataset

Table 4 Performance at entity-level and token-level

Model Entity-level Token-level

Precision Recall F1-score Precision Recall F1-score

Rule-based 0.8747 0.9276 0.9003 0.8802 0.9478 0.9128

CRF 0.9815 0.8972 0.9375 0.9669 0.9236 0.9448

Bi-LSTM 0.9701 0.9235 0.9462 0.9545 0.9027 0.9279

Bi-GRU 0.9665 0.9470 0.9567 0.9592 0.9270 0.9428

TS-GRU 0.9778 0.9502 0.9638 0.9777 0.9447 0.9609

Fig. 8 Token-level F1-scores for each PHI category on 2014
i2b2 dataset

Fig. 6 The performance under different window sizes
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Conclusions
We proposed a novel de-identification system based on
text skeleton and recurrent neural network. Without any
structure transform, our method performs well on three
datasets mentioned above (two English datasets and a
Chinese dataset) at entity-level, token-level and binary
token-level. Especially, the results on i2b2 datasets show
that the TS-GRU model outperforms classic systems at
binary token-level.
Further analysis indicates our method better incorpo-

rates the special context in EMRs and is more flexible to
different languages than previous systems. Therefore,
future research base on TS-RNN will focus on the usage
of context and the generation of text skeleton.
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