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Abstract

Background: Schizophrenia is a kind of serious mental illness. Due to the lack of an objective physiological data
supporting and a unified data analysis method, doctors can only rely on the subjective experience of the data to
distinguish normal people and patients, which easily lead to misdiagnosis. In recent years, functional Near-Infrared
Spectroscopy (fNIRS) has been widely used in clinical diagnosis, it can get the hemoglobin concentration through the
variation of optical intensity.

Methods: Firstly, the prefrontal brain networks were constructed based on oxy-Hb signals from 52-channel fNIRS
data of schizophrenia and healthy controls. Then, Complex Brain Network Analysis (CBNA) was used to extract features
from the prefrontal brain networks. Finally, a classier based on Support Vector Machine (SVM) is designed and trained
to discriminate schizophrenia from healthy controls. We recruited a sample which contains 34 healthy controls and 42
schizophrenia patients to do the one-back memory task. The hemoglobin response was measured in the prefrontal
cortex during the task using a 52-channel fNIRS system.

Results: The experimental results indicate that the proposed method can achieve a satisfactory classification with the
accuracy of 85.5%, 92.8% for schizophrenia samples and 76.5% for healthy controls. Also, our results suggested that
fNIRS has the potential capacity to be an effective objective biomarker for the diagnosis of schizophrenia.

Conclusions: Our results suggested that, using the appropriate classification method, fNIRS has the potential
capacity to be an effective objective biomarker for the diagnosis of schizophrenia.

Keywords: Functional near-infrared spectroscopy, Schizophrenia discrimination, Complex brain network analysis,
Support vector machine

Background
Schizophrenia [1] is a mental disorder characterized by
abnormal social behavior and failure to understand what
is real. Common symptoms include false beliefs, unclear
or confused thinking, hearing voices that others do not
hear, reduced social engagement and emotional expres-
sion, and a lack of motivation. It not only produce great
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pain to the patients but also bring a heavy burden to their
family.

fNIRS is a haemodynamic-based technique for the
assessment of functional activity in the human brain [2].
Based on the tight coupling of neural activity and oxy-
gen delivery [3], changes in the concentration of oxy-
genated and deoxygenated haemoglobin are noninvasively
measured by fNIRS and taken as indicators for cortical
activation. The typical fNIRS signal observed after neural
activation is a decrease of deoxygenated accompanied by
an increase of oxygenated comparable in time course to
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the blood oxygenation level dependent signal of fMRI [4].
fNIRS provides comprehensive information about haemo-
dynamics consisting of oxygenated, deoxygenated and
changes in total haemoglobin. It is characterised by its
straightforward application which resembles in the out-
ward appearance more an electroencephalogram. Thus,
the data collection is comfortable for the subjects because
of the less constrictive measurement circumstances which
probably lead to more ecologically valid conditions than in
other neuroimaging methods [5]. These inherent advan-
tages accompanied by the rapid developments in tech-
nology and methodology enabled fNIRS to easily enter
psychological, psychiatric and basic research on children,
adults and elderly subjects.

Because the symptom of schizophrenia is similar with
other diseases, such as depression and anxiety. Doctors
can only use the information of genetic predisposition,
substance abuse, living conditions and prenatal stressors
to predict the schizophrenia is triggered or not. Usually
it is not generate immediately but takes years for the dis-
ease to surface. So design a computer aided identification
method can help improving the doctor’s diagnostic result.
With that being the case, many patients can have access to
a proper medication, as such, the wellbeing of the patients
and the medical quality of hospitals will increase.

During the past several years, many studies have applied
the fNIRS technique to investigate the brain activation
patterns in patients with schizophrenia. Converging evi-
dence suggests schizophrenia patients are often associ-
ated with reduced activities and inappropriate activity
timing around the bilateral prefrontal cortex during a
verbal fluency task or other cognitive tasks [6]. Based
on these findings, some studies have attempted to apply
the fNIRS signal as a diagnostic tool with different pat-
tern recognition methods. In [7], authors measured the
changes of the oxy-Hb signal during multiple cognitive
tasks from two fNIRS channels located in the bilateral
prefrontal areas and then applied stepwise linear discrim-
inant analysis to distinguish patients with schizophrenia
from healthy subjects. They separated the total sample
into two groups, and each group consisted of 60 sub-
jects (including 30 patients with schizophrenia and 30
age-and gender-matched healthy controls). The experi-
mental results demonstrated that there was an accuracy
rate of 88.3% for classification in the first group, and the
discrimination function derived from the first group cor-
rectly differentiated 75% of the subjects in the second
group. To integrate spatial and temporal information in
multichannel fNIRS, [8] employed a novel probabilistic
pattern recognition method called Gaussian process clas-
sifier for the diagnostic classification of schizophrenia.
Using the temporal patterns of fNIRS data measured dur-
ing a working memory task, an overall accuracy of 76%
was achieved in a group of 80 samples. And [9] applied

a 52 channel fNIRS system to identify the significantly
different regions in the prefrontal cortex during a ver-
bal fluency test and then utilized a k-means clustering
method for discriminant analysis between schizophre-
nia patients and healthy subjects. The results indicated
68.69% and 71.72% of the participants were correctly clas-
sified as schizophrenic or healthy subjects with all 52
channels and six significantly different channels, respec-
tively. And [10] proposed a method using principal com-
ponent analysis and SVM to discriminate patients with
schizophrenia from health controls using a large sample of
52 schizophrenia patients and 38 healthy controls. They
achieved a satisfactory classification with the accuracy of
93.33%, 100% for schizophrenia samples and 84.62% for
healthy controls.

Human brain network is one of the complex networks
[11, 12]. Researchers have used the complex network the-
ory [13, 14] to construct the brain network, then analyze
the constructed brain network using complex network
theory and calculate index of the brain network for further
study. The brain network can be divided into structural
and functional brain network [15, 16]. The nodes and
edges are two key elements in the brain network. Diffusion
tensor imaging and diffusion spectrum imaging [17, 18]
are two imaging techniques used in structural brain net-
work. Since the two techniques can track the direction of
the mental fiber electrical signal, the structural brain net-
work is considered as directional. The definition of the
node of functional brain network is changing with differ-
ent imaging techniques. Generally we define the connec-
tions between nodes by calculating pearson correlation or
partial correlation which is used to describe the statisti-
cal significance of functional brain signals over a period of
time. The functional network is non-directional since the
correlation between nodes only reflects their statistical
significance, no causal relationship.

In this paper, we designed a cognitive task and recruited
a group of subjects to perform this task. The group
included 42 schizophrenia patients and 34 healthy con-
trols and a 52 multichannel fNIRS system was used to
examine the hemodynamic signals in the bilateral pre-
frontal and superior temporal cortices during the cogni-
tive task. Then we used CBNA to extract the effective
features between schizophrenia patients and healthy con-
trols. Finally we trained the SVM classifier and evaluated
it with leave-one-out cross validation. The results show
that the proposed approach has the high potential to be
a promising clinical tool in the objective diagnosis and
treatment of psychiatric disorders.

Methods
DataSet description
The dataset was provided by Peking University Sixth
Hospital. The fNIRS measurements were conducted with
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Fig. 1 Ten to twenty system channel map for the 52 channels

a 52 multichannel fNIRS System (ETG-4000, Hitachi
Medical Co., Japan). In the system, 33 probes (17 emit-
ters and 16 detectors) were stabilized on the scalp and
arranged as a 3 × 11 array, which was positioned accord-
ing to the international 10–20 system. The recording
channels were established between each pair of emit-
ters and detectors, which resulted in 52 channels total.
Specifically, the detector between Channel 5 and 6 was
located at Fz, Channel 46 and 49 were placed in Fp2 and
Fp1, and the emitters which were close to Channel 43 and
52 were fitted around T4 and T3, respectively. Fz, Fp2,
Fp1, T4 and T3 are the reference electrode positions in
the international 10-20 system, shown in Fig. 1. Thus, the
fNIRS probe set covered the entire prefrontal cortex and
some regions of the superior temporal cortex. The relative
changes in oxy-Hb and deoxy-Hb were measured using
a reflectance mode with two different wavelengths (695
and 830 nm) of near-infrared light. The relative changes in
total-Hb were equal to the sum of oxy-Hb and deoxy-Hb.
The temporal resolution of fNIRS was set to 0.1 s.

The dataset included 42 patients with schizophrenia
(mean age: 31 ± 12 years, female/male: 26/16) and 34
ageand sex-matched healthy controls (mean age: 33 ±
10 years, female/male: 20/14). All subjects were right-
handed and native Chinese speakers. The diagnosis for
schizophrenia was based on the Structured Clinical Inter-
view for the DSM-IV (American Psychiatric Association,
1994). The healthy controls were enrolled through the
local community and then assessed to confirm no history
of psychiatric or neurologic disorders. This study was con-
ducted in accordance with the Declaration of Helsinki and
was approved by the ethics committee of Peking Univer-
sity Sixth Hospital. All subjects provided written informed
consent after the experimental procedure had been fully
explained.

The experiment was performed in a quiet environment.
All subjects were required to maintain emotionally sta-
bility prior to the experiment and to avoid moving the
head as much as possible during the measurement. We
designed a one-back memory task. The task comprised a
5s pre-scan and a 25s waiting period, a 70s task period,
and a 50s post-task baseline period. We can see it in Fig. 2.
During the pre- and post-task baseline periods, the sub-
jects were required to stare the screen. During the task
period, they were instructed to press a button with their
right index finger whether or not the current image pre-
sented on the screen was the same as the previously shown
one. The images were changed every 2s and the rendering
time was 0.5s, there were a total of 29 figures shown. A
detailed description of this experimental procedure could
be found in elsewhere [19].

Schizophrenic discrimination method
The process of schizophrenia discrimination includes
preprocessing the fNIRS data, constructing brain net-
work, feature extraction, training the classifier, cross
validation and testing. The flowchart of schizophrenia
discrimination process is shown in Fig. 3. In this paper,

Fig. 2 The time variance in the data retrieval
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Fig. 3 The framework of schizophrenia discrimination

CBNA is used to extract the feature eigenvalues and SVM
is used as the classifier.

Preprocessing data
The original fNIRS data of a schizophrenia patient is
shown in Fig. 4, the blue line plots the oxy hemoglobin
concentration variation of healthy person. In order
to reduce the effects of the high frequency noise,
low-pass filtering is used to do data preprocessing.
Before low-pass filtering, We first use Fast Fourier
transform to do spectrum analysis to find which
frequency the fNIRS exists in. Figure 5 shows the Fast
Fourier transform result of original oxy hemoglobin con-
centration variation of healthy person and schizophrenia
patient, blue line represents the healthy person and red

line represents the schizophrenia patient. It is obvi-
ously that the frequency of fNIRS signal mainly exists in
0.0–0.5 HZ, so a low-pass filter with the cut-off frequency
0.5 Hz is designed to do the filtering. The result of the low-
pass filtering is shown in Fig. 6. The blue line represents
original data and red line represents processed data. It can
be seen that the curve after low-pass filter is smoother
than before, some high frequency noise is reduced. This
reduced the effects of high frequency noise and improved
the classification accuracy.

Construct the brain network
The process of a functional brain network construction is
shown in Fig. 7. During the construction process, defining

Fig. 4 Original oxy hemoglobin concentration
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Fig. 5 The fourier transform of original oxy hemoglobin concentration of normal and schizophrenia people

the edge and node of the brain network are two important
steps. Nodes in the brain network correspond to the
measured 52 channels of fNIRS. The Pearson correlation
coefficient of fNIRS time series between different nodes
is usually calculated to quantify the relationship between
them. The edge is defined by setting an appropriate

threshold to binarize the connection relationship of the
nodes.

The Pearson correlation coefficient is calculated as
follows, take the ith and jth channel’s fNRIS data as variable
X, Y (i, j = 1, 2 . . . 52, i �= j), the Pearson correlation
coefficient is ri,j, then

Fig. 6 Oxy hemoglobin concentration before and after low-pass filtering
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Fig. 7 The flow chart of functional brain network construction

ri,j = cov(X, Y )

σXσY
= E(X − μX)(Y − μY )

σXσY

= E(XY ) − E(X)E(Y )
√

E(X2) − E2(X)E(Y 2) − E2(Y )
(1)

Where cov(X, Y ) is the covariance, σX , σY are the stan-
dard deviation, μX , μY are the mean of variable X and
Y respectively. The Pearson correlation coefficient of two
variables X and Y is equal to the covariance divided by the
product of the standard deviation of the two variables.

From the calculation process of Pearson correlation
coefficient, we can get a Pearson correlation coefficient
matrix with a row and column which have 52 dimensions

for a subject. Each element in the matrix is a Pearson
correlation coefficient value. When i = j, the Pearson cor-
relation coefficient is 1. Here we calculated the Pearson
correlation coefficient of 76 subjects and constructed 76
correlation coefficient matrices. Fig. 8 shows the result of
Pearson correlation coefficient matrix of a schizophrenic
patient after color rendering.

After quantizing the relationship between 52 chan-
nels,we got the Pearson correlation coefficient matrix, it is
necessary to choose an appropriate threshold T in order
to construct the edge of the nodes. Whether there is an
edge connection between two nodes is depend on the
Pearson correlation between two channels.If the absolute
value of the Pearson correlation coefficient is greater than
the threshold, there is an edge between the corresponding
nodes, and vice versa.

ei,j =
{

1, |ri,j| ≥ T
0, |ri,j| < T (2)

We use sparsity as a measurement of the threshold T.
Sparsity is the ratio of the actual number of edge to the
possible maximum number of edge in matrix. There is no
quantitative relationship between sparsity S and thresh-
old T. If the sparsity of the binarized matrix is set to 50%,
when binarizing the Pearson correlation matrix, T is the
median of the ascending correlation coefficient. When the
correlation coefficient is greater than the median, it has
edge and vice verse. The actual number of edge is just half
of the maximum possible one. In the study of the brain
network, most researchers use sparsity with fixed interval
to study the topological properties of the brain network
with multiple thresholds. Here we set the sparsity range
from 1 to 50% to ensure the sparseness of the network.

Fig. 8 Pearson correlation coefficient matrix of a schizophrenic
patient after color rendering
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After binarization, we get the binary matrix which is
corresponding to the brain network matrix. Thus we get
the brain network of 76 subjects.

Feature extraction based on CBNA
After get the brain network of 76 subjects, the basic
attribute index of the network is calculated by using the
formula of basic attribute value in complex network the-
ory. The basic attributes we used here are the degree of
node, clustering coefficient, local efficiency and global
efficiency. In this way we get a 52-dimensional eigenvec-
tor of the above four attributes. Since the threshold is
changed from 0.01 to 0.5 with an interval of 0.01, it is
necessary to select eigenvector with significant differences
in each attribute from the 50 thresholds to make subse-
quent classification decisions. After reduce the dimension
of eigenvector of each attribute, we find there is a signif-
icant difference of the node degree when the threshold
is set to 0.21. Thus, we choose the attribute of the node
degree at threshold 0.21 to construct the final eigenvector.
Fig. 9 shows the result of eigenvectors constructed with
the attribute of node degree when the threshold is 0.21.
It can be seen that the eigenvector between the healthy
control and schizophrenic has significance difference.

SVM-based classifier
The SVM is a learning machine for a two-class classifica-
tion problem [20]. It is proposed by Vapnik as an extension
of statistical learning theory. Due to its ability to handle
high-dimensional data and could acquire high accuracy
in the classification, SVM has been widely used in many
areas.

SVM conceptually implements the idea that vectors are
non-linearly mapped to a high dimension feature space.
In the feature space, a linear separation surface is created

Fig. 9 Result of eigenvectors constructed with the attribute of node
degree when the threshold is set to 0.21

to separate the training data by minimizing the margin
between the vectors of the two classes. The training ends
with the definition of a decision surface that divides the
space into two sub-spaces. Each sub-space corresponds to
one class of the training data. Once the training is com-
pleted, the test data are mapped to the feature space. A
class is then assigned to the test data depending on which
sub-space they are mapped to. In this paper, a SVM toolkit
named libsvm written by Lin Chih-Jen from Taiwan Uni-
versity [21] is used. A radial basis function is selected as a
kernel function and parameters are kept as default values.

Cross validation is frequently used in classification
problems, which mainly divided into K fold cross valida-
tion and the leave-one-out cross validation. Here we use
the leave-one-out cross validation to evaluate the classifi-
cation result. Suppose there are N samples, leave-one-out
cross validation continues N rounds, each round one sam-
ple will be as a test sample, the rest N−1 samples are as the
training sample. After N rounds of cross validation, each
round will get a classification accuracy. Finally, the aver-
age classification accuracy will be acquired for N rounds.
leave-one-out cross validation can effectively reduce the
classification accuracy error caused by the inefficient sam-
ple. Here the dataset we used include 34 healthy persons
and 42 schizophrenic patients. In the leave-one-out cross
validation, the dataset is separated into 76 samples, every
sample will be as a test sample and the rest 75 samples will
be a training set, continues 76 rounds.

Results and discussion
The testing result of schizophrenics and healthy controls
is shown in Table 1, where 39 of the 42 schizophre-
nia and 26 of 34 health controls were discriminated
successfully on Oxy-Hb/Deoxy-Hb signal. The method
based on CBNA and SVM successfully discriminated 65
(39 schizophrenia and 26 healthy persons) signals with an
overall accuracy of 85.5% for fNIRS classification on test-
ing set. And on total signal, where 39 of the 42 schizophre-
nia and 22 of 34 health controls were discriminated
successfully. The method successfully discriminated 61
(39 schizophrenia and 22 healthy persons) signals with an
overall accuracy of 80.3%.

Our study was a binary classification, and we first
defined the class of schizophrenia patient as positive and
the class of healthy control as negative. Then, TP is the
number of schizophrenia patients correctly predicted; TN

Table 1 The finally testing result

Classification accuracy Specificity Sensitivity

Oxy-Hb 85.5% 76.5% 92.8%

Deoxy-Hb 85.5% 76.5% 92.8%

Total 80.3% 64.7% 92.8%
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is the number of healthy controls correctly predicted; FP
is the number of healthy controls classified as schizophre-
nia patients; and the FN is the number of schizophrenia
patients classified as healthy controls. Finally, the perfor-
mance of a classifier can be quantified by using the ACC,
SS and specificity or TNR; These measures are defined as
follows:

ACC = TP + TN
TP + FP + TN + FN

(3)

SS = TP
TP + FN

(4)

TNR = TN
TN + FP

(5)

ACC represents the ration between correctly classi-
fied samples and total samples. SS represents the ratio
between correctly classified schizophrenic patients and
total schizophrenic patients. TNR represents the ratio
between correctly classified health controls and total
health controls. Therefore, a good fNIRS-aided diagnostic
classifier is assumed to have larger ACC and TNR values.

After 76 rounds of cross validation, there are totally 11
misclassified cases on Oxy-Hb signal. Including 8 cases
of normal people and 3 cases of schizophrenic patients.
The classification accuracy is 85.5%, specificity is 76.5%,
sensitivity is 92.8%. Table 2 shows more details about the
testing results on Oxy-Hb signal. For the Deoxy-Hb sig-
nal, there are also 11 misclassified cases. Including 8 cases
of normal people and 3 cases of schizophrenic patients.
The classification accuracy is 85.5%, specificity is 76.5%,
sensitivity is 92.8%, the same as Oxy-Hb signal. For the
total signal is shown in Table 3. There are 15 misclassi-
fied cases. Including 12 cases of normal people and 3 cases
of schizophrenic patients. The classification accuracy is
80.3%, specificity is 64.7% and sensitivity is 92.8%. Here we
choose Oxy-Hb signal to discriminate schizophrenic. This
accuracy is especially satisfactory for the discrimination.

Table 2 Testing result of schizophrenic and healthy on Oxy-Hb
signal

CBNA+SVM Classified results

1(Schizophrenia) -1(healthy)

47 29

Data set 1(Schizophrenia) 42 39 3

-1(healthy) 34 8 26

Accuracy of schizophrenia (SS) 39/42=92.8%

Accuracy of healthy((TNR)) 26/34=76.5%

Classification accuracy(ACC) 65/76=85.5%

Table 3 Testing result of schizophrenic and healthy on total
signal

CBNA+SVM Classified results

1(Schizophrenia) -1(healthy)

61 25

Data set 1(Schizophrenia) 42 39 3

-1(healthy) 34 12 22

Accuracy of schizophrenia (SS) 39/42=92.8%

Accuracy of healthy((TNR)) 22/34=64.7%

Classification accuracy(ACC) 61/76=80.3%

Conclusion
Our study demonstrated that the designed task is an
effective experimental paradigm. Compared with healthy
controls, the multichannel fNIRS results on the sample
confirmed that schizophrenia patients in the Chinese pop-
ulation had significant lower brain activation over the
prefrontal cortex and superior temporal cortex. Finnally,
we achieved a considerable overall classification accu-
racy of 85.5% (65/76) using the SVM classifier and CBNA
based feature selection on the oxy-Hb signal. Thus, SVM
had the good classification performance especially after
performing the CBNA based feature selection. Our results
illustrated that, by using the appropriate classification
method, fNIRS represents a promising diagnostic tool to
differentiate schizophrenia patients from healthy controls.
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