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Abstract

Background: With the invention of fitness trackers, it has been possible to continuously monitor a user’s biometric
data such as heart rates, number of footsteps taken, and amount of calories burned. This paper names the time series
of these three types of biometric data, the user’s “activeness”, and investigates the feasibility in modeling and
predicting the long-term activeness of the user.

Methods: The dataset used in this study consisted of several months of biometric time-series data gathered by
seven users independently. Four recurrent neural network (RNN) architectures–as well as a deep neural network and a
simple regression model–were proposed to investigate the performance on predicting the activeness of the user
under various length-related hyper-parameter settings. In addition, the learned model was tested to predict the time
period when the user’s activeness falls below a certain threshold.

Results: A preliminary experimental result shows that each type of activeness data exhibited a short-term
autocorrelation; and among the three types of data, the consumed calories and the number of footsteps were
positively correlated, while the heart rate data showed almost no correlation with neither of them. It is probably due
to this characteristic of the dataset that although the RNN models produced the best results on modeling the user’s
activeness, the difference was marginal; and other baseline models, especially the linear regression model, performed
quite admirably as well. Further experimental results show that it is feasible to predict a user’s future activeness with
precision, for example, a trained RNN model could predict–with the precision of 84%–when the user would be less
active within the next hour given the latest 15 min of his activeness data.

Conclusions: This paper defines and investigates the notion of a user’s “activeness”, and shows that forecasting the
long-term activeness of the user is indeed possible. Such information can be utilized by a health-related application to
proactively recommend suitable events or services to the user.
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Introduction
With advances in technology and ever-busy schedules,
people tend to lack physical activity, and have increased
level of stress. They are hence at a greater risk of suffering
from the so-called “modern diseases” such as cardiovascu-
lar disease, diabetes, metabolic disorders, and stroke [1].
Attaining a healthy lifestyle, which incorporates a bal-
anced diet and a plenty of exercise, is considered to be key
in preventing such diseases.
Recently, many health-care-related devices and services

have emerged to aid users in monitoring and improv-
ing their physical wellness (Section Devices and services
for wellness improvement). With wearable devices, such
as fitness trackers, it has been possible to continuously
observe the biometric data produced by a user, and notify
the user when he/she has been physically inactive for a
period of time. Many services also provide users with
general tips on a healthy lifestyle, and motivation to be
physically more active during the day, for example, by
letting them know how many steps remain to reach the
weekly average, or by offering them virtual “badges” to
commemorate their physical achievements which can be
boasted over a social media platform.
While some of these approaches have been considered

to be effective by their users [2], this paper suggests that
their usefulness can be further improved if a long-term
predictive model of the user’s “activeness” is incorporated
into the health-care services. For example, an applica-
tion can project the user’s activeness for some period
of time in the future, and inform him/her of the remain-
ing days before the weight loss goal is (or not) reached. In
addition, it may take amore proactivemeasure, depending
on the user’s context, and preemptively recommend pos-
sible exercises that he/she could perform when the active-
ness is predicted to be below a threshold (Section Finding
time windows with low activeness).
Many research efforts have been made to accurately

model and predict users’ heart rates [3–6] and energy
expenditures [7–9], often as a mean to recognize their
simple activities (e.g. walk, run, lying down, etc.) [5] or
to identify any medically significant event such as heart
failure [4, 6, 10].
As the task of activity recognition or detection of

heart failure often involves classifying a relatively short
span of time, most existing works utilize machine
learning algorithms such as feed-forward neural
networks (FFNNs), support vector machines (SVMs),
and random forests (RFs) that are known to be effec-
tive in learning short-term temporal dependencies
among time-series data. Furthermore, these works
often employ wearable sensors that are specifically
designed for a certain type of biometric data, and focus
on building an accurate model for the type of data and
the task at hand.

In this paper, we slightly shift the perspective, and aim
to investigate the feasibility of modeling a user’s long-term
activeness which could, to some extent, represent his/her
lifestyle pattern. Currently, our notion of activeness for a
given period of time is tracked as a tuple of heart rate, con-
sumed calories, and the number of footsteps taken by the
user.
Instead of utilizing separate wearable sensors for each

type of data, a fitness tracker is used to continuously
record the three types of biometric data of the user for
several months (Section Data set construction).We exper-
iment with recurrent neural network (RNN) architectures
which are considered to be well suited for learning long-
term dependencies among temporal data. While there are
many studies of RNN architectures being applied to var-
ious sequential modeling tasks (Section Recurrent neural
networks), few works exist in the domain of wellness mod-
eling. Therefore, this paper explores how the performance
of activeness prediction is varied by changing (1) a set of
length-related hyper-parameters of the training process,
and (2) the RNN architectures.
The rest of the paper is organized as follows. Section

Background explores the background for this study, while
Section Methods illustrates the proposed approach. In
Section Results and discussion, we describe and analyze
the gathered time-series dataset, and present the experi-
mental results. Finally, Section Conclusion concludes the
paper with some directions for future works.

Background
This section briefly introduces some of the commercial
devices and services that are proposed to measure and
improve a user’s “wellness” (Section Devices and services
for wellness improvement), along with some academic
researches that aim to model biometric data for various
tasks (Section Modeling biometric data). Moreover, exist-
ing works that involve time-series modeling using RNNs
are presented in Section Recurrent neural networks.

Devices and services for wellness improvement
According to the Centers for Disease Control and Preven-
tion, USA, 70.7% of American adults over the age of 20
are overweight, and 37.9% of the same group are obese as
of 2013–2014 [11]. As a need for a “fitness revolution” is
greater than ever before, fitness devices and services are
flooding the marketplace.
Since 2006, the footwear company Nike has introduced

the “Nike+ Sports Kit” that records the distance and
paces of a walk or run, and transmits the data to the
user’s smart device. A series of all-around activity track-
ers have been independently manufactured by Fitbit and
Jawbone. These fitness trackers measure the number of
steps taken and log the heart rates of the wearer. Based on
these measurements (and other biometric information),
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the consumed calories and the traveled distance are cal-
culated. This study utilized Jawbone’s “UP3” model and
Fitbit’s “Charge HR” model to continuously record users’
heart rate, footsteps, and calories.
Several fitness centers and health-care providers have

devised wellness “scores” or “indices” that aim to quan-
tify the physical fitness of an individual. For example,
Life Time Fitness proposes the “myHealthScore” [12] that
is determined by six indicators: blood pressure, triglyc-
erides, total cholesterol to high-density lipoprotein ratio,
glucose, body fat, and tobacco use.
Dacadoo introduces the “Health Score” [13] which

ranges from 1 to 1000, and is calculated from biomet-
ric values (gender, age, weight, waist circumference, blood
pressure, etc.), emotional values (acquired from self-
assessment questionnaires), and lifestyle values (exercise,
nutrition, steps, sleep, etc.). Linking with the aforemen-
tioned fitness trackers, the Health Score is continuously
updated throughout the day as the user performs activities
such as walking, running, sleeping, etc.
The “Wellness Score” [14] offered by 8 Weeks to Well-

ness ranges from 1 to 100, and is calculated using various
biomarkers including: body mass index, posture num-
ber, core strength and flexibility, body fat percentage, and
heart rate.
While these measures claim to represent an individual’s

state of wellness or health, how the corresponding fac-
tors are combined to produce a single value is not known
publicly. Furthermore, there is not yet a general consensus
even among doctors and medical researchers about what
constitutes wellness and how they should be defined and
measured. For example, several key dimensions can exist
to define wellness–physical, psychological or emotional,
social, intellectual, spiritual, occupational, environmen-
tal, cultural, economic, and climate–and for each dimen-
sion, different researchers may view certain factors more
important than other factors, and thus propose different
scoring functions [15].
In addition, the holistic perspective of calculating a

single wellness score is not fully grounded on medical
examination; after all, the involved factors vary in both
characteristics and units.
For these reasons, we specify that this study targets to

model a person’s physical “activeness”, which is kept as a
series of tuples of heart rate, consumed calories, and the
number of footsteps, and avoid using the more general
term, “wellness”.

Modeling biometric data
While the term “biometric data” in the context of security,
generally refers to measurable physical characteristics that
help authenticating an individual (e.g. fingerprint, retina,
vein, etc.), this study refers to its more general meaning–
the measurable biological quantities of an individual that,

unlike the former kind, may change over time. This
paper targets three types of biometric data–heart rate,
burned calories (energy expenditures), and the number of
footsteps–that reflect how physically active a person is for
a given period of time.
The task of modeling human heart rates and energy

expenditures (EE) has been widely studied across many
disciplines such as sports science, medicine, electrical
engineering, and computer science. Keytel et al. [7] devel-
oped a prediction equation for EE from the heart rate by
monitoring 115 regularly exercising individuals aged 18 to
45 years old. The participants performed exercises on a
treadmill, and their heart rate and respiratory exchange
ratio data were collected. A mixed model analysis iden-
tified gender, heart rate, weight, maximal oxygen uptake,
and age as important factors in estimating EE.
Cheng et al. [3] proposed a non-linear state-space con-

trol system that modeled the heart rate of a person walk-
ing on a treadmill, and later utilized the model to build
a computer-controlled treadmill system for regulating the
heart rate during exercises.
Sumida et al. [5] introduced an approach that predicted

the heart rate of a walking user, utilizing an accelerom-
eter and GPS data obtained from the user’s smartphone.
The authors used the raw data from the smartphone to
calculate the oxygen uptake, which was then fed as a form
of input data to an artificial feed-forward neural network
(FFNN).
Similarly, Pande et al. [8] estimated EE for ambulatory

activities using accelerometer and barometer sensors in
a smartphone. Their model, which also used an artificial
FFNN, outperformed calorimetry equations and EE values
obtained from commercial fitness trackers.
Bouarfa et al. [9] targeted a slightly more general set-

ting of estimating EE under “free-living” conditions using
a single ear-worn accelerometer. A regression analysis was
used to predict EE values, while linear discriminant and
nearest neighbor classifiers were employed to classify a
window of accelerometer values into one of ten activities
such as lying down, standing, computer work, vacuuming,
etc. The regressionmodel correlated well with themedical
gold standard, the doubly labeled water test.
In addition to the general task of modeling heart

rate and EE, some works specifically focus on medical
problems such as heart failure detection. For example,
Austin et al. [4] compared the classification performance
of several machine learning algorithms such as logis-
tic regression, bagging, RF, and SVM, when applied to
classifying patients with heart failure (HF) into one of
two mutually exclusive subtypes: HF with preserved ejec-
tion fraction and HF with reduced ejection fraction.
In their study, however, a set of detailed clinical data
of patients was utilized as opposed to the time-series
data.
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More relevantly, Zheng et al. [10] proposed a multi-
channel deep convolutional neural network (MC-DCNN)
for a time-series classification. Their model was applied to
a set of electrocardiograph data which had been recorded
from 15 patients suffering from severe congestive heart
failure. The task was to classify a 2D time-series input into
one of four types of heartbeats. In their experiments, the
proposed MC-DCNN performed better than the nearest
neighbor approaches and FFNNs.
Our work is similar to the above studies in that we aim

to model a person’s heart rates, burned calories (EE), and
number of footsteps. However, while the above works gen-
erally consider time-series data with lengths from a few
seconds to a dozen minutes, this work aims to model a
long-term temporal pattern by considering much longer
periods of temporal data, ranging from a dozen minutes
to days.

Recurrent neural networks
Recurrent neural networks (RNNs) represent a class
of artificial neural networks where some connections
between nodes form a directed cycle (Fig. 1).
Fundamentally, RNNs carry out the same task for every

element of an input sequence (xt), producing an out-
put (ot) that is both dependent on the current input and
results from previous computations (ht1 ). For example, in
the case of a vanilla RNN depicted in Fig. 1, the hidden
state (ht) at time t is computed by:

ht = fh (Uxt + Wht−1) (1)

where U and W represent the learned weight matrices
that are multiplied to vectors xt and ht−1 respectively; the
non-linear function fh(·) is usually a hyperbolic tangent
function (tanh) or a rectified linear unit (ReLU).
The output sequence (ot) is then calculated by:

ot = fo(Vht) (2)

where V and fo(·) denotes the learned connection weight
matrix for ht and the output unit activation function.
In essence, these two non-linear equations describe a

dynamic system where the future behavior of a real-world

system is captured deterministically by learning from the
series of past observations. Such learned information is
captured in the state of the dynamic system which, in
the case of RNNs, corresponds to the set of hidden unit
activations (ht). Therefore, the modeling power (or com-
plexity) of a dynamic system is determined by its state
space as well as its input and output spaces. Again, in
the context of RNNs, the order of state space corresponds
to the number of hidden units.
An RNN’s recursive loop can be “unfolded” over time,

which converts the network into a feed-forward neural
network. This means that a standard backpropagation
algorithm can be applied to the unfolded RNN for train-
ing. However, this also means that the classical prob-
lem of vanishing or exploding gradients [16] may be
present in the training process. To avoid this problem,
researchers have sophisticatedly formulated the internal
structure of the hidden state. Notable examples include
the long short-term memory (LSTM) unit, first con-
ceived by Hochreiter and Schmidhuber [17], and the
gated recurrent unit (GRU) by Cho et al. [18]. Unlike
the simple structure of the hidden state of the vanilla
RNNs, these units incorporate a delicate gating mech-
anism that effectively enforces constant error flow
and overcomes the saturation of gradients. A detailed
investigation of the LSTM family is conducted by
Greff et al. [19].
The recurrent behavior of RNNs has made them an

effective solution for various tasks involving sequential
data modeling: stock markets [20], energy consumption
[21], genetic expression [22], speech [23], and language
modeling [24]. In the medical domain, RNNs are often
used to model physiological signals such as electrocar-
diograms [25–27]. Recently, Lipton et al. [6] applied
LSTM cells to the task of multi-label classification of
multivariate clinical time-series data. While the task was
to predict the probability distribution of 128 labels (e.g.
diabetes, asthma, scoliosis, neoplasm, etc.), the authors
improved the performance of the model via auxiliary out-
put training which utilized the remaining 301 diagnostic
labels.

Fig. 1 General structure of vanilla RNNs
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Methods
To the best of our knowledge, modeling a person’s long-
term “activeness” using RNN architectures has not been
studied previously. This work utilizes GRU cells to model
the biometric data, exploring different layouts of networks
and parameter settings.
In this work, we are interested in predicting the active-

ness of a person based solely on his/her previous data.
As mentioned in Section Recurrent neural networks, such
task of temporal sequence modeling can be effectively
conducted using RNN architectures. This study explores
four RNN architectures described in Section Network
architectures.

Task settings
Before looking at the architectures, it is necessary to iden-
tify the hyper-parameters for training and evaluating an
RNN model for activeness prediction as they directly
affect the performance of the model. Figure 2 illustrates
the length-related hyper-parameters for (a) training, and
(b) testing a network (prediction).

• Training length specifies the total length of the
time-series data that are used to train the model.

• Input length corresponds to the number of time
steps that the network takes as an input. When
modeling a single type of biometric data, a memory
cell of LSTM or GRU receives one-dimensional
vector at a time step t, and updates its cell state using
the current input vector xt and the previous cell state
ct−1. Therefore, the input length n determines how
many time steps are processed internally by the
memory cell before producing an output vector ot at
t = n. In a typical case of language modeling, the
input length is often set to the average (or maximum)
sentence length. However, in our scenario of
modeling activeness, it is not so apparent as to how
long should the time steps be for each user. Hence,
this study explores the variations on this parameter.

• Output length refers to the length of the time-series
data that the model is required to predict for a given
input data.

• Prediction length represents the total length of the
time-series data that we want to predict.

We note that other network-based hyper-parameters
such as regularization methods, and choices in loss and
activation functions can also affect the network’s per-
formance. This study primarily focuses on exploring
the impact of aforementioned length parameters on the
activeness prediction.

Network architectures
As there are infinite number of ways in structuring a neu-
ral network model, building an effective network architec-
ture requires much practice and patience. In this study, we
experiment with the following four RNN architectures–
univariate many-to-one (Uni-MO), univariate many-to-
many (Uni-MM), multivariate many-to-one (Multi-MO),
and multivariate many-to-many (Multi-MM)–depicted
in Fig. 3.
Architectures (a) and (c) are each formulated in the

many-to-one fashion where the output is computed only
at the last time step of an input data. Notice that these two
structures offer more flexibility in choosing the output
length than many-to-many approach, (b) and (d), in the
sense that the output length can be different to the input
length. In many-to-many approach, an output vector is
computed at each time step, and is in the same dimension
as the input vector.
A univariate architecture models each type of biometric

data separately, while a multivariate architecture consid-
ers the three types of data together in the same model.
Therefore, for each user, three univariate models are
trained as we have three types of activeness data, while
just one model is built for the multivariate architecture.

Results and discussion
Data set construction
Our experiments utilize three types of biometric time-
series data: heart rate, number of steps walked, and
amount of calories burned. Seven graduate students
between the ages of 23 to 33 years old participated their
biometric data. It is noted that as the participants were

Fig. 2 Length-related hyper-parameters for a training, and b testing



The Author(s) BMCMedical Informatics and DecisionMaking 2017, 17(Suppl 1):57 Page 6 of 15

Fig. 3 The four types of recurrent neural network architectures: a univariate, many-to-one (Uni-MO), b univariate, many-to-many (Uni-MM), c
multivariate, many-to-one (Multi-MO), and dmultivariate, many-to-many (Multi-MM)

all graduate students, the gathered data could be biased
towards the group as less active as opposed to a more
active group of “athletes” or “outdoor service employees”.
However, a simple survey was conducted and revealed

that the participants’ lifestyle patterns were quite different
to one another. For example, three participants described
themselves as regularly exercising, while differing in the
type and duration of the workouts. Also, the participants’
bedtimes and wake-up times were not congruent as well.
An extreme case was a participant who operated on a
three-day cycle, where he stays up for two days and sleeps
for the next entire day.
A Jawbone’s UP3 fitness tracker was worn by each

participant, and used to gather the three types of the
biometric data. The device is equipped with a tri-axis
accelerometer that detects physical movements, and a
bio-impedance sensor that measures heart rate, respira-
tion, and galvanic skin response. While the exact inter-
nal logic for the tracker is not known publicly, we
believe that the consumed calories are calculated via
its own energy expenditure equation that considers the
wearer’s age, body mass index, number of footsteps, and
heart rate.
Recently, some criticisms have been made on the accu-

racy of the estimated calories [28], pointing out that var-
ious fitness trackers compute different amount of burned
calories when worn by the same user simultaneously. Nev-
ertheless, our experimental objective does not necessitate
an impeccable accuracy in computing the exact value
of energy expenditures as the main task is to learn the
long-term trend.

As the heart rate data in BPM were recorded at an
irregular interval (ranging from a few seconds to a few
minutes), a linear interpolation was conducted to prepare
the data in one-minute-intervals. For the burned calories
and number of footsteps, when an activity of an arbitrary
duration was performed, the total sum of each type of
data was recorded for that activity. Therefore, for each
time stamp in the duration of the activity, we assigned the
mean value, and later augmented the values to fit them in
one-minute-intervals.
After the interpolation or the augmentation, the values

underwent a log transformation as they are heavily posi-
tively skewed. Min-max normalization is then applied to
the data in order to fit them in 0 to 1 range. The minimum
and maximum values for each type of data were selected
by consulting relevant medical documents.
The statistics of the gathered data are presented in

Table 1. For convenient comparison among the users, we
prepared the time-series data to begin at the same time
stamp. The number of samples represents the number of
minutes in the recorded duration.

Data set analysis
Before conducting the main experiments, it would be
beneficial to inspect the data set for any noticeable char-
acteristic or pattern. First, we check if the three types of
activeness data are correlated to each other by comput-
ing the Pearson product-moment correlation coefficients.
The coefficient ranges between -1 to +1 inclusive, and
represents the strength of linear dependence between
two variables X and Y, where 1 is total positive linear
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Table 1 Statistics of the gathered time-series data for the seven users

User Start time End time Duration (months) Number of samples

AK

2015-10-12 00:00:00

2016-05-04 14:21:00 6.85 296,062

HJ 2015-11-29 02:32:00 1.60 69,273

JM 2015-11-19 19:05:00 1.29 55,866

KJ 2016-05-02 23:57:00 6.80 293,758

YJ 2016-05-03 18:00:00 6.83 294,841

YS 2016-01-14 10:11:00 3.15 135,972

ZM 2016-04-15 06:53:00 6.21 268,254

correlation; 0 is no correlation; and -1 is total negative
correlation. The values are computed using the raw time-
series data before the log and min-max normalization.
The results are presented in Table 2.
The calories and footsteps are positively correlated as

these data were generated at the same time when an activ-
ity was sensed by the tracker. However, it is interesting to
note that there seems to be no correlation between the
heart rate and the other two types of data. One possible
explanation would be the user’s activities, in general, were
mostly of mild intensity, and hence did not result in high
beats per minute. It is also possible that a user would per-
form an activity of high intensity, such as weight training,
that did not require many footsteps to take.
Another standard time-series analysis is checking the

correlation between values of a single variable, i.e., auto-
correlation. Positive autocorrelation reflects the “persis-
tence” of a system, where the system tends to remain in
the same state from a time step to the next. In Fig. 4, the
graphs on the left-hand side illustrate the autocorrelation
among each type of data of a user, while the plots on the
right-hand side depict the current activeness values, yt ,
against the next values, yt+1. The dashed and solid hori-
zontal lines in the autocorrelation graphs show 99% and
95% confidence bands respectively.
The autocorrelation graphs illustrate that the footsteps

and calories tend to correlate with itself only at the begin-
ning, i.e., the first 50 min. This hints that the user, at that
time, did not perform an activity that is longer than 50
min. This is more apparent in the footstep graph where
the autocorrelation drops to almost zero after 50 min. The
autocorrelation graph of heart rate depicts slightly differ-
ent pattern–there is a one major peak at 250 min. It is
often understood in signal processing domain that such
peak in the autocorrelation graph corresponds to the cycle

of the signal. In this context, however, as we have not
observed such recurring pattern for a long time, it would
be a little hasty to assume such pattern. It would seem that
the user perhaps had encountered an event that excited
his mental state which, in turn, increased the heart rate.
The lag plots on the right-hand side illustrate if the

time-series is random or not. A random series would not
show any identifiable pattern, while a non-random one
would exhibit a coherent pattern, such as the linear pat-
tern shown for the heart rate data. This linear pattern
suggests that fitting a linear model to the heart rate data
would be more effective than to calorie and footstep data
as the two types of data show rather sporadic patterns.

Choosing an RNN architecture
While separately conducting all experiments on each of
the four RNN architectures would be ideal, due to time
and resource constraints, we select the best perform-
ing one to be the specimen for the subsequent experi-
ments. We individually train each RNN architecture using
the first one month of the time-series data, and gen-
erate the data for the next week; the input and out-
put length is kept constant at 15 min for convenient
comparison.
In addition to these length parameters, GRUs are

selected to be the memory cells for our RNN architectures
as they converged faster than LSTM cells while preserv-
ing the accuracy. Each architecture is trained to minimize
the mean squared error (MSE) using a recently proposed
optimization method called Adam [29]. The training pro-
cess of a model is terminated when no improvement
is made on a randomly chosen set of unseen time-
series data. We also note that a dropout rate of 0.2 is
used in every layer for regularization, and rectified lin-
ear unit (ReLU) is chosen to be the non-linear activation

Table 2 Pearson product-moment correlation coefficients among the three types of activeness data

Calorie Footstep Heart rate

Calorie 1 0.88506139 0.03684186

Footstep 0.88506139 1 0.04260965

Heart Rate 0.03684186 0.04260965 1
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Fig. 4 Autocorrelation graphs (left) and lag plots (right) for each type of data

function for the fully-connected (dense) layers as it is
known to be robust to the vanishing gradient problem.
Each architecture is trained using a single user’s active-

ness data. As there are seven users in total, we have
seven separate models for each of the two multivari-
ate architectures, Multi-MO and Multi-MM. For each
of the two univariate architectures (Uni-MO and Uni-
MM), we have 21 models (3 ∗ 7) as there are three types
of activeness data to be modeled separately. In addi-
tion, because we are varying the number of hidden units,
every model is trained for all variations. On a single
GeForce GTX TITAN X graphic card, training one model
under the current length parameter setting took up to
90 min.

The predicted results of the seven users are evalu-
ated under symmetric mean absolute percentage error
(SMAPE):

SMAPE
(
y, ŷ

) = 100%
n

n∑

t=1

|ŷt − yt|
(|yt| + |ŷt|)/2 (3)

SMAPE measures the proportion of prediction error
relative to the magnitudes of both the predicted and cor-
rect values. Hence, the lower the SMAPE is, the more
accurate the model is on modeling the data set. It can be
viewed as a normalization of mean absolute error so that
a direct comparison between the users is made possible.
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For each architecture, we take the mean of the seven
users’ SMAPE for the three types of activeness data. In
addition, for each user, we average the three types of
SMAPE to compute the “combined” SMAPE. Figure 5
illustrates the combined SMAPE results for the four
models.
We note that the result for each type of activeness data

also produced graphs with the similar pattern shown in
Fig. 5. However, we specify that while the SMAPE for
heart rate ranged between 4 to 8%, that of calorie and
footstep ranged between 82 to 93%.
We can make two main observations from the graphs:

1. The univariate architectures perform better than the
multivariate ones.

2. The many-to-one architectures outperform the
many-to-many ones.

In Fig. 5, the first observation reflects our previous find-
ing that the heart rate data do not correlate highly with
the calorie and footstep data; thus, feeding all three data
to the model actually resulted in lower performance.
The second observation is more prominently shown

in Fig. 5–it turns out that arranging the network in
the many-to-one layout significantly improves the per-
formance. This is perhaps due to the fact that all
three data types autocorrelated well with their early
subsequent values, and thus deferring the judgment
until the last time step conveyed richer information
than producing hidden activation pattern at every time
step.
The increase in the number of hidden units did not

result in better performance, if anything, slightly worse.
We believe such phenomenon happens due to the overfit-
ting of the model to the training data. Amore fine-grained
grid search for the range between 32 to 128 units revealed

that 52 units produced the best result for the Uni-MO
model. Therefore, for the subsequent experiments, a Uni-
MO model with 52 hidden units were chosen to be the
representative model for the RNNs.

Effect of varying length parameters
Five experiments were conducted to evaluate the effect of
the four length parameters on the performance of active-
ness prediction. We specify that when one length param-
eter was varied, the other three parameters were fixed
as follows: training length=1month; input length=15mins;
output length=15mins; and prediction length=1week.
Table 3 summarizes the experiment setting.
Uni-MO model with 52 hidden units were employed to

conduct the experiments. We also utilized a deep neural
network (DNN) with two fully connected layers (52 and
26 hidden units with ReLU as the activation function for
both layers) and a linear regression model based on ordi-
nary least squares method as baseline algorithms. Each
experiment was conducted using the seven users’ data
separately, and the their SMAPE values were averaged for
comparison. Figures 6, 7, and 8 illustrate the results of the
five experiments.
In Fig. 6-(a), we see that an increase in input length does

not result in immediate performance gain. In fact, the top
performance of DNN was achieved when the input length
was set to 5 min; and RNN showed the smallest error
when the length was set to 15 min. It appears that as the
autocorrelation was strong only at the initial time steps,
predicting the next 15 min was effectively done by just
observing the first 5 to 10 min.
As for varying the output length in Fig. 6-(b), the perfor-

mance was at its highest for all models when the output
length was kept the shortest. The errors then increased for
longer lengths.

Fig. 5 SMAPE for each RNN architecture with varying no. of hidden units
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Table 3 Five experiments on varying the length parameters [M=months, W=weeks, D=days]

Experiments Input length (minutes) Output length (minutes) Training length Prediction length

#1: Varying the input length alone 5/15/30/60/120 15 1M 1W

#2: Varying the output length alone 15 5/15/30/60/120 1M 1W

#3: Varying the input & output length alone 5/15/30/60/120 1M 1W

#4: Varying the training length alone 15 1W/2W/1M/3M/5M 1W

#5: Varying the prediction length alone 15 1M 1D/3D/1W/1M/3M

In Fig. 7-(a), the result of the third experiment shows
nearly the identical pattern to that of the second exper-
iment, showing that even when the input and output
lengths were varied together at the same time, the vari-
ation of the output length played the dominant role in
terms of performance.
The result of the fourth experiment in Fig. 7-(b), vary-

ing the training length, shows a distinct pattern for each
model. The lowest error was achieved by the RNN model
when threemonths of training data were used. The regres-
sion model also showed good performance when the
training length was set to 1 month.
Lastly, Fig. 8 illustrates the result of the fifth

experiment–changing the prediction length. All three
models reached their top performance when threemonths
of unseen data were predicted. One possible explana-
tion is that the test data up to the first month exhibited
quite a different pattern to the training data, whereas
the test data up to the first three months were a
long enough duration that contained more regular
patterns.

All in all, under the optimal hyper-parameter setting for
each model, the RNN and linear regression model bested
the DNN model, and the RNN model outperformed the
regression model, albeit not by much. This illustrates a
rather surprising finding that, to some extent, model-
ing a user’s activeness can be conducted quite effectively
using a simple regression method, probably due to the
fact that the data mainly exhibited short-term temporal
dependencies.
In retrospect, setting the default training length to one

month was rather an unfair experimental choice for the
RNN model since the difference in errors between the
RNN and regression model was particularly large when
the training length was set to one month (Fig. 7-(b)). We
believe that had the default training length been set to
three months, the RNN model would have shown more
noticeable superiority over the regression model. Simi-
larly, in Fig. 8, we observe that the performance of the
RNN model was at its lowest when the prediction length
was set to the default length–one week. Nevertheless, the
fact that the RNN model showed the best performance

Fig. 6 SMAPE of the three models for the first (a) and second (b) experiment
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Fig. 7 SMAPE of the three models for the third (a) and fourth (b) experiment

for all experiments suggests that it is a more powerful and
stable modeling technique to use.
The limitation of the experiments lies in the small num-

ber of training samples for longer length parameters, i.e.,
we need to observe a user for longer period of time, and
acquire sufficient number of samples to claim statisti-
cally more significant results. In addition, although we

presented the averaged results for all seven users, every
user had a distinct activeness pattern (Section Qualitative
observations), and therefore would likely to produce dif-
ferent results when the individual is observed separately.
Figures 9 and 10 plot the predicted (blue) and real

(green) values of activeness data of a user during one
morning, where the former illustrates the results when

Fig. 8 SMAPE of the three models for the fifth experiment
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Fig. 9 Predicting calorie, footstep, and heart rate of a user [output length = 15]

output length was set to 15 min, and the latter, 60 min.We
can see that predicting 60min of unseen data given 15min
of input data was considerably a tougher task.

Finding time windows with low activeness
From an application’s perspective, it would be accept-
able to predict when a user will be inactive or less
active. For those users who are predicted to be inactive
in future moments, a health-care application may rec-
ommend some relevant exercises or alerts to the user
depending on his/her context.
In this experiment, we aim to find the inactive time peri-

ods of a user utilizing our model for activeness prediction.
We propose two ways in defining the time windows with
low activeness:

• Definition 1 A time window, whose length is equal to
15 min in our case, is marked as less active if more
than 70% (10.5 min) of the window’s values are lower
than the daily average value. Since there are three
types of activeness, we would have three separate sets
of time windows.

• Definition 2 We take the intersection of the three
sets of time windows defined in Definition 1,
producing a single set of time windows. This means
that a time window is marked as less active when all
three type of activeness are below the corresponding
daily average. This appears to be a more appropriate
definition as a user might conduct exercises that
require little walking or running, for example,
performing a set of weight training exercises.

In order to find these time windows with low activeness,
we experimented with the following two approaches:

• Approach 1 Comparing the time windows predicted
by the learned model against the true time windows
of each type of activeness data.

• Approach 2 Using all three (heart rate, footstep,
calorie) models, devise a voting method such that a
time window is taken to be less active if two of the
three models predict it to be so.

The precision, recall, and f1-score results for the task are
presented in Table 4.
It seems that following the Definition 2 presented a

tougher task than the Definition 1. It is also notable that
the voting method, Approach 2, improved the classifica-
tion performance.

Qualitative observations
Looking through the prediction results obtained by the
different users, we observed that a user with a regular
lifestyle was indeed easier to predict than a user with an
erratic lifestyle (Fig. 11). For example, the graphs below
illustrate themean squared error (MSE) for predicting two
users’ footsteps over seven days. The seven colored line
represents the seven days in the week.
The MSE for predicting the user A’s footstep is

decreased significantly at certain times in a day, implying
that at those times, the user had been very predictable.
However, the graph of the user B consistently shows high

Fig. 10 Predicting calorie, footstep, and heart rate of a user [output length = 60]
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Table 4 Precision, recall and f1-score results for finding the time windows with low activeness

Approach Definition
Heart Rates Calories Footsteps

Pr. Rc. F1 Pr. Rc. F1 Pr. Rc. F1

Approach 1 Definition 1 .66 .66 .66 .78 .75 .75 .80 .77 .78

Definition 2 .70 .60 .61 .72 .61 .62 .74 .63 .64

Approach 2 Definition 2 Precision=.84, recall=.65, f1-score=.66

MSE, implying that his/her lifestyle had not been very
consistent during the week.

Conclusion
In this work, we explored the feasibility of modeling a
user’s activeness using biometric data retrieved from fit-
ness trackers. We proposed four RNN architectures, and
later selected one (Uni-MO) to further investigate the per-
formance under various length parameter settings. We
observed that although the top results were achieved
by the RNN model, a simple linear regression model

also performed admirably, which reflected the short-
term temporal dependencies among the time-series data.
Through the additional experiment on predicting the time
windows with low activeness, we saw that forecasting
when a user would be less active was indeed feasible with
good precision.
For future works, we plan to gather activeness data

of participants with more diverse lifestyle, and investi-
gate if a cluster of people, for instance, “morning people”,
can be formed; and if a set of rules that describe the
general pattern of an individual’s activeness data can be

Fig. 11 Predictability of two users, A and B, with regular (user A) and irregular (user B) weekly lifestyle. The colored line represents each of the seven
days
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extracted [30]. In addition, we are currently developing
a health-care application that aims to increase a user’s
activeness through proactively recommending (and learn-
ing) activities that the user likes to perform. By observing
the user in the long run, we hope to see if such application
has a prominent effect on the user’s activeness.
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