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Abstract

Background: Cancer is a disease characterized as an uncontrolled growth of abnormal cells that invades neighboring
tissues and destroys them. Lung cancer is the primary cause of cancer-related deaths in the world, and it diagnosis is a
complex task for specialists and it presents some big challenges as medical image interpretation process, pulmonary
nodule detection and classification. In order to aid specialists in the early diagnosis of lung cancer, computer
assistance must be integrated in the imaging interpretation and pulmonary nodule classification processes. Methods
of Content-Based Image Retrieval (CBIR) have been described as one promising technique to computer-aided
diagnosis and is expected to aid radiologists on image interpretation with a second opinion. However, CBIR presents
some limitations: image feature extraction process and appropriate similarity measure. The efficiency of CBIR systems
depends on calculating image features that may be relevant to the case similarity analysis. When specialists classify a
nodule, they are supported by information from exams, images, etc. But each information has more or less weight over
decision making about nodule malignancy. Thus, finding a way to measure the weight allows improvement of image
retrieval process through the assignment of higher weights to that attributes that best characterize the nodules.

Methods: In this context, the aim of this work is to present a method to automatically calculate attribute weights
based on local learning to reflect the interpretation on image retrieval process. The process consists of two stages that
are performed sequentially and cyclically: Evaluation Stage and Training Stage. At each iteration the weights are
adjusted according to retrieved nodules. After some iterations, it is possible reach a set of attribute weights that
optimize the recovery of similar nodes.

Results: The results achieved by updated weights were promising because was possible increase precision by 10%
to 6% on average to retrieve of benign and malignant nodules, respectively, with recall of 25% compared with tests
without weights associated to attributes in similarity metric. The best result, we reaching values over 100% of
precision average until thirtieth lung cancer nodule retrieved.

Conclusions: Based on the results, WED applied to the three vectors used attributes (3D TA, 3D MSA and InV), with
weights adjusted by the process, always achieved better results than those found with ED. With the weights, the
Precision was increased on average by 17.3% compared with using ED.
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Lung cancer
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Background
Cancer is a disease characterized as an uncontrolled
growth of abnormal cells that invades neighboring tis-
sues and destroys them. Its main manifestation occurs
due to the appearance of pulmonary nodules [1]. A nod-
ule is defined as a rounded or irregular opaque figure
with a diameter of up to 30 mm, normally presented on a
Computed Tomography (CT) image (Fig. 1) [2].
Lung cancer has become the most lethal malignancy in

recent decades. Though, despite advances in medicine,
there has been little progress regarding the cure of this
disease [3]. It is the most common cause of cancer-related
deaths, with a 5-year overall survival rate of only 15 % [4].
Themain cause is smoking [5]. Thus, the best way to com-
bat this disease is the incentive to smoking cessation and
that other people do not become smokers [6].
The diagnosis of lung cancer is a complex task for spe-

cialists due to some challenges. One of them is themedical
image interpretation process [5]. Inter-observer variation
is a recognized challenge and happens due to several
aspects, for instance, time constraints, reader’s lack of
training and fatigue [7]. Others major challenges of lung
cancer diagnosis are the pulmonary nodule detection and
classification. Pulmonary nodules can be small, have low
contrast in comparison to the lung tissue and be attached
to complex lung structures, such as pleural wall of the lung
(Fig. 2) [8]. Moreover, classification of benign and malig-
nant nodules depends on their growth rate and change in
size from separated CT exams [9]. Therefore, early dis-
tinguish of potentially malignant lung nodules is highly
important for improving the chance of survival of the
patient, without the need to wait for several days.

Fig. 1 CT image presenting a pulmonary nodule (red arrow)

In order to aid specialists in the early diagnosis
of lung cancer, it is necessary to integrate computer
assistance to the image interpretation and pulmonary
nodule classification processes. The goal of Computer-
Aided Diagnosis (CAD) is to improve the accuracy
and consistency of image-based diagnosis through com-
putational support used as reference [10]. Techniques
of Content-Based Image Retrieval (CBIR) have been
described as a promissing CAD tool by helping the spe-
cialist in the decision making process as a second opinion.
CBIR can provide CAD support by allowing specialists to
find previously diagnosed cases from a database that are
similar to the cases they are interpreting [11].
However, representation and measurement of similarity

from objects in CBIR systems still are considered limita-
tion, because there is not definitive way to do that [7].
Several imaging features were used in the characteriza-
tion of lung nodules, e.g. texture, shape, size, density, etc.
[12–16], but it is still possible to achieve better results
because a gold standard has not been found yet.
In the medical domain, texture descriptors become par-

ticularly important as they can potentially reflect the fine
details contained within an image structure [7]. More-
over, margin sharpness descriptor has been considered
important to distinguish nodules in benign and malig-
nant because cancer tumors grow into neighboring tissues
[17]. Also different similarity metrics with the same set of
attributes may achieve different results in the recovery of
similar objects [16].
Ideally, image features should be integrated to pro-

vide better discrimination in the comparison process
[18]. When specialists classify a nodule, he is supported
by information from exams, images, electronic medical
records and others [19]. But each information has more
or less weight over decision making about nodule malig-
nancy. In this context, there are attributes with more or
less influence in nodule classification, which introduces a
semantic factor to image retrieval problem. Thus, finding
a way to measure the weight allows improvement of image
retrieval process through the assignment of bigger weights
to that attributes that best characterize the nodules.
The aim of this work is to present a method to

automatically calculate attribute weights based on local
learning to reflect the interpretation on similar pulmonary
nodule retrieval process. Moreover, to evaluate the accu-
racy of the algorithm, pulmonary nodules were repre-
sented through vectors of 3D Texture Attributes (3D
TA) and 3D Margin Sharpness Attributes (3D MSA).
The analysis of these attributes will enable identify
which of these vectors provide a better accuracy in the
recovery of similar nodes. Finally, we want confirm the
hypothesis that the Weighted Euclidean Distance with
adjusted weights provides better results than Euclidean
Distances.
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(a) Vessel-connected with 20.1mm. (b) Pleural-connected with 8.3mm. (c) Isolated with 5.7mm.

Fig. 2Maximum intensity projection renderings of pulmonary nodules of different sizes [8]. a, b and c are juxtavascular, juxtapleural and isolated
nodules, respectively

The remainder of this paper is organized as follows:
“Related works” section presents a brief overview of lit-
erature of algorithms applied to CBIR systems using
the concept associated to attributes; “Global and local
weighing” section summarizes the main concepts related
to updating weights that are necessary to facilitate the
comprehension of proposed method; “Methods” section
describes the algorithm proposed as well the database,
attributes extracted and similarity metric used; “Results
and discussion” section details the results achieved and
compare it with others from literature associated; finally,
“Conclusion” section presents conclusion of this work and
limitations of the algorithm.

Related works
In the current literature, according to our knowledge, few
studies address the measure of weights and different sim-
ilarity metrics applied to the context of CBIR. Among
them, the work presented by [12] describes an algorithm
that extracts attributes from the information of margin
sharpness of the nodules. These authors represent nod-
ules through vectors constructed from histograms of the
window and scale attributes. The calculation of these
attributes starts from lines drawn on the margin of all
slices of nodules of CT scans, they are drawn in control
points on the lesions margin. After extraction of these
lines, [12] record the values of pixels intensity values in
line segments. Then, they apply a Sigmoid Function to fit
the values using a weighted nonlinear regression function.
From this function were calculated two values, which are
used to characterize each line segment: window and scale.
DHARA et al. [14] presents a proposal for CBIR system

to recover solid pulmonary nodules with size between 3
and 30mm. To represent nodules were used shape (round-
ness, lobulation index, speculation index, mean radial
distance, calcification index and 3D accutance nodule sur-
face) and texture (contrast, entropy and cluster trends,
homogeneity and texture classification of the internal tis-
sue) attributes from the reconstructed 3D nodules. They

also used other nine characteristics associated with nod-
ules (texture, subtlety, speculation, lobulation, sphericity
border malignancy, internal structure and calcification).
According to these authors, only some features are useful
to represent the images. So they used logistic regression
to find the subset of attributes that allow higher discrim-
ination using the criterion of maximum relevance and
minimum redundancy, however, the authors did not indi-
cate the attributes that provided higher discrimination.
Finally, the similarity metric used to retrieve and ranking
nodules was Euclidean Distance (ED).
SEITZ et al. [15] describes a CBIR system in combi-

nation with genetic algorithms to determine the optimal
combination of image attributes to increase the accu-
racy in retrieval of similar nodules. Sixty three attributes
were extracted from texture (using Gabor filter, Markov
Random Fields and attributes proposed by Haralick from
Coocurrence Matrix (COM)), size, shape and intensity to
represent vectorially nodules. The similarity metric used
was the ED.
KURUVILLA & GUNAVATHI [16] present other work

where was used a CBIR system to retrieve exams with
similar pulmonary nodules in order to find the best set
of attributes that describe the nodules, according to the
parameters used to calculate the accuracy of the neural
network algorithm. Moreover, the authors evaluated dif-
ferent similarity metrics to identify the higher accuracy in
recovering nodules. Two sets of attributes were calculated:
attributes of COMand statistical attributes. The attributes
calculated from COM were energy, entropy, dissimilar-
ity, contrast, inverse difference, correlation, homogeneity,
autocorrelation, cluster shadow, prominence cluster, max-
imum probability, sum of squares, sum average, sum
variance, sum entropy, variance difference, the entropy
difference, correlation measure of information, maxi-
mum correlation coefficient, standard inverse difference
and normalized reverse difference moment. The statisti-
cal attributes were the mean, standard deviation, skew-
ness and kurtosis. Among all calculated attributes, were
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selected as most relevant by Neural Network: autocor-
relation, contrast, correlation, cluster shadow, promi-
nence cluster, dissimilarity, energy, entropy, homogeneity,
sum variance and asymmetry. The metrics used were
ED, Manhattan Distance, City Block Distance, Cheby-
chev Distance, Tversky Distance, Canberra Distance,
Bray-Curtis, Chi Squared Distance and Squared Chord
Distance.
Finally, HAN et al. [20] presented a predictive model

built using Support Vector Machine (SVM) with a Radial
Basis Function kernel (RBF). The model evaluation was
performed by calculating the sensitivity and specificity
and presented by the Area Under Curve (AUC). The
attributes used by them were classified into three types:
Texture Attributes; Gabor Attributes; Local Binaries Pat-
terns. Texture Attributes were calculated from the 2D
and 3D COM. It is noteworthy that this analysis did
not take into account a CBIR system, but a classification
model.

Global and local weighing
In most learning methods, a single global model is used to
fit all the training base, while local models attempt to fit
the training base only in the region around the reference
point of the search. Some examples of local learning algo-
rithms are K-Nearest Neighbor (KNN),Weighted Average
(WA) and Locally Weighted Regression (LWR). Each of
these models combine near objects from reference object
to estimate the appropriate output. KNN models use
neighborhood objects to reference object to determine
the output value. WA assigns weights to objects close to
the reference object that are inversely proportional to the
distance between them in the space n-dimensional. LWR
set the near object by means of a regression weighted
distance [21].
Our proposal has characteristics indicated by ATKE-

SON et al. [21] which refer to Locally Weighted Learning
(LWL). Concisely, LWL is a concept that refers to lazy
learning systems with the aim of buildingmodels resulting
from approximation function through weight adjustment
in polynomial functions. The purpose of LWL is empha-
sizing data that is similar to the reference object, and
de-emphasize data that are dissimilar, rather than treat
all data equally. The requirements cited by [21] for a sys-
tem to be LWL type are: distance function, LWL systems
require a relevant measure, which can be measured using
a distance measurement; separate criteria, LWL systems
calculate weights from each training object; classified
objects, each object must have associated with it an appro-
priate output, which for the output class models should be
a label and for regression models, the output should be an
expected value; representation, each object is represented
by a vector of fixed size values (symbolic or numeric) for a
specific list of features.

Methods
Pulmonary nodule image database
The pulmonary nodule image database used in this
work is available in [22]. This nodule database has CT
scans provided by the Lung Image Database Consor-
tium and Image Database Resource Initiative (LIDC-
IDRI). LIDC-IDRI is publicly available database for the
medical imaging informatics community and consists of
cases with marked-up lesions with annotations, includ-
ing nodules outlines and subjective lesion feature ratings
[23]. It has associated specialists annotations, includ-
ing nodule outlines and subjective nodule characteristic
ratings.
LIDC-IDRI project required 4 experienced specialists to

review each image of a CT series with a graphical user
interface and outlines lesions that they considered to be
a nodule in the range of 3 to 30 mm. However, for the
purposes of this work and the development of the public
database, only the reading of the specialist that identi-
fied the highest number of nodules was inserted in the
database. Each nodule outline was meant to be a localiz-
ing “outer border” so that, in the opinion of the specialist,
the outline itself did not overlap pixels belonging to the
nodule (Fig. 3) [23].
Each specialist defined an integer value on a 1 to 5 scale

for the lesion’s likelihood or probability of malignancy,
in which 1 is highly unlikely for cancer, 2 is moderately
unlikely for cancer, 3 is indeterminate likelihood, 4 is mod-
erately suspicious for cancer and 5 is highly suspicious for
cancer.
The image database used has 752 exams and 1,944

lung nodules. Among the nodules, those with malignancy
3 were discarded because they are associated with an
unspecified malignant. Thus, the initial value 1,944 goes
to 1,171 when chosen nodules with malignancy 1, 2, 4 and
5 (Table 1).
We divided the database in three parts: 1 database for

training purposes, composed of 65 nodules of each malig-
nancy resulting in 260 nodules; 1 database for evaluation
purposes, composed of 65 nodules of each malignancy
resulting in 260 nodules; and 1 database validation pur-
poses, composed of 30 nodules of each malignancy result-
ing in 120 nodules. The determination of the size of the
bases mentioned above is related to smaller number of
nodules among malignancies used, ie, was taken as a ref-
erence the amount of malignancy 5 that has 160 nodules
(Table 1) and this value was divided into three pieces
as explained. As other malignancies have a larger num-
ber of nodes, from these we randomly selected the same
quantities of nodules.
The first two databases were used during training and

evaluation of weights. While the third database (valida-
tion) was used to validate the best weights found. The
last database is important to ensure that the best weights
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(a) Cropped CT scan 1. (b) Cropped CT scan 2. (c) Cropped CT scan 3.

Fig. 3 Pulmonary nodule sample of a 3-slice volume, with LIDC-IDRI radiologist’s marks

found were not only for the evaluation database, which it
would produce overfitting.

Pulmonary nodule feature extraction
We extracted 48 attributes from the 1.171 nodules. They
are distributed in 12 3D MSA and 36 3D TA, which will
be explained below. 3D AT were extracted from manu-
ally segmented margin of nodules by specialists involved
in LIDC-IDRI project as well as 3D MSA. The region of
interest in exams is the region marked at the margin of
nodules. Thus, the original size of the nodules contained
in the exams were used.
In order to extract textural features, a 3D texture anal-

ysis was applied to manually segmented pulmonary nod-
ules. All nodules had lesion images segmented using the
radiologist’s marks (Fig. 4). After the segmentation, tex-
ture attributes were extracted from the voxels using the
gray level COM. COM is a technique to extract infor-
mation from second-order statistical texture. The COM
method obtains from a single image the occurrence prob-
ability of a pixel pair with intensity i, j and spacing between
the pixels of �x and �y in the dimensions x and y,
respectively, given a distance d and orientation θ [11]. Cal-
culation of the COM in a volume of images extends the
evaluation of the probability function to the rectangular
Z-axis, in order to study between-slices joint probabilities
on an image volume composed of multiple slices (Fig. 5)
[24]. Second-order histogram statistics are applied to the
COM producing the texture attributes. TA used in this
work were suggested by Haralick et al. [25], and are listed
below:

Energy =
∑
i,j

C2(i, j), (1)

Table 1 Number of nodules associated to each malignancy

Malignancy probability 1 2 4 5 Total

Number of nodules 273 472 266 160 1.171

Entropy = −
∑
i,j

C(i, j)logC(i, j), (2)

Inverse difference moment =
∑
i,j

C(i, j)
1 + (i − j)2

, (3)

Inertia =
∑
i,j

(
i − j

)2 C(i, j), (4)

Variance =
∑
i,j

(i − μ)2 C(i, j), (5)

Shade =
∑
i,j

(
i + j − μx − μy

)3 C(i, j), (6)

Promenance =
∑
i,j

(i + j − μx − μy)
4C(i, j), (7)

Correlation = −
∑
i,j

(i − μx)(j − μy)√
σxσy

C(i, j), (8)

Homogeneity =
∑
i,j

C(i, j)
(1+ | i − j |) , (9)

where C(i, j) are the elements from the COM, μx and
μy are the mean, σx and σy are the standard deviation,
obtained by the following equations:

μx =
∑
i
iCx(i), (10)

μy =
∑
j
jCy(j), (11)

σx =
∑
i

(i − μx)
2 ·

∑
j
C(i, j), (12)

σy =
∑
j

(j − μy)
2 ·

∑
i
C(i, j), (13)

Cx(i) =
∑
j
C(i, j), (14)

Cy(j) =
∑
i
C(i, j). (15)
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(a) Pulmonary nodule that was marked by a
LIDC’s radiologist.

(b) Segmentation output of the pulmonary
nodule.

Fig. 4Manual segmentation of a pulmonary nodule from the LIDC-IDRI [22]

Thus, a texture feature vector can be obtained by means
of the calculation of the nine attributes (Eqs. 1–9) applied
to the COM in orientations 0°, 45°, 90° and 135°, for
instance. In this case, each nodule can be associated with
a 36 dimensions texture feature vector.
A 3D margin sharpness analysis was implemented to

characterize the lung nodules and proposed in [12], in
which a data statistical analysis was performed by extract-
ing features from a sorted array composed of the gray
level values of the pixels belonging to perpendicular lines
drew over the edges on all nodule slices. The implementa-
tion is as follows: twenty control points were automatically
selected on the marked lesion edge, starting by the first

point marked by the specialist (Fig. 6a). If the boundary
has p pixels, than a control point is marked every p

20 pixels.
The authors have not demonstrated the reason that they
was used this amount of control points. Normal lines were
drawn at each of the 20 control points across the nodule
boundary (Fig. 6b). A mask was created to eliminate the
line segments that cross the lung wall because, otherwise,
it will introduce pixel information that does not belong
to the nodule or lung tissues. The mask was generated by
applying a threshold algorithm along with morphological
dilation operation in the original CT image (Fig. 6c). After
excluding normal line segments that do not belong to the
lung by means of the lung mask application (Fig. 6d), pixel

Fig. 5 GLCM calculation over a 3-slice image volume [24]. Between-slices joint relationships have 1 pixel and slice distances in 45° and 90°
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(a) Boundary control points. (b) Normal line segments.

(c) Cropped mask obtained by the threshold
and dilation algorithms in the original CT im-
age.

(d) Cropped final output image.

Fig. 6 Output images from the 3D margin sharpness analysis

intensities from the remaining line segments from all nod-
ule images were recorded in a single sorted array. Then a
data statistical analysis was performed by extracting sta-
tistical attributes from the pixel intensities sorted array.
The margin sharpness feature vector was composed by
the attributes listed in Eqs. 16–27, in which a is the pixel
intensities array of size n, a1 is the intensity value of a pixel
outside the nodule and an is the intensity value of a pixel
inside the nodule. Therefore, each nodule is characterized
as a 12-dimension margin sharpness feature vector.

Difference of two ends = an − a1, (16)

Sum of values =
n∑

i=1
ai, (17)

Sum of squares =
n∑

i=1
a2i , (18)

Sum of logs =
n∑

i=1
log ai, (19)

Arithmetic mean(μ) = 1
n

n∑
i=1

ai, (20)

Geometric mean = n

√√√√
n∏

i=1
ai, (21)

Population variance = 1
n

n∑
i=1

(ai − μ)2 , (22)

Sample variance (v) = 1
n − 1

n∑
i=1

(ai − μ)2, (23)

Standard deviation (s) = √
v, (24)

Kurtosis measure =
1
n

n∑
i=1

(ai − μ)4

s4
, (25)

Skewness measure =
1
n

n∑
i=1

(ai − μ)3

s3
, (26)

Second central moment =
1
n

n∑
i=1

(ai − μ)2

s2
. (27)
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Attribute normalization
Each extracted attribute has its own range of values (scale)
and are not necessarily the same. In order to use distance-
based similarity metrics, it is necessary to normalize the
data to put it all in a specific scale because that metrics are
sensible to different scales [26].
SHALABI et al. [27] point that there are many meth-

ods for data normalization including: Min-Max Normal-
ization, which performs a linear transformation on the
original data; Z-score Normalization, which normalizes
the initial values based on the mean and standard devi-
ation (SD) of the sample; and Normalization by Decimal
Scale, which normalizes changing the scale by moving the
decimal point of the sample values.
In this work we use Z-score normalization method

(Eq. 28). This is one of the most widely used methods in
the literature for normalization values. Its range of values
is defined in [−3,+3], and the values are determined by
the SD and the average of the sample values. The Z-score
value identifies where a particular value is (up or down)
with respect to average in the normal distribution curve
from SD [26, 28].

Z = X − x
σ

, (28)

where Z is the vector with normal distribution with; X
is the vector with original values from attributes; x is the
mean of attribute values; σ is the deviation pattern.

Similarity distance metric
One of the biggest challenges for CBIR systems is how
to properly define the assessment of similarity used
to index the database and/or make the ranking based
on the similarity of retrieved images according to a
given search criteria [7]. This is because the accuracy
in image retrieval is strongly influenced not only by the
attributes chosen to represent the objects, but also by
the similarity measure used [29]. What leads the need
to define the distance function that allows retrieve the
most similar images according to the domain of search
space [30].
A common method is to employ vector distance in

multidimensional space, usually an Euclidean Space, in
which an image is represented by vectors of descrip-
tors/attributes [7]. In this context, basically all systems
use the assumption that there is equivalence between
the image and the attributes vector. These systems often
use metrics which are easily understandable for mea-
suring the distance between the reference image and
the possible similar images that result of the search. All
of it represented by feature vectors in a n-dimensional
space [31].
A distance function d() evaluates the distance, or dis-

similarity, between a pair of elements and it should

meet the following properties [29, 30], where V is a n-
dimensional vector defined in Euclidean space:

1. Symmetry: {∀v ∈ V|d(v1, v2) = d(v2, v1)};
2. Non-negativity: {∀v ∈ V|0 ≤ d(v1, v2) < ∞};
3. Triangular inequality:

{∀v ∈ V|d(v1, v2) ≤ d(v1, v3) + d(v3, v2)}.
Intuitively, the smaller distances correspond to higher
similarity. Thus, as closer to zero the distance value is,
higher is the similarity of objects according to the criteria
used by the image descriptors. Inversely, the higher is the
distance value, smaller is the similarity [32].
The similarity metric used in this work is WED, pre-

sented in Eq. 29.WED is a variation of ED that has weights
associated to vector coordinates. This function is used to
measure the similarity of a nodule pair through the com-
parison of their attributes vectors. Nodules with higher
similarity degree have the smallest values obtained by the
similarity distance measure.

d(
→x ,

→y ) =
√
w1(x1 − y1)2 + · · · + wa(xa − ya)2,

(29)

where
→x= [ x1, . . . , xa] is the attributes vector from refer-

ence image,
→y= [ y1, . . . , ya] is the attributes vector from

images that will be compared with reference image,
→w=

[w1, . . . ,wa] is the weights vector associated to each of
attributes and a is the number of attributes used (Eq. 29).
Weights represent the influence from attributes in

similar nodules retrieval process by CBIR. It leads to
the following induction: biggest values are associated to
attributes that have homogeneous values, and lower val-
ues are associated to attributes whose values are very
heterogeneous. If Energy attribute, for instance, has low
variability in values of retrieved nodules from a spe-
cific malignancy to it will be assigned bigger weight than
another that has high variability. This way is possible
retrieve nodules with attributes values increasingly similar
to the detriment that are not.
Identifying which attributes carry the most relevant

information to lesion classification allows the achieve-
ment of better results in accuracy of medical diagnosis
by providing more accurate results in image retrieval
algorithms.

Automatic weighing updating process
The process consists of two stages that are performed
sequentially and cyclically: an Evaluation Stage and a
Training Stage (Fig. 7).
The stages has similar structures that consist basically

in apply Leave-One-Out (LOO) [33] to iterate over cor-
respondent databases selecting each stored nodule and
using it as a reference nodule to retrieve n most similar
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Fig. 7Workflow of the weighing update process

cases through of a similarity function (“Similarity distance
metric” section).
Cycle begins with Evaluation Stage (process 1 of Fig. 7)

having as initial weights a set W = [w1, . . . ,wa], where
{w ∈ R∗+|w = 1

a } and a ∈ N∗ corresponds to the number
of attributes used in nodule representation. At the end, we
have evaluation value v1 from this set (W ) measured from
an evaluation function.
Then, Training Stage (process 2 of Fig. 7) starts receiving

as initial weights the values used in the past Evalua-
tion Stage and, thenceforward, start the weighing update
process. At the end of this stage, a new set of weights
(WCurrent) is determined and will be passed to the
Evaluation Stage to determine its evaluation value v2.
The comparison between v1 and v2 identify whether the
weight changes increased or decreased the similar nodule
retrieval precision.
This cycle must be performed until any stopping crite-

ria is reached. During the cycles, the set W with weights
that reach best evaluation value is stored and, at the
end, is pointed as that best adjust the similarity metrics
used. The adopted criterion was that the process stops
after 100 training iterations and evaluation without there
were improvements in the evaluation results. That is, after
obtaining a maximum value of the function evaluation
after i iterations, if this value is not increased in 100 sub-
sequent iterations, the weighing update process stops and
indicate the highest rating as the ideal weights for the
attribute vector.

Evaluation stage
This stage consists in iterating over evaluation databases
by LOO using each nodule as a reference nodule to

retrieve the n most similar. At each retrieval the evalu-
ation value v is calculated from the Eq. 30, which is an
exponential decay function, where:

• Rn×a is an ordered matrix with nodules retrieved
where n is the number of similar nodules retrieved
and a is the number of used attributes. The order of
matrix is determined by the nodule similarity, the
most similar stay at initial position;

• si is the reward value associated to relevance of
nodule n from matrix R at position i ;

• {γ ∈ R | 0 < γ ≤ 1} is the discount factor that adjusts
the reward relevance s given over retrieval ranking.

f (Rn×a) =
n∑

i=1
γ isi. (30)

This evaluation function was adopted due to its ability
to represent the amortization of reward over the retriev-
ing order. This is an important property to our proposition
because with the large amount of retrieved exams the
users tend to evaluate the best placed results and it will
guide the specialist in diagnostic [31, 34].
Reward applied to the nodules depends of reference and

retrieved nodule malignancy. The values assigned are fol-
lowing: 4, if it is highly relevant; 2, if it is moderately
relevant; and 0, if it is highly or moderately irrelevant. A
reward policy was defined to privilege the relevant nod-
ules, and not rewarding those who do not meet this con-
dition. Relevance is determined as follows: if the reference
nodule have malignancy 5 or 4, malignancies of recov-
ered nodules will be highly relevant if they malignancy
5, moderately relevant if they malignancy 4, moderately
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irrelevant if theymalignancy 2 and highly irrelevant if they
1 malignancy; if the reference node malignancy have 1 or
2, malignancies of recovered nodules will be highly rel-
evant if they malignancy 1, moderately relevant if they
malignancy 2, moderately irrelevant if they malignancy
4 and highly irrelevant if they malignancy 5. To nodules
highly and moderately irrelevant are assigned the reward
value of 0 (zero), because these can induce the specialist
to error. Then, they were not given positive reward.

Training stage
Training Stage aims to find a weight set W associated to
the attributes that allow a nodule retrieval in which the
cases are more similar as possible. Nodules are considered
to be similar when the values of each attribute are close or
even the same.
The weights associated to the attributes reflect the

different contribution of descriptors in nodule charac-
terization. There is not a direct mapping between the
classification criteria used by specialists and the nodule
representation used by computer. Our aim with this work
is to find a weight adequation such that it is possible reach
better results in similar nodule retrieval throughminimiz-
ing the influence of the attributes that has high dispersion
rate in nodules with samemalignancy andmaximizing the
influence of the attributes that has low dispersion rate in
nodules with same malignancy.
The proposed update weighing is based on the Stan-

dard Deviation (SD) (σ ) to adjust the weights. The SD
is a measure of statistical dispersion, that is, it measures
the scattering of data from a sample with respect to its
average. The idea is based in following assumptions: if all
similar nodules have similar values for a given attributes
vector, it means that these are good indicators to rep-
resent these nodules. On the other hand, if the values
of a attributes vector are very different, that is widely
dispersed, so they are not good indicators. Therefore, the
Inverse Standard Deviation (ISD) (Eq. 31) of data associ-
ated with an attribute can be considered a good estimate
of it weight because the smaller the variance, the higher is
the weight and vice versa.

w(a) = σ−1. (31)

The updating process is performed based on n retrieved
nodules at each iteration over training database. From
the nodule matrix Rn×a retrieved during training, projec-
tions are made over each columns correspondent to the
nodule attributes and calculated the weights through this
projections with σ−1 (Fig. 8).
After the identification of each wf associated to the af

attributes, it is necessary to apply the Eq. 32, because
wf ∈ R∗+ and it can assume values very large when the
sample has low variation, or tiny values when the sample

has large variation. Thus, we have a new weight w′f with
range (0, 1].

w′
f = wf∑f

i=1 wi
. (32)

The vector of weight resultant from each recovery is
called current weight (WCurrent). For the process take
into account the various iterations over the database, it is
necessary the existence of a weight set that are adjusted
iteratively. At each iteration we find a WCurrent, which
is used to adjust the set W with the Update Function
(Eq. 33):

W ∗ = W + α(W − WCurrent), (33)

where W is the set with the best weights until that
moment, WCurrent is the set with the weights from cur-
rent iteration, α is the adjust factor andW ∗ is the new set
of weights.
The lazy learning characteristic in this proposal is

related to the adjustment rate of weights (α), which
determines how much will be learned in each itera-
tion in the Training Stage. As can be seen in Eq. 33,
the weight vector WCurrent determined in LOO iter-
ation over the training base is the result of the cal-
culation of the weights in current iteration, while the
weight vector W is the vector calculated from all pre-
vious iterations. α applied in the difference between
W and WCurrent implies how much the difference
between learning memory (W ) and learning from cur-
rent iteration (WCurrent) will influence the final learning
memory (W ∗).
And LWL characteristic in this work refers to the

number of recovered nodules (n) during the Training
Stage that were used to calculate the weight of attributes
through the ISD. Because of this feature, only the clos-
est nodules of the reference nodule are used to adjust
the weights of the attributes in order to emphasize nod-
ules of the same class, and deemphasizing nodules with
different classes, by assigning larger weights to those
attributes which provide recovery nodules attribute values
with lower dispersion index. Note that the emphasizing
of similar nodules is achieved indirectly based on the
premise that the same malignant nodules are similar and,
therefore, it have attributes vectors also similar (low vari-
ability), that is, is not used a criteria based on the class to
determine the weights of the objects as in KNN and WA
models.
LWL is critically dependent of the distance function

used and the function does not necessarily need to satisfy
formal mathematical requirements for distance metrics.
The variation of the ED with the introduction of the
weights associated to dimensions of the objects is to influ-
ence the values. Assign zero value for a dimension is the
same as ignore it on the distance function. Because of this,
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Fig. 8 Update weighting methodology for the n retrieved nodules. f is the number of attributes used to represent the nodules, �f represents the
projection of attribute f over nodules retrieved matrix, σ−1(�f ) represents the application of inverse of deviation pattern over the resulting sample
from projection �f , and wf is the weight of attribute af

it is adopted WED. The maximum value from weighted
function should be achieved with zero distance, and this
value grown up smoothly when the distance increases.
Moreover, weighting functions should always be non-
negative, because negative values can lead to a higher
error rate during training. However, the final weights can
be positive or negative [21].

Results and discussion
Aimming to analyze the results we used the Precision vs.
Recall (PR) and Precision(n) (PN) methods. They are cal-
culated from all nodules retrieved from Evaluation and
Validation database through Leave-One-Out (LOO). [35]
define Precision (Eq. 34) as the percentage of recovered
objects that are relevant, and Recall (Eq. 35) as the per-
centage of relevant objects recovered. Relevant object is
one that is of interest in a given context.

Precision = Number of relevant objects retrieved
Total number of objects retrieved

(34)

Recall = Number of relevant objects retrieved
Total number of relevant objects

(35)

Three different feature vectors were used in order to
evaluate our proposal (“Pulmonary nodule feature extrac-
tion” section). The first vector has 36 3D extracted
through 3D COM. TA were extracted because they are a
traditional technique in CBIR systems. The second vec-
tor has 12 3D MSA extracted from the margin sharpness
analysis. 3D MSA were extracted due to its potential to
characterize pulmonary nodules according to potential

malignancy. And the third vector has 48 Integrated Vector
(InV), which are composed of concatenated 3DTA and 3D
MSA.
In order to evaluate the accuracy with defined methods

(PR and PN), malignancies associated with nodules were
grouped as benign ormalignant. Thus, nodules with prob-
ability of malignancy 1 and 2 were grouped as benign and
malignant nodules with probability 4 and 5 were grouped
asmalignant. It is noteworthy that the nodules withmalig-
nancy 3 were discarded because it have not classification
defined.
To demonstrate the capabilities of the algorithm pro-

posed here and prove the accuracy of the results achieved
were defined some configurations to test varying the main
parameters of the algorithm, which is the adjustment rate,
the discount factor and the number of nodules recov-
ered applied to combinations of 3 attribute vectors that
are 3D TA, 3D MSA, and the concatenation of these 2
vectors resulting in InV extracted from nodules. These
tests resulted in graphics (PR and PN) that were the
basis for our discussion. Then, due to the large number
of combinations involving the parameters of algorithm
and the vector attributes, given that {n ∈ N | 0 <

n ≤ number of nodules in the database} and {α, γ ∈
R | 0 < α, γ < 1} was defined as reference values for
n, α and γ respectively 15, 0.3 and 0.8, and two others
sets of values being one greater and other smaller than the
reference value. These values were set to reduce the num-
ber of possible combinations of the attributes vectors and
parameters of the algorithm, but still enabled the analysis
for precision measurement. The determination of the ref-
erence values was empirically, because it provided better
results as precision as well execution time of algorithm for
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the various tests performed during development. Table 2
summarizes the configurations used in our tests.
PR results using 3D TA vector with the initial weights

using only the Evaluation database achieve Precision of
87 % with Recall 25 %, Precision of 64 % with Recall 50 %
and Precision of 50 % with Recall 75 % when retrieve
benign nodules. When retrieve malignant nodules was
obtained Precision of 91 % with Recall 25 %, Precision of
86 % with Recall 50 % and Precision of 74 % with Recall
75 %. The PN achieve Precision of 87 % for benign nod-
ules and 93 % for malignant nodules for retrive until the
thirtieth nodule. After update weights, Precision was 98 %
with Recall 25 %, Precision of 97 % with Recall 50 %
and Precision of 97 % with Recall 75 % when retrieve
benign nodules, and when retrieve malignant nodules was
obtained a Precision of 99 % with recall 25 %, Precision of
99 % with Recall 50 % and Precision of 96 % with Recall
75 % in the Evaluation database. While with Validation
database, the Precision was 98 % to the Recall 25 %, Pre-
cision 98 % to the Recall 50 % and a Precision of 97 %
to the recall 75 % when retrieve benign nodules, when
retrieve malignant nodules, was obtained an Precision of
100 % to the Recall 25 %, Precision 100 % to the Recall
50 % and Precision of 97 % to the Recall 75 %. The PN also
was improved, achieving Precision of 98 % in the recovery
of benign nodules and malignant using the two databases
(Evaluation and Validation) to retrieve 30 nodes at each
database.
Tables 3 and 4 present a summary of the evalua-

tion results in the Validation database using PR and PN
from 3D TA vector with and without update weights
respectively.
3D MSA vector with the initial weights using the Val-

idation database achieve Precision of 96 % with Recall
25 %, Precision of 86 % with Recall 50 % and Precision of
64 %with recall 75 %when retrieve benign nodules.When
retrieve malignant nodules, achieve Precision of 96 % to
the Recall 25 %, Precision of 83 % to the Recall 50 % and
Precision of 60 % to the Recall 75 %. PN achieve Preci-
sion of 96 % when retrieve benign nodules and Precision
of 95 % when retrieve malignant nodules for retrieval of

Table 2 Summary of configurations defined for the tests, where
α is the adjustment rate, γ the discount factor and n the number
of retrieved nodules

TA WSA InV

n α γ n α γ n α γ

10 0.2 0.7 10 0.2 0.7 10 0.2 0.7

15 0.3 0.8 15 0.3 0.8 15 0.3 0.8

20 0.4 0.9 20 0.4 0.9 20 0.4 0.9

Bolded values refer to values that, empirically, reached good values during
development and test of the algorithm. So, we defined it as the reference to
generate the test configuration

Table 3 Summary of results using PR and PN obtained with the
3D TA vector without update weights applied to Validation
database

Recall

25 % 50 % 75 %

Precision to benign 87 % 64 % 50 %

Precision to malignant 91 % 86 % 74 %

Precision (n = 30)

Benign 87 %

Malignant 93 %

nodes 30 each malignancy. After update weights achieve
Precision of 100 % to the Recall 98 %, for both for the
retrieve of benign nodules and for malignant nodules
in the Evaluation and Validation databases, and PN was
maintained with Precision of 100 % to retrieve 30 nodules,
benign and malignant, in the Evaluation and Validation
databases.
Tables 5 and 6 present a summary of the evalua-

tion results in the Validation database using PR and PN
from 3D MSA vector with and without update weights
respectively.
Finally, the InV vector with the initial weights using

Evaluation database achieved Precision of 82 % to the
Recall 25 %, Precision of 66 % to the Recall 50 % and a
Precision of 52 % to the Recall 75 % when retrieve benign
nodules, while when retrieve malignant nodules obtained
Precision of 86 % with Recall 25 %, Precision of 74 % to
the Recall 50 % and Precision of 62 % to the Recall 75 %.
The PN for retrieve 30 nodules achieve Precision of 85 %
for benign nodules and 87 % for malignant nodules. After
update weights was achieved Precision of 95 % to the
Recall 25 %, Precision of 90 % to the Recall 50 % and Preci-
sion of 70 % to the Recall 75 % to retrieve benign nodules;
and Precision of 91 % to the Recall 25 %, Precision of 86 %
with Recall 50 % and Precision of 67 % to the Recall 75 %
to retrieve malignant nodules in the Evaluation database.
In the Validation database the update weights obtained
Precision 96 % to the Recall 25 %, Precision of 91 % to
Recall 50 % and a Precision of 84 % to the Recall 75 %

Table 4 Summary of results using PR and PN obtained with the
3D TA vector with update weights applied to Validation database

Recall

25 % 50 % 75 %

Precision to benign 98 % 97 % 97 %

Precision to malignant 99 % 99 % 96 %

Precision (n = 30)

Benign 98 %

Malignant 98 %
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Table 5 Summary of results using PR and PN obtained with the
3D MSA vector without update weights applied to Validation
database

Recall

25 % 50 % 75 %

Precision to benign 96 % 86 % 64 %

Precision to malignant 96 % 83 % 60 %

Precision (n = 30)

Benign 96 %

Malignant 95 %

to retrieve benign nodules; and Precision of 100 % to the
Recall 25 %, Precision of 92 % to the Recall 50 % and Pre-
cision of 73 % to the Recall 75 % to retrieve malignant
nodules. PN achieve Precision of 95 % to retrieve 30 nodes
for both malignancies.
Tables 7 and 8 present a summary of the evaluation

results in the Validation database using PR and PN from
InV vector with and without update weights respectively.
Although perceived influence of parameters values used

in the upgrade process, especially related to the number
of iterations required to reach the best result, it is not
possible to measure this influence in a scalar value, i.e.
it is perceived empirically, but we could not describe it
quantitatively.
The results achieved by adjusting the weights in vec-

tor 3D MSA can be compared with the results presented
by [12], although the evaluation method was another.
The evaluation method used was Normalized Discounted
Cumulative Gain (NDCG) reaching a score of 85 % to
retrieve pulmonary nodules.
The paper presented by DHARA et al. [14], which used

linear regression to reduce the dimensionality of vector
attributes of texture and shape, presented results that were
measured by the calculation of Precision when retrieve 5
similar nodules. The average precision achieved by them
in the recovery of 40 nodules from LIDC-IDRI nodules
was 72.18 %.

Table 6 Summary of results using PR and PN obtained with the
3D MSA vector with update weights applied to Validation
database

Recall

25 % 50 % 75 %

Precision to benign 100 % 100 % 100 %

Precision to malignant 100 % 100 % 100 %

Precision (n = 30)

Benign 100 %

Malignant 100 %

Table 7 Summary of results using PR and PN obtained with the
InV vector without update weights applied to Validation database

Recall

25 % 50 % 75 %

Precision to benign 82 % 66 % 52 %

Precision to malignant 86 % 74 % 62 %

Precision (n = 30)

Benign 85 %

Malignant 87 %

SEITZ et al. [15] determined an ideal vector representa-
tion from a set of 63 attributes extracted from the texture,
shape, size and intensity. To select the best attributes, they
used genetic algorithms to find the best combination of
attributes. The results were evaluated by calculating the
average precision to retrieve 3, 5, 10, 20 and 50 images.
The best result reaches the average precision of 86.91 %
to retrieve 3 nodules through a vector composed of 29
attributes, among the 63 initials.
KURUVILLA & GUNAVATHI [16] tried to find the

ideal vector for the representation of nodules in CBIR sys-
tems by calculating the accuracy in the Neural Network
algorithm. They evaluated different similarity metrics to
identify one that provides higher precision in retrieval of
similar nodules. The results were evaluated by calculat-
ing precision. The best results achieved 95 % in average
precision using the parameters indicated by the Neural
Network and having the function Bray-Curtis as similarity
metrics.
Analysing results, the vector that achieve best results

to retrieve nodules is that formed by 3D MSA with the
updated weights. It achieve Precision of 100 % to retrieve
benign and malignant pulmonary nodules to the Recall
98 % for Evaluation and Validation database. The compar-
ison between the results obtained using the initial weights
and the updated weights demonstrate the effectiveness of
the algorithm and its capability to produce good results.

Table 8 Summary of results using PR and PN obtained with the
InV vector with update weights applied to Validation database

Recall

25 % 50 % 75 %

Precision to benign 95 % 90 % 70 %

Precision to malignant 91 % 86 % 67 %

Precision (n = 30)

Benign 95 %

Malignant 95 %
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Conclusion
This paper presented an algorithm to automatic update
weights using WED in order to improve the precision to
retrieve pulmonary nodules in CBIR systems whose simi-
larity metric was defined in the multi-dimensional vector
space. As a basis for the development of such proposal,
was used a generic architecture of CBIR system. For rep-
resentation of nodules were used the 3D TA, 3DMSA and
InV vector. The similarity metric was the DEP and to mea-
sure the weights was used ISD. Thus, we achieved better
results with adjusted weights than those that have been
achieved using a similar architecture but without the con-
cept of weights associated with the attributes presented
here.
Based on the results, WED applied to the three vectors

used attributes (3D TA, 3D MSA and InV), with weights
adjusted by the process, always achieved better results
than those found with ED, i.e. without weight adjustments
[36]. With the weights, the Precision was increased on
average by 17.3 % compared with using ED. This improve-
ment was observed taking into account the nodules clas-
sified in 4 malignancies (1, 2, 4 and 5) grouped into two
classes being 1 and 2 classified as benign and 4 and 5 clas-
sified as malignant. This confirms the hypothesis that the
WED provide better results than ED.
Finally, the analysis of the weights of the attributes

was not possible to determine which attributes that are
indicative of any classes (benign or malignant), i.e. it
is not possible to determine that certain attribute is
good or bad to determine the classification of nodules,
since that in update weights method there is no cor-
relation of the weights with the nodule class. Updat-
ing weights only standardize the sample recovered by
emphasizing the attributes whose values are more simi-
lar and deemphasizing attributes whose values are widely
dispersed. This emphasis does not match indication of
malignancy.

Limitation
Although Precision has achieved 100 % to retrieve up to 30
nodules, we believe that the algorithm can be improved.
The result was achieved by evaluating the ranking of
nodules in benign and malignant, however, nodules from
LIDC-IDRI database used in training is classified accord-
ing to the likelihood of malignancy that is determined in
five different classes. So we believe that evaluating as a
multiclass problem the results could be more precise. This
can be achieved by inserting two factors that have not yet
been applied to our solution: the insertion of randomness
in the selection of the weights to update them through the
use of search algorithms to minimize the possibility of the
occurrence local maximum results; and creating a corre-
lation between the update weights and nodule malignancy
in the update process, which could improve through the

insertion of this important information for the recovery
method.
Moreover, the recovery of nodules in this study was

restricted to the analysis of the likelihood of malignancy.
There was not a visual analysis by experts to check
whether the retrieved similar nodes are similar due to the
similarity of vectors and visually according to the visual
characteristics used by experts.
Another factor that is important is the analysis of other

similarity metrics such as the Manhattan Distance, Maha-
lanobis Distance, Variance Weighted Average, and other
metrics defined in the vector space with the application of
the concept of weights presented in this work.

Nomenclature
CT Computed Tomography
CAD Computer-Aided Diagnosis
CBIR Content-Based Image Retrieval
TA Texture Attributes
MSAMargin Sharpness Attributes
ED Euclidean Distance
WEDWeighted Euclidean Distance
COM Coocurrence Matrix
LIDC-IDRI Lung Image Database Consortium and Image
Database Resource Initiative
SVM Support Vector Machine
RBF kernel Radial Basis Function
AUC Area Under Curve
KNN K-Nearest Neighbors
WAWeighted Average
LWR Locally Weighted Regression
NDCG Normalized Discounted Cumulative Gain
LWL Locally Weighted Learning
LOO Leave-One-Out
ISD Inverse Standard Deviation
SD Standard Deviation
PR Precision vs. Recall
PN Precision(n)
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