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Abstract
Background: Decision analysis in hospital-based settings is becoming more common place. The
application of modeling and simulation approaches has likewise become more prevalent in order
to support decision analytics. With respect to clinical decision making at the level of the patient,
modeling and simulation approaches have been used to study and forecast treatment options,
examine and rate caregiver performance and assign resources (staffing, beds, patient throughput).
There us a great need to facilitate pharmacotherapeutic decision making in pediatrics given the
often limited data available to guide dosing and manage patient response. We have employed
nonlinear mixed effect models and Bayesian forecasting algorithms coupled with data summary and
visualization tools to create drug-specific decision support systems that utilize individualized patient
data from our electronic medical records systems.

Methods: Pharmacokinetic and pharmacodynamic nonlinear mixed-effect models of specific drugs
are generated based on historical data in relevant pediatric populations or from adults when no
pediatric data is available. These models are re-executed with individual patient data allowing for
patient-specific guidance via a Bayesian forecasting approach. The models are called and executed
in an interactive manner through our web-based dashboard environment which interfaces to the
hospital's electronic medical records system.

Results: The methotrexate dashboard utilizes a two-compartment, population-based, PK mixed-
effect model to project patient response to specific dosing events. Projected plasma concentrations
are viewable against protocol-specific nomograms to provide dosing guidance for potential rescue
therapy with leucovorin. These data are also viewable against common biomarkers used to assess
patient safety (e.g., vital signs and plasma creatinine levels). As additional data become available via
therapeutic drug monitoring, the model is re-executed and projections are revised.

Conclusion: The management of pediatric pharmacotherapy can be greatly enhanced via the
immediate feedback provided by decision analytics which incorporate the current, best-available
knowledge pertaining to dose-exposure and exposure-response relationships, especially for
narrow therapeutic agents that are difficult to manage.

Published: 28 January 2008

BMC Medical Informatics and Decision Making 2008, 8:6 doi:10.1186/1472-6947-8-6

Received: 30 July 2007
Accepted: 28 January 2008

This article is available from: http://www.biomedcentral.com/1472-6947/8/6

© 2008 Barrett et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1472-6947/8/6
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18226244
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Medical Informatics and Decision Making 2008, 8:6 http://www.biomedcentral.com/1472-6947/8/6
Background
Decision making in a hospital environment occurs at mul-
tiple levels of the organization and in a variety of depart-
mental settings. Likewise, numerous stakeholders
including hospital administration, staffing planners, facil-
ities management, pharmacy administration, caregivers
and physicians as well as healthcare providers are reliant
on decision support systems (DSS) to facilitate decision
making in their specific areas. Ultimately, the outcome, at
least in theory, should be better decisions yielding more
efficient provision of services and optimal (most appro-
priate and cost-effective) patient care. Informing today's
decision makers is a cadre of tools and decision analytics.
Historically, hospital environments have not been the
hallmark of innovation in decision analytics and the dis-
crepancy between the hospital environment and other
industries has received a great deal of attention recently.
In late 2005, the National Academies of Engineering and
Institute of Medicine issued a joint report that cited the
urgency and importance of bringing contemporary Sys-
tem Engineering techniques to healthcare. Annual gross

waste of a staggering 30–40% of every dollar spent in
healthcare and continued medical errors that cause nearly
100,000 patient deaths and serious injuries yearly were
only two of the more serious problems covered in the
report [1,2]. This situation is changing in a dramatic man-
ner as information technology, engineering, clinical and
informatics scientists collaborate on analytic approaches
that address decision requirements of the current inpa-
tient environment.

The backbone of many decision support systems typically
consist of transactional and/or relational databases and
models which describe, predict and/or simulate response
to varied inputs. Table 1 illustrates the diversity in mode-
ling and simulation application in the hospital setting [3-
21]. The examples are representative as this is certainly not
an exhaustive account. Along with the varied applications
are diverse physical and stochastic models and analytics.
The choice of approach is dependent upon the objectives
of the application of course but there exists a great deal of
overlap between modeling approaches and procedures

Table 1: Diversity in modeling and simulation applications in the hospital setting

M&S Fields Application Approach

Treatment Outcomes • Medical folder management system – 
physician clinical decision making []
• Cancer pharmacotherapy multi-drug decision 
support []
• Predictive model to predict Clostridium 
difficile infection (diahhrea) outbreaks []
• Hospital-wide surveillance for nosocomial 
infection to assess patient risk []
• Methicillin-resistant Staphylococcus aureus 
transmission among hospitalized patients – risk 
factors and prediction []

• DSS interfaced to EMRS
• KITT model and decision tree
• Reversible jump MCMC model
• Logistic regression model
• Monte Carlo simulation

Healthcare Costs • Health care costs of geriatric inpatients []
• Hospital-acquired infection costs []
• Costs and outcomes of cardiovascular 
surgery []

• Bayesian Network Theory/Model
• Monte Carlo simulation model
• Systems dynamic model STELLA

Patient Flow/Occupancy • Patient flow in a pediatric emergency 
department []
• Critical care planning capacity []
• Healthcare facility patient flow []
• Hospital patient flow []

• Discrete event simulation
• CART analysis
• Queuing network system
• Clustering

Hospital Operations • Hospital operations for emergency response 
[]
• Length of stay in the ICU []
• Directly observed therapy in newly diagnosed 
HIV infection []
• System-level investigation of emergency 
department (ED) operations []
• Healthcare quality improvement via 
simulation []
• Optimum operating room staffing needs for 
trauma centers []
• ICU duration/length of stay analysis []

• Transient modeling regression approach
• Linear regression
• Probabilistic Markov Model
• Discrete event simulation (EDSIM)
• Multivariate simulation models
• Queuing and simulation methods
• Class probability tree
Page 2 of 12
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2008, 8:6 http://www.biomedcentral.com/1472-6947/8/6
yielding the possibility of multiple solutions to decision
making questions. Our purpose is not to review such
approaches (although such a review is needed) but rather
to focus on the use of nonlinear mixed effect modeling to
guide decisions regarding the use and management of
drugs to treat patients – pharmacotherapy.

Pharmacotherapy is generally concerned with the safe and
effective management of drug administration. It implies
an understanding of drug pharmacokinetics (PK) and
pharmacodynamics (PD) so that individual dosing guid-
ance, when necessary, can be provided to optimize patient
response within their individual therapeutic window.
Pediatric pharmacotherapy can be challenging due to
developmental changes that may alter drug kinetics,
pathophysiologic differences that may alter pharmacody-
namics, disease etiologies that may be different from
adults, and other factors that may result in great variation
in safety and efficacy outcomes. The situation becomes
more convoluted when one considers children and the
paucity of well-controlled pediatric clinical trials. This sit-
uation, despite the efforts of the Food and Drug Adminis-
tration and the US Congress, is not likely to improve
substantially due to the economic reality of the pediatric
market.

Population pharmacokinetics is an approach to explain
sources of variation in various pharmacokinetic processes
across individual patient populations [22,23]. The nature
of the sources of variation varies with drug and the under-
lying pharmacokinetic (structural) model can be simple
or complex. Variation is also relevant to the population
being studied and pediatrics represents a particularly
dynamic setting given the many developmental changes
which occur as children develop [24]. Nonlinear mixed
effects models involve both fixed effects and random
effects. Model building for nonlinear mixed effects is the
process of determining the characteristics of both the fixed
and the random effects in order to produce a predictive,
generalizable and parsimonious model. Procedures based
on information criterion statistics for comparing different
structures of the random effects component are generally
suitable to achieve a model which is both adequate to
explain the sample data and, upon validation against an
external data set, generalizable to the broader population
(see Figure 1). Historically, therapeutic drug monitoring
(TDM) has been used to monitor/guide pharmacotherapy
particularly for agents with a narrow therapeutic index.
Often, the monitored drug levels are judged against his-
torical "norms" and not necessarily viewed in the context
of specific factors which may suggest a different scale by
which they should be judged. Also, time dependencies are
seldom considered in these static devices. A model-based
approach on the contrary has the ability to both account
for demonstrated relevant patient factors (covariate

model) and/or group (disease status) factors. While some
attempts have been made to interface TDM data to thera-
peutic drug models, these have been developed for stan-
dalone applications and not with the physician caregiver
in mind [25,26].

We have begun to interface our electronic medical record
system with decision support analytics (drug dashboards)
that summarize individual patient records and assemble
the most relevant clinical data associated with drug ther-
apy. Data visualization tools summarize patient profiles
of lab values, vital signs, and associated biomarkers into
tables and plots based on user-defined requirements.
More importantly, this data populates models that predict
future events as drug therapy continues. A prototype
methotrexate dashboard is demonstrated. A population-
based pharmacokinetic model (nonlinear mixed effect
model) is used to simulate individual patient MTX drug
concentrations based on that patient's current dosing reg-
imen and compares expected exposures with nomograms
that predict toxicity. The compilation of additional dash-
boards is planned for the construction of a larger pediatric
knowledgebase (PKB) currently under construction. Our
objective is to define the general approach of pharmacos-
tatistical model building while demonstrating how such
models can be interfaced to electronic medical record data
front-ended by a web-based decision support system.

Methods
Population Pharmacokinetics
Population pharmacokinetics is the study of the sources
and correlates of variability in drug concentrations among
individuals who represent the target patient population
receiving clinically relevant doses of a drug of interest. The
goal of population pharmacokinetic analysis to identify
pathophysiologic factors that cause changes in the dose-

Typical progression of pharmacometric model development commonly used to support pharmacotherapeutic decision support systemsFigure 1
Typical progression of pharmacometric model development 
commonly used to support pharmacotherapeutic decision 
support systems.

Definition of 

Pharmacostatistical Model 
Define basic pharmacostatistical model  

Covariate Addition 
Covariates evaluated against base model parameters.   

Covariate relationships deemed relevant and/or plausible added. 

Redundancy of covariates given the presence of correlated / 

predictive covariates examined.  

Structural Model Refinement Modifications to the data set and/or model as appropriate 

Validation External validation: projection of results from model building 

dataset onto validation data. 

Error Model Refinement Re-examination of error model with any additional covariate 

reduction

Final Model Comparison with alternative approaches  
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concentration relationship and the extent of these
changes so that, if such changes are associated with clini-
cally significant shifts in the therapeutic index, dosage can
be appropriately modified. Population pharmacokinetic
models adhere into a hierarchical structure. At the initial
stage, the relationship between concentration and time
(pharmacokinetics) is modeled for an individual patient.
At the second stage, pharmacokinetic parameters that
define each of the individual patients' drug concentration
profiles are assigned some distributional form, after
accounting for relevant covariate information. A primary
aim of a population analysis is to determine covariates
that are important predictors of pharmacokinetic parame-
ters. A Bayesian model then requires a third stage in which
prior distributions are specified for the parameters defin-
ing the second-stage distributional form and the intra-
individual variance parameters. Such a Bayesian model
defines and estimates the variability that is observed both
in individual concentrations and between different indi-
viduals' pharmacokinetic parameters. This model frame-
work makes it is possible to determine appropriate
patient-specific dosage regimens that ensure the attain-
ment of desirable drug concentrations.

The estimation method most commonly used in popula-
tion pharmacokinetics and nonlinear mixed effect mode-
ling in general is based on a maximum likelihood
approach. Maximum Likelihood (ML) is an alternative to
the least squares objective function; it seeks to maximize
the likelihood or log-likelihood function (or to minimize
the negative log-likelihood function). In general terms,
the likelihood function is defined as:

The probability (now called L, the likelihood) is predicted
in the sample data, given the respective regression model.
Provided that all observations are independent of each
other, this likelihood is the geometric sum (Π, across i = 1
to n cases) of probabilities for each individual observation
(i) to occur, given the respective model and parameters
(θ's) for the x values. As it is customary to express this
function as a natural logarithm, the geometric sum
becomes a regular arithmetic sum (Σ, across i = 1 to n
cases). The larger the likelihood of the model, the larger is
the probability of the dependent variable values to occur
in the sample and the better is the fit of the model to the
data. If all assumptions for standard multiple regression
are met, then the standard least squares estimation
method will yield results identical to the maximum likeli-
hood method. If the assumption of equal error variances
across the range of the x variable(s) is violated, then the
weighted least squares method will yield maximum likeli-
hood estimates.

The typical structural model is chosen from one of several
compartmental models which incorporate the route of
administration as a fixed input into the model with cer-
tain assumptions (i.e., linear or zero order input). Com-
partmental models are, for the most part, empirical even
though they may incorporate some mechanistic assump-
tions so they appear more realistic. Numerically, they are
generally easier to handle as opposed to mechanistic
models. Complex mechanistic and/or highly parameter-
ized structural models can be accommodated as well of
course. The prediction engine discussed herein is not lim-
ited by the nature of the model definition.

The framework for the mixed effect modeling approach to
population pharmacokinetic analysis can be defined as
follows: for i = 1, ... n individuals in a population of inter-
est, let xij, j = 1, ... nj represent the design points on which
the yij responses are observed. In the pharmacokinetic
(PK) setting, xij are typically the sampling time points and
yij are the observed concentrations in the biologic matrix
of interest (usually plasma or blood). Hence, the PK
response can be described by

yij = f(θi, xij) + εij

where the function f denotes the structural model; θi is the
p × 1 parameter vector for the ith individual and εij are the
independently and identically distributed (i.i.d.) error
terms assumed to be normal random variables with a zero
mean and a variance (σe

2) which may depend on the
mean concentration. The εij's account for the intraindivid-
ual variability and may incorporate model misspecifica-
tion or other unresolved (or incorrect) error partitioning.
In most population pharmacokinetic software the struc-
tural model is chosen from a library of compartmental
models, expressed as a closed form system of equations or
defined via differential equations. The probability density
function which accounts for the within-individual varia-
bility only as

p(yij | θi, xij)

The intra-individual variation about the ith individual is
defined when the distribution εi of is specified. The sec-
ond stage model defines the between-individual variabil-
ity in the parameters as follows

θi = θ + ηi

where θ is the mean parameter vector for the population
and ηi are the individual deviations assumed to be i.i.d.
and normal with zero mean vector and covariance matrix
Ω. The expression of θi shown (additive) is one of numer-
ous ways that individual θ's can be defined. In addition,
the population θ can be expressed as a function of covari-

L F(Y, Model)  {p [y , Model Parameters (x )]}i=1
n

i i= = Π
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ates (βi). The covariate matrix Ω captures both the vari-
ance and covariance among the η's. The density of the
second stage model can then be defined as

p(θi | θ, Ω, βi)

where βi represents the individual patient covariate data
(i.e., age, sex, race, etc.). The third stage of the mixed effect
model approach would represent a Bayesian representa-
tion in which the model would contain the prior distribu-
tions of the population parameters as mentioned
previously.

Prediction Models for Toxicity and Adverse Events
PK/PD models can be developed to explore the relation-
ship between drug exposure and observed toxicity as well.
Endpoints can be expressed as a dichotomous categorical
variable representing the occurrence of an adverse effect
(AE, e.g., nausea, vomiting) or drug reaction (1 = yes, 0 =
no). The population PD data are viewed as a probabilistic
outcome and analyzed using a logistic regression model
[27]. The probability of an event for individual i at sam-
pling time j is given by pij. The ratio of the probability of
that event occurring vs. the probability that it does not
occur is given by the Odds Ratio; the log of the Odds Ratio
is known as the logit function (λij):

Independent variables and covariates (xij) will be incorpo-
rated into the model via the logit function, with popula-
tion typical population (θ) and individual random effect
(ηi) parameters to be estimated:

λij = f(xij, θ, ηi)

Covariate effects, and random effects can modulate the
predicted probability in a positive or negative direction,
with the probability constrained between the values of 0
and 1.

In these analyses it is expected that each individual will
contribute only one observation for each outcome end-
point. Thus the individual random effects (ηi) will be
fixed at a value of zero and a naïve-pooled data analysis
will be conducted. This approach has also been suggested
as a check for nonlinear mixed-effects models of dichoto-
mous outcome data[28]. The predicted likelihood (lij for
individual i and sampling time j) of the data (yij), given

the model and parameters will be described by a binomial
probability density function:

The likelihood for the entire population PD data set is
simply the product of likelihoods across all individuals
and data points. Diagnostic plots and the minimum value
of the objective function are used to guide model building
and assess goodness-of-fit.

Methotrexate (MTX) Model
The administration of methotrexate (MTX) to children
with cancer was chosen as our initial setting to develop
the first drug dashboard prototype. The difficulty in effec-
tively administering high-dose MTX to oncology patients
lie in balancing efficacy and safety. Increased MTX expo-
sure has been shown to be predictive of greater efficacy
[29-31], while increased MTX concentrations and pro-
longed exposure time have also been linked to toxicity
[32]. Due to the high inter- and intra-patient variability in
methotrexate pharmacokinetics, monitoring of meth-
otrexate plasma concentrations in individual patients has
become a standard procedure in order to identify patients
at risk of toxicity. Typically, patient plasma concentrations
are monitored starting at 24 hours post infusion until
MTX plasma concentrations fall below 0.1 to 1 µM [33-
37], with adjunct rescue therapy implemented as needed.

The occurrence of methotrexate-induced renal toxicity fur-
ther complicates chemotherapy administration. Although
methotrexate-induced nephrotoxicity is a relatively rare
occurrence, it is none-the-less a life threatening complica-
tion of methotrexate therapy [38]. Since methotrexate is
mainly cleared from systemic circulation via glomerular
filtration and renal secretion, delayed drug elimination is
a product of this nephrotoxicity. This results in prolonged
drug exposure and elevated plasma concentrations. As a
result of this increased exposure, severe adverse events
such as myelosuppression, mucositis, and hepatitis
become more prevalent and severe.

Numerous studies have been conducted to examine the
feasibility and reliability of applying Bayesian forecasting
approaches to predicting MTX pharmacokinetics. The
goals of these studies have been to predict MTX concentra-
tions at later times or the time that MTX concentrations
fall below a threshold value [39-41], MTX dose adjust-
ment [42,43], or providing guidance for rescue adminis-
tration in the case of elevated MTX concentrations for
prolonged time periods [44]. The Bayesian prediction
models developed thus far have concentrated on those
patients with normal renal function, and are not applica-
ble in the case of severe renal dysfunction secondary to
high-dose MTX administration.
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We have developed a population pharmacokinetic model
to implement as a Bayesian predictor of MTX concentra-
tions in patients with normal renal function and MTX-
induced renal dysfunction. Plasma concentrations from
patients with normal renal function and patients with
MTX-induced renal dysfunction were obtained from
standard clinical monitoring. The model was constructed
from methotrexate dosing histories and monitored drug
concentrations in 240 patients. The original dataset con-
tained 2176 observations covering a range of one to 56
observations per patient (an average of 9 observations per
patient). The age range was from 1 to 80 years with a
weight range of 6.6 to 157 kg. The gender distribution was
approximately 48% male (52% female). Hence, our
underlying patient diversity allowed us to include and
consider relevant size and demographic dependencies.
The model was developed using NONMEM version
VI[45].

Methotrexate disposition is described by a two-compart-
ment model with first-order elimination. Although MTX
clearance changes over time in patients with renal dys-
function, clearance is approximated with a simple model
defined by two different clearance distributions for the
two populations. Inter-subject variability in PK parame-
ters was expressed using an exponential error model:

where:

Pi is the estimated parameter value for individual i

 is the typical population value (geometric mean) of the
parameter

ηPi are individual-specific interindividual random effects
for individual i and parameter P and are assumed to be
distributed: η ~ N(0, ω2) with covariance defined by the
inter-individual covariance matrix Ω.

The residual error was described by an additive expression
on a log-transformed scale (i.e., proportional error
model):

where:

Cij is the jth measured observation in individual i

 is the jth model predicted value in individual i

εij is the additive residual random error for individual i
and measurement j and is assumed to be independently
and identically distributed

The Bayesian forecasting model utilizes the NONMEM
PRIOR subroutine to incorporate population priors into
the model. Fixed effects parameters obtained from the
final pop PK model were implemented for the initial
Bayesian model. Prior distributions of the fixed effects
parameters were obtained from the variance-covariance
matrix from the final pop PK model as well. Prior distri-
butions for random effects parameters were specified as
an inverse Wishart distribution. Clearance was imple-
mented as a mixture model, where a patient is assigned to
a population (normal or impaired clearance) based on the
probability of that patient belonging to either population
given their MTX plasma concentrations. The Bayesian
forecasting model was evaluated using MTX plasma con-
centrations that were not used during model construction.
The model reliably predicts future MTX plasma concentra-
tions from two prior concentrations in all patients except
a small number who develop renal toxicity at delayed
times (> 48 hours). In these patients, the addition of a
third concentration after 48 hours increases the precision
of the prediction of concentrations at later times.

Dashboard Design and System Architecture
The MTX dashboard was developed based on a three-tier
architecture comprising a back end database tier, a busi-
ness logic middle tier and a data presentation/user inter-
face tier at the front (see Figure 2). The database tier
consists of patient records from our electronic medical
records system (Sunrise Clinical Manager, SCM) merged
with data from patient registration system (IDX), lab data
management system (Clarity) and adverse event manage-
ment system (proprietary). Required data from these sys-
tems are extracted and loaded into relational tables within
the staging area of the PKB. The data fields are then proc-
essed systematically for gaps and manually filled (from
patient charts) when any of the missing data are critical
for functionality. Such gaps are then noted for future
improvements in the data collection process. The level of
data validation is minimal and sufficient for testing; a
comprehensive data validation approach has been out-
lined for implementation prior to production release. Var-
ious views and summary tables are created from the
relational tables for quick retrieval by the application. The
current version of the application retrieves data from stag-
ing area tables via views and summary tables. Eventually,
a multidimensional data mart will permit ad hoc querying
and drill down analysis. Upon its completion, data from
the staging area will be transformed and loaded into the
PKB datamart.

P Pi
Pi= ˆ exp( )h

P̂

ln( ) ln( )C Cij ij ij= + e

Ĉij
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The middle tier consists of rules and processing logic
required to collect and prepare data for user presentation
(alerts, filters, aggregations, derived values and predic-
tions). Predictions are conducted in an external computa-
tional platform – our modeling and simulation (M&S)
workbench. This platform can execute code in a variety of
languages provided they can run in a batch mode. Of
note, the M&S workbench can currently accommodates
many of the standard prediction engines used to forecast
PK and PK/PD relationships (NONMEM, SAS, SPLUS and
R). Details of analytical run processing using NONMEM
with the workbench are described below. While the work-
bench can perform various data processing functions and
analytics including generation of plots and figures, it is
important to note that all PKB related analytics are gated
in the middle tier through logic to ensure that minimally
required data sets are available for each patient or sets of
patients for meaningful analysis (e.g., appropriate data
density to make predictions, etc).

The user interface is a currently web-based and utilizes a
combination of HTML, JavaScript and XML content. We
are in the process of migrating to an AJAX paradigm and
implementing Web 2.0 standards (the new standard for
live HTML content). Upon successful transition to Web

2.0, it is possible to readily support more user interface
types such as java applet, java application or stay com-
pletely within the browser. The Workbench component
can co-reside on the same server or installed on another
server within the intranet or even hosted anywhere on the
internet. The system is designed to transfer data and mes-
sages in an authenticated and completely secure manner.
When a physician invokes a given forecasting function
within PKB, the data required of that patient for the anal-
ysis of interest is extracted and written to a flat file in the
required application format. The system then edits a pre-
viously prepared control file (with job settings and analyt-
ical inputs) with necessary changes and makes a call to the
Workbench requesting an execution. The communication
and data transfer mechanisms are implemented via mes-
sage queues, thereby ensuring guaranteed delivery, fault
tolerance and scalability. The Workbench execution mod-
ule listening to the queue receives the request and submits
the jobs to NONMEM or whatever application has been
specified for that analysis by the experts and calls the proc-
ess manager module to monitor for completion. Upon
completion, the process manager calls an application spe-
cific parser module to parse and return the results back to
the calling application (middle-tier). The middle-tier
receives the results and formats it into an XML object and

Schematic of three-tier system architecture of hospital pharmacotherapy decision support system comprising a back end data-base tier, a business logic middle tier and data presentation/user interface front-end tierFigure 2
Schematic of three-tier system architecture of hospital pharmacotherapy decision support system comprising a back end data-
base tier, a business logic middle tier and data presentation/user interface front-end tier.
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returns the same to the browser for display. If the output
of the analysis calls for graphical display of results, the
middle-tier sends the unformatted output to the graphing
engine and forwards the generated graphs back to the
browser for display. The graphs can be setup to support
drill downs, mouseovers or invoke further analysis. This
ensures that analysis of any kind can be performed via the
M&S Workbench to support drug/disease dash boards of
varying complexities.

Results
The population pharmacokinetic parameters used as ini-
tial priors in the initial Bayesian forecasting algorithm
that predicts methotrexate drug concentrations are sum-
marized in Table 2. Diagnostic plots from the current pop-
ulation pharmacokinetic model are shown in Figure 3.
These plots indicate that the model is adequate to describe
the data. Of course the initial parameter set is simply a ref-
erence point for the forecasting routine. As patient-spe-
cific data (observed MTX concentration-time data relative
to an individual dosing event) is added to the data set, the
model is executed again as previously described and
updated "priors" are generated incorporating the new sub-
ject's observations.

The prototype methotrexate dashboard module is focused
on visualizing the current and recent dosing events rela-
tive to markers which indicate the potential for drug-
induced toxicity. It also forecasts methotrexate exposures
within the current dosing regimen to project the potential

for toxicity and provide dosing guidance. The user will
access the MTX dashboard from our existing medical
records system, Sunrise Clinical Manager (SCM). Eventu-
ally, the dashboard will be migrated to the EPIC system
which is being integrated with the hospital network in
phases. From either system, there will be multiple points
of entry with the most likely access coming from the
patient medical record number. Figure 4 shows screen
captures of the current MTX dashboard design. The dash-
board contains three tab views (Drug Formulary, Patient,
and Patient History). The details of the entire MTX dash-
board will be defined in a separate publication. Briefly,
the Drug Formulary tab presents formulary data supplied
by Lexicomp restructured in a more web-friendly and con-
tent rich layout. The Patient History tab provides histori-
cal views of previous experience with an agent in the same
patient from previous hospital visits. The first panel (Fig-
ure 4A) shows the initial entry screen with the patient tab
shown. All modeling and simulation is executed via the
patient tab. The initial screen (Figure 4A) shows the most
recent MTX dose event with the complementary moni-
tored MTX plasma concentrations and safety markers.
Based on input from our pediatric oncology community,
the dashboard contains a subset of all data captured
within SCM with selections from drop down windows
possible. Serum creatinine and total bilirubin concentra-
tions are shown plotted with MTX concentrations from
the last dose event. Double clicking on any of the three
plots will yield an expanded single plot with axes, scale
and units shown.

Figure 4B is the view projected after the dosing guidance
menu button is selected. The plot shows the observed 24
and 48 hour MTX plasma concentrations along with the
model-predicted MTX exposure (solid line) at these time
points and at a subsequent, extrapolated 96 hour point.
This extrapolated time point is estimated by calling the
MTX population PK model and running the model exe-
cutable with the patient's previous (observed data) incor-

Table 2: Current population pharmacokinetic parameter priors 
used to forecast methotrexate plasma concentrations in pediatric 
patients

Parameter Units Estimate BSV

CLN L/h 8.13 41.2%
CLR L/h 2.59 82.0%
V1 L 39.6 21.0%
V2 L 3.94 47.6%
Q L/h 0.113 7.56%

CLN – Clearance in patients with normal renal function
CLR – Clearance in patients with reduced renal function
V1 – Volume of distribution in the central compartment
V2 – Volume of distribution in the peripheral compartment
Q – Inter-compartmental clearance
BSV – Between subject variability

Diagnostic plots from preliminary methotrexate population pharmacokinetic modelFigure 3
Diagnostic plots from preliminary methotrexate population 
pharmacokinetic model. (A) Observed versus population 
predicted concentrations. (B) Observed versus individual 
predicted concentrations. Open circles represent MTX 
plasma concentrations from patients predicted to have nor-
mal renal function. Open triangles represent patients pre-
dicted to have reduced MTX clearance.
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porated. The refitted model with updated "patient-specific
priors" is then used to project (simulate) the exposure at
the 96 hour point, a time when blood collection for MTX
plasma concentration determination is normally sched-
uled in compliance with formulary monitoring practice
for MTX.

Figure 4C shows projected view from Figure 4B overlaid
against a nomogram used to assess the potential for MTX
toxicity with consideration for drug rescue with leucov-
orin. Several similar nomograms exist for managing MTX
drug therapy. Nomograms are aligned to the clinical pro-
tocol that the patient is being treated from (protocol is
shown in the dashboard in the upper right corner of each
screen next to patient demographics. The dashboard con-
tains each of the nomograms used at our institution and
so correctly matches the drug exposure views to the nom-
ogram by index to study protocol. Figure 4D illustrates the
update of the model fit when the additional blood collec-

tion time points were added to the patient data set. The
various stages of the MTX dashboard interface including
data refresh, model update and output generation are
described via the workflow diagram shown in Figure 5.
While real-time access is desirable, a scheduled data
refresh is more practical. This also removes the burden of
data check and model update from the user operation
with only calls to produce simulation plots generated by
the actual user interface screen.

Discussion
The development of drug-specific dashboards to educate
patient caregivers on principals of clinical pharmacology
and guide pharmacotherapy in pediatric populations is
likely to yield superior clinical outcomes (fewer medica-
tion errors, reduced toxicity, reduced length of hospital
stay, etc). While this approach has been advocated for
some time and pioneering work by Jelliffe and oth-
ers[25,26,46] has long demonstrated the clinical benefit

Screen captures from the current MTX dashboard design showing (A) the most recent MTX dose event with the complemen-tary monitored MTX plasma concentrations and safety markers, (B) the MTX exposure projected after the dosing guidance menu button is selected, (C) the view from Figure 4B overlaid against a nomogram used to assess the potential for MTX toxic-ity with consideration for drug rescue with leucovorin and (D) the update of the model fit when the additional blood collection time points were added to the patient data setFigure 4
Screen captures from the current MTX dashboard design showing (A) the most recent MTX dose event with the complemen-
tary monitored MTX plasma concentrations and safety markers, (B) the MTX exposure projected after the dosing guidance 
menu button is selected, (C) the view from Figure 4B overlaid against a nomogram used to assess the potential for MTX toxic-
ity with consideration for drug rescue with leucovorin and (D) the update of the model fit when the additional blood collection 
time points were added to the patient data set.

B

C

A

D
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of model-based dosing guidance, this research has not
yielded any sustainable impact. The dashboard system
proposed herein will rely heavily on the integration of
modeling and simulation approaches in order to provide
meaningful decision analytics to the end user. Our proto-
type methotrexate dashboard assembles the most clini-
cally relevant patient data into an interface that allows end
users to assess relevant biomarkers against drug exposure
and forecast future exposures from a given dosing regimen
as opposed to waiting to measure such levels via tradi-
tional TDM approach. Hence, an earlier assessment of the
potential for nephrotoxicity can be made. The underlying
population pharmacokinetic model was defined based on
limited pediatric data which will be rechallenged prior to
final model qualification/validation and production
release of the MTX dashboard.

Future considerations for dashboard concepts will include
functionality to predict the likelihood of drug interaction

with co-administered drugs. By simulating virtual drug
interaction studies, we will have the ability to report
potential adverse events based on data mining and corre-
lation analysis. We also envision the necessity of expand-
ing the dashboard design construct to accommodate
multiple agents considered as treatment options for tar-
geted indications. In this instance, the choice of agent
would be a decision criterion to be evaluated prior to the
initiation of drug therapy. Our concept here would be to
create workflows that considered patient status and previ-
ous pharmacotherapy outcomes along with criteria for
ranking agent choice depending on the selection
attributes. This situation is quite common with antibiotic
therapy, which is already receiving attention with respect
to commercially available solutions to tracking and pre-
scribing. TheraDoc [47-49], Cereplex [50] and MedMined
[51,52] all represent commercial solutions in this arena.
TheraDoc mines patient data for trends in infections and
suggests courses of action for particular patients, while
Cereplex searches for unusual infection patterns and iden-
tifies patients requiring changes in therapy and Med-
Mined uses data-mining algorithms to tease out unusual
patterns and correlations from patient records and lab
tests. The development of decision support systems for
managing antibiotic therapy spans several decades
now[6,53-55]. Much of the impetus for such systems has
been the desire to respond clinically to dynamic changes
in local or global bacterial prevalence as well as develop
strategies to combat resistance. Likewise, as the landscape
of therapeutic options changes with the introduction of
new antibiotics, new data on additional indications (e.g.,
efficacy against new bacterial strains), epidemiologic data
on cure rates, global/regional resistance development,
and/or the exodus of agents from the market, such sys-
tems need some level of continued support beyond infor-
mation technology. Ownership, governance and
preventive maintenance efforts must become formalized
for such systems to continue to provide the same level of
guidance as when they were first implemented.

The broad array of decision support systems currently
employed in hospital settings coupled with those in
development highlights the need for robust data integra-
tion and flexible decision analytics validated against all
possible conditions of use and practice. While the concept
of modeling and simulation integration is relatively
straightforward, the details of ensuring the performance
of these systems, particularly those that impart clinical
guidance are complex and require input from IT, clinical
pharmacology, pharmacy and clinical practice. The gov-
ernance of our efforts is overseen by our IRB and thera-
peutics standards committee but this alone does not
ensure the practical issues associated with guiding phar-
macotherapy. Given the paucity of information often
available to guide pediatric pharmacotherapy, there is a

Workflow of MTX dashboard operationFigure 5
Workflow of MTX dashboard operation.

Load model and initial dataset 

Define data refresh criteria and schedule 

Plots of model fit with projected MTX 

exposure produced and displayed

Y N 

Revise dataset 

Re-run model – generate 

new priors

User requests forecast 

Check data on refresh – data available? 
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strong desire to "fill-in" such gaps with the best available
information available. Likewise, the void in data and
knowledge today does not imply that such gaps will
remain and decision analytics provided to guide present
pharmacotherapy must be revisited as new information
becomes available.

Conclusion
The integration of modeling and simulation algorithms
with hospital-based networks to guide the pharmacother-
apeutic management of individual patients has great
potential to improve outcomes. The benefits of such a sys-
tem should include improved therapy (efficacy), reduced
medication errors, greater appreciation for drug interac-
tion potential, earlier identification of toxicity, and earlier
guidance on rescue therapy. Our prototype dashboard
concept is part of a broader initiative to develop a pediat-
ric knowledgebase of which dashboards are only one
component. At present, dashboards for methotrexate, tac-
rolimus and vancomycin are at various stages of develop-
ment. Collaborations with other institutions and
investigators should allow the generation of additional
dashboards beyond our existing capacity. Such systems, as
they are developed, will require a level of support beyond
which many hospitals are accustomed as mentioned pre-
viously. More importantly, they imply a continued effort
from clinical pharmacologists and engineers to imple-
ment relevant, new research into these systems to ensure
that they continue to perform up to expectations and
evolve with advances in drug therapy in pediatrics.
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