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Abstract

Background: The present work aims at the application of the decision theory to radiological
image quality control (QC) in diagnostic routine. The main problem addressed in the framework
of decision theory is to accept or reject a film lot of a radiology service. The probability of each
decision of a determined set of variables was obtained from the selected films.

Methods: Based on a radiology service routine a decision probability function was determined for
each considered group of combination characteristics. These characteristics were related to the
film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256
possible decision rules. In order to determine a general utility application function to access the
decision risk, we have used a simple unique parameter called r. The payoffs chosen were:
diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in
eight possible combinations.

Results: Depending on the value of r, more or less risk will occur related to the decision-making.
The utility function was evaluated in order to determine the probability of a decision. The decision
was made with patients or administrators' opinions from a radiology service center.

Conclusion: The model is a formal quantitative approach to make a decision related to the
medical imaging quality, providing an instrument to discriminate what is really necessary to accept
or reject a film or a film lot. The method presented herein can help to access the risk level of an
incorrect radiological diagnosis decision.

Background

The X-Ray is the main investigation method for the
human body in various clinical conditions. Therefore,
quality control procedures were implemented to stand-
ardize and define the minimum requirements for a gold
standard radiology service. These requirements are world-
wide reviewed by health institutions, including Brazilian

National Institute of Health (Secretaria de Estado da
Saide, Centro de Vigilancia Sanitaria and Ministério da
Saude), as well as international institutions (International
Commission on Radiological Protection — ICRP, World
Health Organization - WHO, and International Commis-
sion of the European Communities - ICRU) monitoring
the radiology practice [1].
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The main idea behind the regulations in X-Ray applica-
tion is to protect patients from radiation injury. The basic
principles can be summarized as those described by ICRP
73 [2]: ionization radiation should be applied in cases
where the benefits overcome the potential hazards. The
objective is to maximize the gains over the potential
harms using procedures to protect against radiation. The
applications of these two principles are the main goal of a
Quality Control (QC) program: apply the minimum
required radiation to maintain the diagnostic value of the
images. Radiation must be controlled and the radiological
images should have always enough quality to provide the
required information.

Excellence in imaging quality standards is achieved
through published guidelines of radiological societies
(e.g. Radiological Society of North America guidelines).
There are standard procedures for each exam that the tech-
nologist knows and follows when acquiring an image.
There are also general rules related to examination steps
and acquisition device settings. Every step is dependent of
the patient's characteristics, such as height. In addition,
some issues are difficult to standardize, although the
major of technical procedures were monitored for a
proper quality assurance [3]. These non-measurable fac-
tors usually have a negative impact in the standardization
of radiological practice with undesirable effects. A prelim-
inary study made between 1992 and 2003 in Brazil
showed that 5.15% of the films were rejected films; result-
ing in patient's re-expositions, equipment lifetime reduc-
tion and an overall increased operational cost. The main
cause of film loss identified in this study was lack of stand-
ardization [4].

A QC program is typically a result of multidisciplinary
interaction, involving several steps: habitual verification
of technical parameters in X-ray equipments, systems reg-
istry (films, digital cassettes) and other procedures used to
deliver the images for medical interpretation. The defini-
tion of QC also includes a series of standardized tests
developed to detect changes in X-ray equipments [5,6].
The final result of a successful QC should primarily be a
reduction in the number of re-exposed or over-exposed
patients and a high quality imaging diagnostic. Also, it
should provide minimal financial costs and increase the
equipment lifetime. This usually requires a complex rule
of decisions, usually made by the physicists, engineers
and radiologists in a joint effort to maximize two princi-
ples: improve the image quality and reduce radiation
exposure.

Decision Making Theory (DMT) offers an integrated
framework to mathematically define a preference and/or
probability model for each step of the QC program. Prior-
ity of preference in sets of possible outcomes and states of

http://www.biomedcentral.com/1472-6947/8/51

information (uncertainty or imprecision) are represented
as distribution possibilities [7] and therefore statistically
analyzed. This formulation allows a more direct measure-
ment of the outcomes from a certain decision and has
been implemented successfully in many different con-
texts. One of the most used implementations of DMT was
proposed by Von Neumann and Morgenstern [8]. These
authors modeled the quantitative utility function based
on a set of axioms that described decision-maker's behav-
ior. Various implementations made in medicine were
based on their approach with practical examples [9,10].
Their work has demonstrated the importance of this kind
of framework according to a decision policy regarding a
case of a preoperative patient management care before
opting for a major elective surgery. All available informa-
tion to decision-making, through informed priors, allow
the appropriate decisions to be made [10].

In essence, what the decision theory formalizes is the
common sense idea that an individual should take the
best action based upon what he or she wants, knows, and
can do [11,12]. In a radiology routine, it is the technician
who acquires the image and observes it initially. It is often
up to them - without ever asking the radiologist -
whether or not another image must be taken due to poor
quality acquisitions. It should also be noted that the tech-
nologists often acquire an image with certain parameters
because they know which radiologists will evaluate the
exam and what their personal preferences are. The classi-
fication of this "individual" choice depends on direct or
indirect aspects. The person who makes this decision
could be the administrator of the radiology service depart-
ment, the radiologist itself, the technician or even the
patient when refusing to perform a second or third exam
in order to reacquire the image.

The basic parameters of decision theory involve some sets,
probabilistic mechanisms, and decision rules [13].

The four main sets are:

1) a payoff set (p) - the offered benefit in a specific situa-
tion, consisting of all the possible consequences of the
actions to be taken;

2) a set of "states of nature" (0) - containing all the possi-
ble situations of the study; typically unknown parameters
in the phenomena (i.e. if a film has a good or bad quality)
involved;

3) a set of observations (x) - relating to the states of nature
(i.e. spatial resolution, sensitivity of an image);

4) a set of possible courses of action (a) - to reject or

accept the film.
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The three main probabilistic mechanisms are:

1) The consequence function — P(p;| 6, a). It shows the dis-
tribution probability of the payoffs for each pair of
defined events - "state of nature" vs. action. It is necessary
to consider the utility function, which represents the pref-
erences of the decision maker in situations of uncertainty.
In order to reach the model of utility function (u), a proc-
ess of eduction is applied to prioritize the good and bad
actions strategies incorporated into a unique evaluation
dimension. This function is a polynomial one with a
degree called r. The higher the r value, the most complex
will be the utility function.

2) The distribution probability (likelihood function) - P(x;| ).
According to the determined observations of the state of
nature, a film can have a good or bad quality including its
own characteristics (contrast, speed, fog, digital exposi-
tion, latitude and other). The distribution probability
considers the correlation between the observations made
and the state of nature.

3) A prior distribution — 7{6). Possibly elicited from an
expert, regarding to the state of nature. If the institution
maintains a database of QGC, it is possible to estimate a
prior distribution to be applied to the test.

The decision rule (d) associated for each observation (pos-
sible actions to be taken):

1) The deterministic choice is the most simple decision
rule for each observation in which an ideal action should
be taken.

2) The randomized decision rule yields two other types:
2.1) The randomization upon the non-randomized rules
before any observation is made.

2.2) The behavioral randomized rule b(g;|x;), in which a
first observation is made. After this observation, a rand-
omization of all possible actions is considered. The
behavioral rule is more powerful, in the sense that it can
access any risk; this is not the case regarding the rand-
omized rule.

The risk function (Rd) compares the decision rules and the
consequence function is defined by the process for obtain-
ing the probability of a certain result related to the "state
of nature" (in our case, a good or bad image). Based on
the consequence function the decision-maker chooses, a
certain proceeding or action is taken. This probabilistic
mechanism should be better understood when analyzed
together with the decision theory techniques. It can be
inferred from an available database, from the elicitations
of an expert or from both.

http://www.biomedcentral.com/1472-6947/8/51

Herein, we suggest a general guideline, based on the deci-
sion-making paradigm, as proposed by the report from
ICRU in 1996 [1]. According to this report, the techniques
of statistical DMT should be used as a standard procedure
to treat problems of image detection, edge detection,
noise and sharpness. The parameters referred by the
present work are: inadequate use, inadequate sensibility
and/or inadequate spatial resolution related to the radio-
logical chain process. The application of the decision
making theory was restricted to acquired images, not con-
sidering other parameters that could interfere before the
image detection. The final outcome considered was to
accept of reject a film lot. With this new approach, there
are good consequences like: the patient's satisfaction, a
correct diagnosis and stable financial costs.

This work does not aim on a new method proposition to
improve the sensibility or specificity of the data acquisi-
tion system. The approach also applied a very well known
concept of the radiology practice: the Receiver Operating
Characteristics, also known as the ROC curve. This curve
is determined according to a set of probabilities: true pos-
itive = P (positive test/positive for disease) vs. false posi-
tive = P (positive test/negative for disease). In other words,
sensibility vs. a false positive or P (altered exam/has the
disease) vs. P (altered exam/has not the disease) parame-
ters that are part of most papers published in radiology
journals, in which the accuracy of a diagnostic imaging
test is verified.

This is the TPF (function of true positive probability) and
FPF (function of false positive probability) ROC curve. It
has a purely inferential character, and is a very particular
case of a more general ROC curve, where the loss function
is the ideal observer loss function (i.e., the negative of the
utility function). We have four possibilities: if the film is
bad, we reject it; if the film is good, we accept it; if the film
is bad and we accept it, and finally, if the film is good and
we reject it. In the first two cases, the target was reached.
In the latest the target was missed, and they correspond to
errors. In mathematical terms, the loss function is given
by:

L(6, @) = -u(6, )
The ideal observer loss function is given by:
L(6,a)=0ifa;=6;L(, a)=1ifa;#6,i,j=0, 1.

This means that if we reach the target, we have no fine (the
loss is null). If we miss the target, we pay a fine equal to
one (the loss is equal to 1). But this rather peculiar utility
function does not reflect the preferences of a decision-
maker, since the negative of the ideal observer loss func-
tion is just an inference criterion.
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When the ideal loss function is applied, the risks were cal-
culated by:

RA() = -ZP(x| )u(6, d(x;))

These probabilities correspond to the specificity, sensitiv-
ity, false positive and false negative conditions. In these
inferential contexts, the classical TPF and FPF ROC curve
is the typically presented as the true positive versus the
false positive conditions, with a 0-100% scale on both
axes (concave function). In the current work, since we are
dealing with preferences, the risks will not be considered
as probabilities. The axes of the ROC curves will have a
scale corresponding to the applied utility function, which
should be educed from the decision-maker and represents
his preferences (convex curve). It is the locus of all possi-
ble Neyman-Pearson Rules and not a TPF- FPF ROC curve.

The ROC curve axis reflects the preference dimension of
the decision-maker regarding to the data acquisition sys-
tem (i.e. technology or radiography type) and will imply
in a likelihood function. This construction is independent
from a considered database and the probability will usu-
ally be very similar.

In order to accept or reject a film lot according to this pro-
cedure is necessary to obtain the correct diagnosis, the cost
optimization and the client's satisfaction. The client's sat-
isfaction will be measured by the utility function, which is
different from the one that corresponds to the ideal
observer loss function. All values of probable observa-
tions were proposed based on previous information from
real datasets and hypothetical predictions applications.
The investigation researched some possibilities according
to the dependency values related to the image quality
assurance. In summary, this is a case in which the decision
theory is used to establish a framework for radiographic
film quality control protocol; this is done by studying the
consequence of an action as a function of a specific prob-
ability distribution over possible consequences.

Methods

The decision making theory was implemented for specific
computational tools. The data was stored in a Quattro Pro
v. 9.0 (Borland Inc - USA) and in a Statistica v. 5.3
(StatSoft — USA). All data was obtained from densitome-
try data of the radiographic films of a phantom obtained
by a digital densitometer (Model 07-443, Nuclear Associ-
ates Victoreen 07-443 Clamshell, United States). The val-
ues of the film characteristics were calculated from 15
different measures of radiation intensity.

The images were made in a conventional X-Ray, Medicor
500 mA and 125 kV, from the Hospital das Clinicas da
Universidade Federal de Pernambuco (HC-UFPE), Brazil.
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The values were obtained from data analysis of the radio-
graphic film (characteristic curve, modulated transfer
function and the Wiener spectrum as exposed in ICRU
[1]). Attributes such as contrast, latitude, speed and fog
were determined according to our observations from each
film condition (bad quality or good quality).

In case of two possible actions (accept/reject) and no prior
probability, we applied the behavioral randomized [7]
and Neyman-Pearson rules. In case of two possible
actions, the observation sample space was partitioned
into two regions, one of rejection and the other of accept-
ance. The model is very simple in compliance with Ock-
ham's razor principle. The consequence function was
calculated based on the subjective preference of the per-
son making the decision.

Results

The first approach will consider a dichotomy in each of
the three attributes: diagnosis, cost and client satisfaction,
where eight possible payoffs cases (see figure 1) will be
considered:

po = (incorrect diagnostic, high cost, low client satisfaction)

py = (incorrect diagnostic, low cost, low client satisfaction)

p, = (incorrect diagnostic, high cost, high client satisfaction)
ps = (incorrect diagnostic, low cost, high client satisfaction)

p4 = (correct diagnostic, high cost, low client satisfaction)

ps = (correct diagnostic, low cost, low client satisfaction)

pe = (correct diagnostic, high cost, high client satisfaction)

p; = (correct diagnostic, low cost, high client satisfaction)
Based on the parameters described above, a set of "states
of nature" was established. A film lot is considered good
if the percentage of bad units from a film box is below a
certain pre-specified value. There is a natural doubts of

which of these states reflect a true condition scenario.

This uncertainty establishes the decision problem. Where
Orepresents the real "state of nature" of the film, we have:

6, = the film is a bad quality one;
6, = the film is a good quality one.

The space or set of observations should consider a finite
number of possibilities. We considered three groups of
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Main set

payoff’s: p={po,p1,---,P7}
states of nature: © = {6,,0}

observations: X={Xg,X1,...,X7}

actions: A={ay, a}

Probabilistic

consequence function: P(p|6,a)

probability distribution: P(x|0)

Figure |

Risk set :

7
Rd (0].) = _i§0 P(x; lﬁj )M(Hj,d(xl-))

http://www.biomedcentral.com/1472-6947/8/51

Neyman-Pearson
decision rules

risk function

j=0,1

* R4(6,)

Schematic representation of the Decision Making Theory applied to the radiographic film quality control

parameter.

attributes: film usage, film sensibility and spatial resolu-
tion.

For each situation of film usage, film sensibility and spa-
tial resolution, a dichotomy was considered, based on the
limits of the values dependency. Another set (eight possi-
bilities) was originated for the following observations:

X, = (inadequate for use, inadequate sensibility, inadequate
spatial resolution)

x, = (inadequate for use, inadequate sensibility, adequate spa-
tial resolution)

x, = (inadequate for use, adequate sensibility, inadequate spa-
tial resolution)

x5 = (inadequate for use, adequate sensibility, adequate spatial
resolution)

x4 = (adequate for use, inadequate sensibility, inadequate spa-
tial resolution)

x5 = (adequate for use, inadequate sensibility, adequate spatial
resolution)

X = (adequate for use, adequate sensibility, inadequate spatial
resolution)

x, = (adequate for use, adequate sensibility, adequate spatial
resolution)

The problem considered in this case had only two possi-

bilities of action:
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a, = to reject the film lot;
a, = to accept the film lot.

The effective action related to the condition of the state of
nature reflects the probability of the feasible outcomes.

This probabilistic mechanism depends on the technology
of the data acquisition system (sensors, digitizers and oth-
ers). A plausible set of probabilities for this problem was
shown in table 1. These values correspond to an estimated
distribution of the combined information mentioned
above obtained from radiologists and physicists involved
in the QC program.

The likelihood function P(x;|§) consists of two values, in
which i corresponds to the observed value and j to the true
value. The value of x; (a set of observations) represents
what is obtained from the equipment, and ¢ (a set of
"states of nature") is the "true" value: a good or bad film
quality.

The consequence function is the probability of obtaining
certain payoff regarding the "state of nature" and a specific
action of the decision-maker. Table 2 shows the probabil-
ities for each pair (8, 4;) of a consequence function. These
values where calculated with data from Table 1. For
instance, regarding x,( "inadequate for use, inadequate sensi-
bility, inadequate spatial resolution") the probability of each
consequence (p, - p,) if the action is to reject (a,) the film
can be obtained from Table 2. If the film is bad (6,), the
highest probability is p, (0.300), which means that there
is a high chance of making the right diagnosis. A high cost
is involved in this case due to the necessity of another
film, trial procedure and professional staff time. As a con-
sequence, the client satisfaction in the process is compro-
mised since the patient will probably repeat the
procedure, and be re-exposed to the X-rays.

The decision rules

The "state of nature" and the problem solution were
obtained by the rule of Neyman-Pearson. The decision-
maker utility function enunciated the level 8 of tolerated
risk when 6, was considered the true "state of nature".

http://www.biomedcentral.com/1472-6947/8/51

We have applied two r values to simulate the decision-
maker's influence or preference upon the decision rule to
adopt an optimized action (ideal). The r value is actually
the polynomial grade used in the mathematical formula-
tion. We chose r =2 and r = 4, in order to have the classical
quadratic loss function (from Theory of Decision Making)
and a more complex formulation. This was done in order
to check whether the results would be the same, regardless
of the decision-making opinion.

The observations were considered from a set of 8 possibil-
ities as shown in Table 1. Thus, we have 256 possible deci-
sion rules (2 actions with 8 established observations). In
order to determine a general utility function to access the
decision risk, we have used just one parameter - r — in
which the utility function considered was u(p) = p".

Two values of r were used: r = 2 and r = 4. The higher val-
ues of r reflect an increased risk of the decision-maker. If
the patient had to decide about the rejection or accept-
ance, he or she would tend to be more adverse to risk. We
chose r = 2 as a conservative risk behavior simulation to
the patient choice, so that, the values of P(x;|#) = proba-
bility values of the signal/noise ratio were relayed on
imaging equipments and its components (see Table 1)
and P(p;| 8, a,) = once the nature condition of the chosen
data g(bad film) or 6,(good film) regarding to a, = to reject
or a, = to accept action (data not shown). The consequence
function is defined as p; (payoffs), under probability of
P(p;] 0, a) (see Table 2).

The values shown in figures 2 and 3 are a simple plot of
the ROC obtained from all possible Neyman-Pearson
decision rules results. The observation of those figures
depicts the low risk level of the d,, decision rule. In other
words, if the decisor-maker chooses d,4, a low probability
situation (related to the risk) of rejecting a good film or
accepting a bad one would be the plausible decision. The
decision rule d,; suggests that the decision-maker will
refuse all observations including the "inadequate for
use"(x, - x;) parameter.

Simulations with the model
The main purpose of the simulation is to analyze the
influence of the utility function on the decision rule to

Table I: The film usage, film sensibility and spatial resolution attributes provide the likelihood function (P(x|6)) of the analyzed images

related to the values dependency.

P(xilej) Xo X Xz X3 X4 X5 Xe X7
&y 041177 0.16807 0.14706 0.11345 0.07563 0.05042 0.02521 0.0084
o, 0.00977 0.01303 0.03257 0.06515 0.09772 0.13029 0.16287 0.4886

These values correspond to an estimated distribution of the combined information obtained from radiologists and physicists involved in the quality

control program.
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Table 2: The probabilities are shown for each pair (d, a;) of a consequence function.

P(xil6;, a,) Po P P2 P3 P4 Ps Ps P7
(6 ag) 0.150 0.110 0.070 0.050 0.300 0.200 0.080 0.040
(6, ay) 0.300 0.250 0.150 0.100 0.060 0.040 0.080 0.020
(6, ay) 0.100 0.060 0.100 0.150 0.100 0.050 0.250 0.190
(6, a)) 0.050 0.060 0.090 0.060 0.110 0.130 0.200 0.300

All values where calculated with the data obtained from table |. The highest probability of a correct diagnosis with an increased cost and low client
satisfaction was represented by P(p4| 6,a,) = 0.30.

accept or reject the film lot. There are several possibilities ~ scenario) - case in which the report is incorrect and the
concerning the emphasis and accuracy on various aspects ~ patient re-exposure will be necessary - the probability of
of the possible outcomes, contemplating the quality con-  x,is 0.00977, if & ("states of nature") is 6, (good film). On
trol protocol. In particular, the characteristic of risk aver-  the other hand, the probability of when & ("states of
sion was evaluated. The probability of x, = (inadequate for ~ nature"), 6, (bad film) is 0.0084 makes the probability of
use, inadequate sensibility, inadequate spatial resolution)  x, be 0.4888 of 8, (good film).

when 0 ("states of nature"), 6, (bad film) is 0.41177 (worst

RISK SET

Ra(01)
-0.410

-0.415-

-0.420
-0.425-
-0.430

-0.435

'0-440 g I L I
-0.375 -0.325 -0.275 -0.225 -0.175

Ra(60)
Figure 2

The risk set for the case r = 2.R(6,) — Risk set for a bad film quality and R ,(,) -Risk set for a good film quality. u(p) = p2—
Utility function to use just one parameter (r = 2).
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RISK SET

Ra(01)

u(p)=p*

-0.28

%

-0.30

-0.32

+H

-0.34 1

PR

-0.36

B
X

-0.38 -

-0.22 -0.20 -0.18

Figure 3

-0.16

-0.14 -0.12 -0.10 -0.08 -0.06

Ra(00)

The risk set when r = 4.R (§,) — Risk set for a bad film quality and R (,) — Risk set for a good film quality. u(p) = p*— Ustility

function to use just one parameter (r = 4).

Table 2 demonstrates all considered consequence func-
tions. The highest probability of a correct diagnosis with
an increased cost and low client satisfaction was repre-
sented by P(p, | 6, a,) = 0.30 (Table 2).

Consider the utility function

7
u(0o,ag o 1) = z u(p)P(Pr 1 00:a0 o 1) and
k=0

7
u(0;,aq 0 1) = 2 u(p)P(py | 61,40 o 1) - In order to calcu-
k=0

late the risk function R,(8 ) and R,(6,) corresponding to
each utility function (polynomial degree) r, we used

7
R4(60) = —2 P(x; | 00)u(0¢, ag o 1) and
i=0

7
R,(6,) = _Z P(x; [01)u(6, a0 o, 1), presented as Ry(6,) x

i=0
R,(6,) in figure 2, with r = 2 and in figure 3 with r = 4.

Table 3: Representation of the results accomplished with the
Neyman-Pearson decision rules for two values of r.

r Regra x, X, X; X3 X4 X5 X4 X; Ry(6) Ry(6))
2 dig aQy 3 3 a a; 3 a 7 -0.31 -0.44
2 digy 3 3 a a a a a 3 -0.18 -0.44
4 di¢ 3 3 3 3 a 3 3 7 -0.18 -0.36
4 diyy 23, a3, a3, a a 23 a 7 -0.10 -0.37

Results of the simulation for a parameter (r) to a determined decision
rule (d); Ry(&) — Risk set for a bad film quality; Ry(6,) — Risk set for a
good film quality.
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Tables 1 and 2 correspond to the likelihood and conse-
quence functions, respectively. In addition, Table 3 repre-
sents the results obtained with the Neyman-Pearson
decision rules for two values of r. Simulated values were
used to calculate the risks from decision rules for each
observation and also to determine a ROC analysis for each
risk set.

In figure 3, the decision rule d, 4 corresponds to the vertex
of the curve when the risk R,(,) is set to r = 4. This rule
says that if the observation was inadequate for use, the
film must be rejected. All other options were accepted (see
Table 3). This rule corresponds to Ry(6,) = -0.18 and
R,;(6,) = -0.36. When r = 2 for the same value, we have
R,(8,) = -0.18 and the minimum value in the curve corre-
sponds to d,, (R4(6,) =-0.44). This rule expresses that the
only rejection condition for the film is when usage and
sensibility are inadequate and spatial resolution is ade-
quate (Figure 2).

However, when r =4 (d,,,) the risk of accepting a bad film
is increased (R;(d,) = -0.18) and the risk of accepting a
good film increases as well (compared to d,;). This rule
was not the ideal one since it rejects the finest option: ade-
quate for use, sensibility and spatial resolution.

Discussion

The problem of accepting or rejecting a radiographic
image based on the decision theory method was modeled
here. The decision theory was applied on a hypothetical
model. The ROC curve axis represent risks levels based on
a preference concept or choice determined by the educ-
tion of the utility function von Neumann-Morgenstern —
this curve represents how a set of decision rules behave
related to the risk of a consequence set. The ROC analysis
for each risk set is a graphic representation, common to
radiologists, and provides a manner to decide how a deci-
sion rule could be used, according to the false positive or
sensitivity rate (Neyman-Pearson decision rule [14]).

In modern radiological services, it is extremely difficult to
manage quality control processes. The mathematical
approach can help, dealing with complex decisions such
as reject or accept a radiographic image. The main result
obtained in this modeling exercise was provided by a deci-
sion rules set that minimizes the risk of an undesired con-
sequence. In addition, the solution proposed at this point
can be applied in a practical radiology routine.

Residents and non-professionals staff of the radiology
field have to learn how to make decisions, generally from
gathering information from other more experienced pro-
fessionals and from literature information. Decision The-
ory offers a way to arrange decisions in a rational manner,
thus, avoiding many risks that may affect the patient
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health quality. If one radiologist considers an image
appropriate for radiological appraisal, many possibilities
may be influenced by this decision. Besides, the level of
consequences depends on the type of the clinical ques-
tion. If the radiography is performed to diagnose a broken
arm, the presence of an insignificant spot in the image is
generally not relevant as in the case of a slight spot in
mammography exam performed for tumoral screening.
The presence of micro-calcifications with specific mor-
phological aspects has a direct impact on the next step,
which may include or not additional invasive procedures.
Therefore, the probability of a correct diagnosis could be
directly affected by the quality of a simple X-ray image.

The expense of an image production is increased if a film
does not have a good quality. X-ray re-exposure will be
inevitable and the patient will certainly be unsatisfied at
this point. This behavior variable should not be mis-
guided with a simple level of comfort. The client content-
ment must be contemplated, not only by the correct
diagnosis, but also by the number of necessary radio-
graphic trials in the service. As a presumable consequence,
the service could lose a representative number of clients,
which would represent a substantial loss in profits.

All radiology services have an administrative design for
quality control (QC) of the radiographic film. This is
emphasized by the ICRU and is generally based on gold
standard guidelines and limits of technical parameters
among the used values to access the film quality.
Although there are similar procedures reported in the lit-
erature [15], none of them is based on a formal quantita-
tive model. Generally, the result of a QC program is
measured by the number of exams correctly performed,
costs involved and the patient's satisfaction. These varia-
bles are not easily measured beyond descriptive statistics.
The decision is commonly not settle on a formal quanti-
tative model, but in personal experience and historical
background of the institution. The management team is
responsible to decide upon the equipment choices variety,
imaging procedures, questionnaires and personal training
programs.

The use of Bayesian statistics allows one to give a closer
look at the real based management information
[14,16,17]. Historical information was considered and
used for a prior distribution of the probabilities as a mean
to avoid fake or unlikely occurrences [18,19]. This
approach can be applied in distinct radiological scenarios.
This concept or perception adapted to other settings of
variables could include another image modality, clinical
context and/or strategies for a perspective research of deci-
sions or administrative managing.
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The main challenge concerning the decision theory imple-
ment is to define the state of nature (good or bad quality
of the radiographic film). Therefore, a given action can
lead to a favorable payoff of the decision-maker whatever
the state of nature. If the state of nature is a good one, the
preferred result would be more likely to occur. Even so, a
determined action for a situation could probably unfold
as a complete disaster in the case of a very unfavorable
payoff, while the true state of nature is completely differ-
ent or wrong. Note that in two other cases, still with a less
significant extent, positive probabilities have appeared.
The consequence of an action must be established
through a numeric scale according to the decision-maker
preferences [13].

Possible consequences were summarized based on the
quality of an image in three distinct aspects: diagnosis
(correct or incorrect), cost (high or low) and the patient
satisfaction (high or low). In summary, the proposed
decision problem is: having one of the eight possibilities
(x) what decision should be made regarding the value of
(6) so that it can be considered true? The person responsi-
ble for the radiology department or the radiology manage-
ment team (usually the decision-maker) will adopt a
criterion for the decision process in order to guide the
choice that will minimize the risk of having an undesired
consequence. The choice of the vector x (a set of observa-
tions) and of the vector & (a set of "states of nature") will
depend on the considered precision degree as well as on
the reliable technology. The consequence function P(p | 6,
a) was estimated from the data obtained from the experi-
ments or from a historical service database. It includes
more probabilistic mechanisms than those found in a
film. The utility function's eduction was not determined
by any decision-maker. It is important to mention that the
proposal of probabilistic mechanism in the likelihood
function can be adjusted to any information provided. As
a consequence the data consistency will depend on the
source confidence. A consequence (p - a set of payoff), as
described in the results, was related to the set of payoffs
involved in a right or wrong diagnosis, a higher or lower
cost and higher or lower client satisfaction, independently
of the technology or of the radiologist that made the diag-
nosis. Each pair (8, a) has a specific risk correlation to the
preferences of the decision-maker. The decision-maker
preferences, per se, were dictated by a behavior parameter
in a risky circumstance. Decision theory application esti-
mates the risks for all possible rational choices under
uncertainty and allows a rational decision for all com-
puted information during a specific procedure (Bayesian
theory).

Again, the choice of the best decision rule can be found at
the vertex region of the curve in the risk set R;(6,) with r =
4 which is a result of the 256 possible combinations, as
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described previously. The corresponding graphic (Figure
3) information corresponds to d,,, which means that the
observation was inadequate for use (bad film), and the
film was rejected (Table 3). The decision-maker option
was to accept it. When adopting the criterion mentioned
above, we found that the minimum risk combination of
R;(6,) x Ry(6,) corresponds to (Figure 3) Ry(6,) = -0.18
when the state of nature of the film was bad (4,), and the
risk of the film was considered good (8,) with r = 4 corre-
sponding to R,;(6,) = 0.36. In the case of r = 2, if the deci-
sion-maker had chosen the same value R;(,) = -0.18, the
decision rule would be different: the film is rejected when
the state of nature and its technical quality are bad -d,,.
Thus, the minimum risk combination R,(6,) x R,;(6,) is
not the best decision rule for this case. This model can be
refined by constructing p, 6, x, values which may assume
any mathematical (finite or infinite, discrete or continu-
ous, scale or vectorial) representations. There are no
restrictions for the current adopted classification.

Conclusion

The proposed model allows a cost-utility analysis of the
radiographic film quality control. The decision theory
addressed to this quality control issues established a sys-
tematic procedure, a well defined protocol approach and
suggested a better use of the available imaging technolo-
gies acquisitions. Moreover, depending on the utility
function, it allows us to analyze how the patient choices
or the radiographic service decision-making preferences
affect the decision rule. It constitutes a paradigm not only
for a film quality control, but also for the radiographic
service quality control in an integrated framework.
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