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Abstract
Background: The Institute of Medicine has identified patient safety as a key goal for health care in the United
States. Detecting vaccine adverse events is an important public health activity that contributes to patient safety.
Reports about adverse events following immunization (AEFI) from surveillance systems contain free-text
components that can be analyzed using natural language processing. To extract Unified Medical Language System
(UMLS) concepts from free text and classify AEFI reports based on concepts they contain, we first needed to clean
the text by expanding abbreviations and shortcuts and correcting spelling errors. Our objective in this paper was
to create a UMLS-based spelling error correction tool as a first step in the natural language processing (NLP)
pipeline for AEFI reports.

Methods: We developed spell checking algorithms using open source tools. We used de-identified AEFI
surveillance reports to create free-text data sets for analysis. After expansion of abbreviated clinical terms and
shortcuts, we performed spelling correction in four steps: (1) error detection, (2) word list generation, (3) word
list disambiguation and (4) error correction. We then measured the performance of the resulting spell checker by
comparing it to manual correction.

Results: We used 12,056 words to train the spell checker and tested its performance on 8,131 words. During
testing, sensitivity, specificity, and positive predictive value (PPV) for the spell checker were 74% (95% CI: 74–75),
100% (95% CI: 100–100), and 47% (95% CI: 46%–48%), respectively.

Conclusion: We created a prototype spell checker that can be used to process AEFI reports. We used the UMLS
Specialist Lexicon as the primary source of dictionary terms and the WordNet lexicon as a secondary source. We
used the UMLS as a domain-specific source of dictionary terms to compare potentially misspelled words in the
corpus. The prototype sensitivity was comparable to currently available tools, but the specificity was much
superior. The slow processing speed may be improved by trimming it down to the most useful component
algorithms. Other investigators may find the methods we developed useful for cleaning text using lexicons specific
to their area of interest.
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Background
The Institute of Medicine (IOM) in the United States iden-
tified patient safety as a key goal in the delivery of health
care. In a 2004 report, "Patient Safety: Achieving a New
Standard for Care," the IOM highlighted the importance
of pursuing an applied research agenda on patient safety,
focused on enhancing knowledge, developing tools, and
disseminating results to maximize the impact of patient
safety systems [1]. The capacity for using computer tech-
nology has grown rapidly in the domain of reporting
adverse events following immunizations (AEFI), particu-
larly with its increasing use in pharmacovigilance surveil-
lance systems.

Bates et al. noted that manual chart review is an effective
method for identifying different types of adverse events in
the research setting but this approach is too costly for rou-
tine use. Nevertheless, they emphasized the role of analyz-
ing the free-text components of electronic patient records
to increase the chance of capturing these adverse events
[2]. Currently, AEFI reports, such as those submitted to
the U.S. Vaccine Adverse Event Reporting System (VAERS)
[3], contain free-text components that need to be proc-
essed manually by human encoders. The clinical informa-
tion contained in free text can be subsequently translated
to controlled vocabulary codes for adverse events, such as
the Coding Symbols for Thesaurus of Adverse Event Reac-
tion Terms (COSTART), the Medical Dictionary for Regu-
latory Activities (MedDRA) or the World Health
Organization Adverse Reaction Terminology (WHO-
ART). However, four unique challenges arise from linguis-
tic variation found in the free-text components of AEFI
reports: (1) synonyms and paraphrases can refer to a sin-
gle symptom; (2) medical concepts are recorded by pro-
viders using abbreviations and acronyms aligned to a
particular care setting; (3) the same health care or clinical
concept can be described using combinations of different
parts of speech; and (4) words are often mistyped which
can cause unpredictable errors [4]. In this paper we
address challenges 2 and 4 to replace abbreviations and
acronyms and correct misspelled words.

Ruch et al. state that the correction of spelling in medical
records is a critical issue. They found that the rate of mis-
spelling in medical records is 10% higher than the rate for
other texts, such as those in newspapers [5]. In analyzing
124,993 unique tokens from 238,898 documents of a 590
MB corpus from the Oregon Health Sciences University
electronic medical record, Hersh et al. discovered that
around 7 % are misspelled words [6]. Fisk et al. estimated
that the spelling error rate for a 2.8 million-document
data warehouse from the Veterans Administration Medi-
cal Center in Connecticut was around 4% [7]. No figures
for vaccine safety reports are known to have been pub-
lished.

Outside of the medical domain, spelling correction as a
problem area in text recognition and editing is not new.
The advent and widespread use of optical character recog-
nition devices in the 1990s have encouraged increased
research activity to enable seamless conversion of large
amounts of paper-based information into spell-corrected
digital format. The rapid advances in computer hardware
and software also mainstreamed the use of spell checkers
in software development as well [8,9]. Kukich carried out
an extensive and authoritative review of articles from this
domain from the 1960s to the 1990s and we refer to the
pertinent details of spell-correction methods described in
that review throughout this paper. In describing auto-
matic word correction research, Kukich enumerated three
problem areas: (1) non-word error detection; (2) isolated-
word error correction; and (3) context-dependent word
correction [8].

In the medical domain, spelling correction has been
applied to chief complaint data to expand acronyms,
abbreviations and truncations and to correct spelling
errors. Boyce et al. argue that standardization of data
should improve the classification of chief complaint data
as a first step in a syndromic classification pipeline [10].
Dara and Chapman, however, found only marginal
improvement in the sensitivity of their Bayesian statistical
classifier after pre-processing which includes spelling cor-
rection, expansion of abbreviation and removal of words
that do not have clinical meaning [11].

As we worked with AEFI reports, we encountered two
types of orthographic variation: (1) intended variations,
which clinicians intentionally created to make documen-
tation activities efficient; and, (2) non-intended varia-
tions, which resulted from spelling errors. The first type of
variation can be addressed with regular expressions, or
tiny pieces of text processing code usually written in Prac-
tical Extraction and Report Language or PERL [12]. These
regular expressions are essentially concise, pattern-match-
ing, rule-based algorithms used to expand common
abbreviations. For example "Dx" is expanded to "diagno-
sis," "P/C" to "phone call," or "N/V" to "nausea and vom-
iting." The second type of variation can be addressed with
the use of domain-specific lexicons and word lists.

A collaborative workgroup of the Vaccine Analytic Unit in
the Centers for Disease Control and Prevention (CDC)
National Immunization Program (NIP), the Public
Health Agency of Canada (PHAC), the Brighton Collabo-
ration (BC) and the National Library of Medicine (NLM)
is currently working on tagging free-text components of
AEFI reports (Figure 1) with concepts found in the Unified
Medical Language System (UMLS) [13]. The BC is an
international voluntary collaboration to facilitate the
development, evaluation and dissemination of high qual-
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ity information about the safety of human vaccines [14].
The NLM develops, maintains and distributes UMLS.

The main goal of this paper was to describe the develop-
ment and evaluation of spelling error correction algo-
rithms as a first step in the natural language processing
pipeline for classifying AEFI reports into UMLS concept
clusters.

Methods
Data source
To begin developing these algorithms we constructed a
corpus of vaccine safety reports. The body of this corpus
was derived from paper records provided by the BC part-
ners from the PHAC. For the period January 1, 2000 and
May 15, 2005, a list of AEFI reports was obtained meeting
the following two criteria: that they were not from either
Quebec or Ontario (mostly electronically reported with

little or no text), and did not pertain to the influenza vac-
cine (with little free text). From this list, reports were
selected starting with the first report and every third there-
after, and a return to the second report and subsequent
third thereafter until there were 100 reports. The selected
reports were de-identified by our BC partners prior to
processing and analysis. We extracted the free-text sections
from these reports and entered them twice using a custom
interface [see Additional file 2]. This same interface com-
pared the two entries and visually provided cues about
discrepancies between them [using source code in Addi-
tional file 15]. An algorithm within this interface also
automated the assignment of documents to either the
training (60%) set or the test (40%) set during raw data
entry. We used the first data set for development and test-
ing of required algorithms and the second for testing
spelling checker performance.

Framework for concept extraction using the UMLSFigure 1
Framework for concept extraction using the UMLS. The natural language processing pipeline for this project is made 
up of the steps in this diagram. For this paper, we are focusing on step 1, spelling correction.
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Algorithm development
The tools we used to develop the algorithms are publicly
available. For rapid code prototyping, we used PHP (a
recursive acronym for PHP Hypertext Pre-processor), a
cross-platform, web scripting language that also facilitated
the creation of the presentation layer of the prototype
application [see Additional file 4] [15]. For database stor-
age we used MySQL, an open source database that can be
easily installed on any operating system (Windows,
MacOS, Linux, and UNIX) [16]. We included algorithms
that track and collect statistics on processing times and
algorithm contribution to word list generation and word
selection.

Dictionary construction
According to Strohmaier et al., the perfect dictionary for
post-correction satisfies three principles. First, the diction-
ary contains each word in the corpus. Second, the diction-
ary contains only words from the corpus. And third, for
each input word, the dictionary stores the frequency of
each word in the corpus [9]. For this project, we used the
licensed 2005AA version of the UMLS from NLM and
WordNet [see Additional file 16], a semantic lexicon from
the Princeton Cognitive Sciences Laboratory [17] to con-
struct our custom dictionary. We assumed that since this
dictionary contains both domain-specific and generic
words, it would provide adequate lexical coverage of vac-
cine safety reports. The UMLS has three knowledge
sources: (1) the Semantic Network (SN), a high-level cat-
egorization of medical concepts [see Additional file 14];
(2) the Metathesaurus (MT), a knowledge base of con-
cepts aggregated from source vocabularies that include
AEFI-related controlled vocabularies like the International
Classification of Diseases version 9 Clinical Modification
(ICD-9-CM), the Coding Symbols and Thesaurus for
Adverse Reaction Terminology (COSTART), the Medical
Dictionary for Drug Regulatory Activities (MedDRA) and
the World Health Organization Adverse Reaction Termi-
nology (WHO-ART); and, (3) the Specialist Lexicon (SL),
a set of tools and tables that serve as a specific resource for
NLP [see Additional files 17 and 18]. We used two of the
knowledge sources in this study: the MT and the SL. The
UMLS SL contains a table for inflections (LRAGR), and

another one for abbreviations (LRABR). These were
extracted and combined with the WordNet tables to create
a custom dictionary that has specific columns to enable
error detection and correction, and that approximates
Strohmaier's three principles of dictionary construction.
Table 1 provides descriptions of table columns for this
custom dictionary. The word_id column is the numeric,
auto-generated, unique identifier for a word entry. The
word_str column stores the word itself. The word_ngram
column stores n-grams of words, which are overlapping n-
character representations of a word. In this case we use
two characters or bigrams. An example of what the
word_ngram column contains can be found in Table 1. We
obtained the source code of this n-gram algorithm from
an open source program created by Saari [18].

We used the word_metaphone column to sort the words
according to how they sound in English. Kukich described
a similar step in her review using the SOUNDEX function
[8]. A metaphone, or a phonetic summary, for a word is
generated by reducing it to a few key consonants. To create
the metaphone of a word, we passed it through a PHP
function called metaphone [15]. An example of a meta-
phone can be found in Table 1. We also included word
fragments as columns: (1) the first 4 characters, called the
word_header column; (2) characters 2–5, or the
word_anterior column, to simulate a first character dele-
tion; (3) the 4 characters before the last one, or the
word_posterior, to simulate a last character deletion; and
(4) the word_fragment column which is used to store the
first 10 characters of the word if it is longer than 10 char-
acters. We created a smaller dictionary with the same table
structure as above to contain the words found in the train-
ing data set. Kukich described this step as dictionary parti-
tioning [8]. We did this to speed up queries for spelling
error detection by using a smaller number of records. This
smaller dictionary has an additional frequency column to
indicate how frequently the word has been used in the
corpus as described by Strohmaier et al. [9].

Cleaning free text with regular expressions
The use of PERL regular expressions is a well-described
standard method for processing and transforming text in

Table 1: Column descriptions of the custom dictionary

Column Description

word_id Unique identifier
word_str Dictionary word
word_ngram Bigrams of the dictionary word. Example: "pediatrician" would have the following bigrams: pe, ed, di, ia, at, tr, ri, ic, ci, ia, an
word_metaphone The metaphone value of the dictionary word. Example: pediatrician would have the metaphone PTTRXN
word_header The first 4 characters of the word. Example: "pediatrician" would have the header pedi
word_anterior The 4 characters after the first character of the dictionary word
word_posterior The 4 characters before the last character of the dictionary word
word_fragment If the dictionary word is longer than 10 characters the first 10 characters of the dictionary word
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a wide range of applications that require character level
text manipulation and pattern matching, from web search
engines to bioinformatics applications [19]. We devel-
oped more than 200 regular expressions to transform
abbreviations, contractions, and medical shortcuts that
doctors and nurses use in the clinical setting. Figure 2
shows an example of what regular expressions do in our
spell checker.

Spelling checker steps
In her review article, Kukich described three main steps
that characterize isolated-word error correction methods
used by various authors: error detection, candidate word
generation and word ranking [8]. In our paper, the essen-
tial steps we carried out in spelling correction after clean-
ing with regular expressions were (1) error detection, (2)
word list generation, (3) word list disambiguation and (4)
error correction (Figure 3). Steps 3 and 4 in our methods
correspond to Kukich's Step 3.

Step one – error detection
We determined whether or not a word in the AEFI report
was misspelled by comparing it with entries, first, using
the smaller custom dictionary and then, the bigger dic-
tionary if the word was not found in the smaller one.

Step two – word list generation
From preliminary testing of a concept extraction tool, we
found that UMLS concepts come from nouns, noun
phrases, verbs, adjectives, and adverbs [20]. It was there-
fore logical for us to focus on these parts of speech that
would have the highest yield for concepts. We used Med-
Post, a part-of-speech (POS) tagger developed by the U.S.
National Institutes of Health (NIH) to provide the tags
that we needed to narrow down our search for possible
sources of UMLS concepts [see Additional file 9]. The
MedPost POS tagger was trained on the Medline corpus
and is described elsewhere [21]. The POS tags also helped
us carry out part-of-speech disambiguation in the next
step below. We extracted the word list from the custom
dictionary using these word-list generation algorithms:
metaphone, header, N-gram, transposition, deletion,
insertion and substitution. The metaphone algorithm was
used to search for similar sounding words. The header
algorithm looked for words with the same first 4 charac-
ters. The N-gram algorithm searched for words containing
the next 4 characters after the first one, and those contain-
ing 4 characters before the last one (essentially mid-string
searches). The transposition algorithm searched for
words where any 2 characters are switched. The deletion
algorithm searched for word matches by sequentially
inserting a wildcard character in the misspelled word to
simulate a character deletion. The insertion algorithm
searched for word matches by sequentially deleting a char-
acter in the misspelled word to simulate a character inser-

tion. The substitution algorithm searched for word
matches by simulating character substitution. The last
four algorithms are based on Damerau's findings that
80% of all misspelled words contained a single instance of
one of the four error types (transposition, deletion, inser-
tion and substitution), also known as a class of single-
error misspellings [22].

Step three – word list disambiguation
The objective of this step was to rank the candidate words
by determining which word from the word list in step 2
had the lowest Levenshtein score, which is the number of
edits needed to transform a misspelled word to any of its
possible corrections [23]. This candidate word with the
lowest Levenshtein score then served as the correction
word. A built-in PHP function, called levenshtein, calcu-
lated the number of possible corrections (the Levenshtein
or edit-distance score) by simulating the four types of
errors (insertion, deletion, transposition and substitu-
tion). During edit-distance scoring, two or more words
might still have the same Levenshtein score, a "deadlock"
or a "tie" situation for the spell checker. We applied sev-
eral word sense disambiguation algorithms to enable the
spell checker to refine its ranking by "smoothing" the Lev-
enshtein score. We used the following smoothing algo-
rithms: (1) the UMLS concept algorithm, if the candidate
word maps to a UMLS Concept Unique Identifier (CUI),
regardless of semantic type; (2) the metaphone algo-
rithm, assuming words that sound the same have the
greater propensity to be misspelled; (3) the homonym
algorithm, if the misspelled word had the same first letter
and metaphone as the candidate word; (4) the N-gram
algorithm, if the misspelled word contains similar charac-
ter subsets as the candidate word, i.e., "wretch" and
"retch"; (5) the length algorithm, assuming the clinician
did not intend to misspell with a longer term; (6) the POS
algorithm, if the candidate word has a similar part-of-
speech tag as the misspelled word; and (7) the history
algorithm, if the candidate word already existed with a
probability distribution in our NLP database. The spell
checker applied all six smoothing algorithms to the entire
candidate word list to help discriminate between similar
scores. With the exception of the N-gram algorithm, the
rest of the smoothing algorithms are context-dependent.
This smoothing step produced a final set of ranked words
from which the lowest Levenshtein score was used to
select the correction.

Step four – error correction
After disambiguating and selecting the most probable cor-
rect word using the ranking score described above, we
replaced the misspelled word with the correct one.
Page 5 of 13
(page number not for citation purposes)



BMC Medical Informatics and Decision Making 2007, 7:3 http://www.biomedcentral.com/1472-6947/7/3

Page 6 of 13
(page number not for citation purposes)

Screenshots from the spell checker showing sample regular expression code and effect on free textFigure 2
Screenshots from the spell checker showing sample regular expression code and effect on free text. This figure 
combines two screen shots. Box A shows the interface that displays changes to free text done by regular expression. Box B 
shows examples of regular expression code that changes abbreviated month names to their full form. Note how several 
instances of the abbreviated month "Nov" are detected and converted to the full form "November".
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Performance measurements
These measurements entailed a comparison of how the
automated correction with the spell checker performed
compared to "gold standard" manual correction. We cal-
culated the sensitivity of the spell checker by comparing
the number of words that both the spell checker and the
human observers correctly identified. We calculated spe-
cificity as the proportion of words identified by the
human observers as correct which the spell checker did
not change. We are doing isolated-word spell correction
[8] which does not allow for syntactic context analysis.

Results
Data source
The training and test data sets extracted from the 100 AEFI
reports served as inputs to the spell checker algorithms

which are described below. The training data set consisted
of 12,056 words while the test data set had 8,131 words.

Use of UMLS and spell checker development
We built a custom dictionary as part of the spell checker
using the UMLS SL and WordNet with specialized col-
umns (Table 1). This dictionary helped in error detection
and correction by providing lexical coverage and the max-
imum the number of words that can be included in a
word list from which to choose the correction for a mis-
spelled word. This dictionary was large as it contained
close to 498,000 terms and took approximately 4–5 min-
utes to build using a Pentium 4 1 GHz laptop computer
with 512 MB RAM and a 60 GB 7200-RPM hard disk. We
stored this custom dictionary in a MySQL database. The
smaller, partitioned dictionary helped us to rapidly look

Stages of spelling correctionFigure 3
Stages of spelling correction.
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up potentially misspelled words by providing words that
have been corrected and are found in the training set.

Cleaning with regular expressions
The regular expressions transformed 10% of words from
the training set and 9% from the test set. This means many
abbreviations and contractions, which the spell checker
could have potentially detected as spelling errors, were
eliminated before spell-checking was done. It is possible
for regular expressions to transform text incorrectly so
they were only applied to abbreviations and contractions
which could be unambiguously transformed.

Spell checker steps 1–4
After developing the algorithms, we trained the spell
checker using the training data set. To train the spell
checker, we developed a manual spelling correction tool
that allowed us to correct any errors made in candidate
selection from the list of potential spelling corrections. If
the correct word is not in the database, this tool also ena-
bled us to enter the correct spelling so it became part of
the custom dictionary and was used in the selection proc-
ess if the misspelled word was encountered by the spell
checker again. This tool also enabled us to instruct the
spell checker to ignore a word that was incorrectly marked
as a misspelling. After training, we applied the algorithms
on the test set and compared the outputs with the results
of our manual correction.

To help us assess the effect of each algorithm during the
generation of word lists and word sense disambiguation,
we incorporated data collection algorithms to store inter-
nal counts, i.e., number of terms generated from each
word list algorithm, and the percentage contribution of
disambiguation algorithms towards the final decision.
Table 2 shows the mean relative contributions of the dif-
ferent word list-generation algorithms. More than half of
the word list was generated by the header algorithm
(training set value is 55%), which searched the database
using the first four letters of the misspelled word. The N-
Gram algorithm, which uses character-level matching,
contributed the next highest mean proportion (training

set value is 20%). The rest of the algorithms simulated the
four sources of spelling errors (insertion, deletion, trans-
position and substitution) and contributed their own lists
depending on the morphology of the misspelled word.
For example, if there was a potential insertion, as in
"wretch" vs. "retch," the spell checker detects the misspell-
ing and generates a word list using the insertion algo-
rithm. Table 3 shows the mean contribution of the word
sense disambiguation algorithms. Here, the N-Gram algo-
rithm contributed the highest proportion to smoothing
the Levenshtein score.

Performance measurements
We determined sensitivity, specificity and positive predic-
tive value by running the spell checker on 12,056 words
from the training set and on 8,131 words for the test set,
and comparing these results with manual correction for
misspelled words. The results of this comparison between
manual correction and the spell checker are shown in
Table 4. During training, the spell checker had a sensitivity
of 93% (95% CI: 93%–94%), a specificity of 100% (95%
CI: 100%–100%), and a PPV of 64% (95% CI: 63%–
65%). The spell checker as applied to the test data set had
a sensitivity of 74% (95% CI: 74%–75%), a specificity of
100% (95% CI: 100%–100%), and a PPV of 47% (95%
CI: 46%–48%). The prevalence of spelling errors in the
test set is 0.5%. The spell checker performed 770 regular
expression transformations (9%) and 68 spelling correc-
tions (1%) out of 8,131 words in the test set and had a
mean processing time of 0.0006 second per word for
transformation with regular expressions and 0.06 second
per word for spelling correction.

Discussion
The use of NLP to extract information from free-text
reports has previously been reported in pathology, radiol-
ogy, and emergency medicine. Notable examples include
the early work of Friedman et al. on the MedLee natural
language processor [24], Mamlin et al. with cancer-related
free text [25] and Mendonca et al. for detection of pneu-
monia in infants from radiology reports [26]. Mitchell, et
al. describe information extraction using NLP for pathol-

Table 2: Mean contribution of algorithms to word list generation

WORD LIST ALGORITHM TRAINING SET n = 12,056 TEST SET n = 8,131

N-Gram 20% 13%
Header 55% 59%
Metaphone 8% 4%
Transposition 1% 3%
Deletion 5% 6%
Substitution 5% 5%
Insertion 6% 10%

TOTAL 100% 100%
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ogy reports [27]. Travers and Haas, and Chapman et al.
separately described the use of free-text processing for
chief complaints in emergency department narrative
reports [28,29], ushering the use of NLP in advanced dis-
ease surveillance.

Towards the use of NLP to extract information from AEFI
reports, we utilized the UMLS MT and SL for word-sense
disambiguation during spell checking of free text.
Although the UMLS SL has a spell suggestion tool called
GSPELL [30-32], we decided not to use it because of its
known limitations, e.g., if the spelling error is the first or
last character of the word the spell-correction suggestions
will most likely be wrong. Crowell et al. attributed this to
the use of a "bathtub" heuristic and recommended in a
future release for it to use two additional techniques: trun-
cation retrieval and a conservative stemming heuristic
[30]. In our spell-correction tool, we used a technique
similar to truncation retrieval and forward and backward
stemming techniques to ameliorate the pitfalls of GSPELL.

In addition, GSPELL using a domain-specific dictionary
was paradoxically outperformed by ASPELL [33] using a
generic dictionary. ASPELL performed better on three
areas of performance: (1) whether the correct suggestion
was ranked number one; (2) whether the correct sugges-
tion was ranked in the top ten; and (3) whether the correct

suggestion was found at all. [30]. However, as we inte-
grated ASPELL into our spelling correction tool, a cursory
examination of the word lists generated by ASPELL
pointed out that it would not effectively retrieve domain-
specific terms that are misspelled since it used a generic
dictionary.

As a first step in our NLP pipeline for processing AEFI
reports, we have already used the tool to feed spell-
checked data into the second step, which involves tagging
the free-text reports with UMLS concepts so we could clas-
sify reports later. We described the initial results of the
concept tagging in a conference poster [20]. The process-
ing time of 0.06 second per word is slow and this system
would probably be too slow for much larger data sets.

The spell checker as applied to the test data set had a sen-
sitivity of 74% (95% CI: 74%–75%), a specificity of 100%
(95% CI: 100%–100%), and a PPV of 47% (95% CI:
46%–48%). A sensitivity of 74% means the spell checker
missed 26% of the errors or 11 out of 43 errors humans
identified. Of the 68 errors identified by the spell checker
only 32 were identified as errors by humans, hence a PPV
of 47%. In other words, the system potentially put in
more errors than it corrected. However, since the preva-
lence of errors was only 0.5%, this partially explains the
low PPV, higher sensitivity and the high specificity. Con-

Table 4: Spell checker performance measures

PARAMETERS TRAINING SET n = 12, 056 TEST SET n = 8,131

Value 95% CI Value 95% CI

Lower Higher Lower Higher

Sensitivity (%) 93 93 94 74 74 75
Specificity (%) 100 100 100 100 100 100
Recovery (%) 85 84 85 68 67 69
Positive Predictive Value 64 63 65 47 46 48
Regular expression transformations 1,217 (10%) 770 (9%)
Words corrected 105 (1%) 68 (1%)
Processing time per word (second) 0.07 0.06

Table 3: Mean contribution of algorithms to word sense disambiguation (smoothing) and ranking

SMOOTHING ALGORITHM TRAINING SET n = 12,056 TEST SET n = 8,131

Concept 12% 13%
Homonym 1% 1%
N-Gram 55% 53%
Metaphone 5% 4%
Length 14% 14%
Part-of-speech 10% 11%
History 3% 4%

TOTAL 100% 100%
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trary to what we assumed earlier, this turned out to be a
relatively clean data set.

We built in algorithms to collect measurements on
processing times and algorithm contribution to word list
generation and word selection. These measurements
reveal that though we expected regular expressions to con-
sume a lot of time, the actual time spent by the spell
checker for processing the test set with regular expressions
is 0.0006 second per word. The rest of the algorithms took
0.06 second per word.

Future directions
The regular expressions that removed abbreviations and
shortcuts are tiny pieces of code that can actually be stored
in the database and updated as needed to accommodate a
different set of abbreviations and shortcuts existing in a
different context. This makes the spell checker easily con-
figurable and adaptable to different settings such as in
syndromic surveillance from chief complaints where sub-
stantial word variation exists.

As AEFI surveillance systems are converted to electronic
formats, unique opportunities arise for large-scale
processing of their free-text components. Together with
the use of structured data in AEFI reports, the extraction of
information as concepts from free-text components aug-
ments the pool of data for analysis and subsequently ena-
bles more complete use of these reports for
pharmacovigilance studies. Once concepts have been
identified in free text, we could retrieve conceptually rele-
vant journal articles from PubMed as suggested by the
work of Brennan et al. [34] and electronically annotate
AEFI reports with these to facilitate review and adjudica-
tion.

Limitations
We encountered several challenges in implementing this
project. First, a large number of non-standard abbrevia-
tions and contractions were used in the clinical setting, so
here we used manual crafting of regular expressions to
expand abbreviations that would otherwise be missed by
other algorithms. Second, we also encountered culturally-
bound words, for example, "loonie," which is the nick-
name for the Canadian dollar coin. This word came up as
misspelled when actually it is used as a clinical measure of
size for rashes or swelling (as Americans would use the
size of a quarter). Third, because we obtained paper-based
free-text reports, we had to manually transcribe them into
electronic form. This may have introduced recognition or
perceptual errors despite our attempted data quality meas-
ures such as double-entry of free text.

In her extensive review, Kukich described five levels of nat-
ural language processing constraints: (1) a lexical level;

(2) a syntactic level; (3) a semantic level; (4) a discourse-
structure level; and, (5) a pragmatic level [8]. We could
map these constraints to the type of correction that
needed to be done on free text. This spelling checker per-
formed corrections at the lexical level and did rudimen-
tary syntactic analysis based only on part-of-speech
similarity between the misspelled word and the candidate
word. This technique is a type of syntactic correction
because it corrects the substitution of a word whose syn-
tactic category did not fit its context. We did not do
semantic-, discourse-structure and pragmatic-level correc-
tion since our overall goal was to be able to extract con-
cepts from correctly spelled words using algorithms, not
necessarily to create syntactically correct text. Moreover, it
was extremely difficult to standardize syntactic correction
with the way the free text was written. Some reports lacked
complete sentences and included phrases with bullet
points, making it difficult to assess subject verb agree-
ment.

A very large dictionary from which to generate word lists
for correction is useful but may become a limitation in the
following ways. First, the probability of the dictionary
containing a misspelled word itself becomes higher with
increasing size. For example, we encountered at least one
instance of a misspelled word appearing in the candidate
word list and being selected as the correct term. Second, it
is challenging to clean a large dictionary containing close
to half a million entries. Third, database lookup time
increases with the number of rows in the dictionary. This
may be mitigated by using carefully constructed table
indexes for search columns and partitioning the diction-
ary into two: a smaller dictionary with words that are com-
monly used and a bigger dictionary from which the words
in the smaller dictionary are drawn. The advantage of
using this large dictionary, on the other hand, is more
complete coverage of the domain content, preventing the
spell checker from marking correct words as incorrect.

The smoothing algorithms we applied to the Levenshtein
score also have limitations. For example, the concept algo-
rithm may inadvertently point to potential corrections
that are actually semantically distant from the misspelled
word. Since the UMLS is a large-scale knowledge base of
the health care domain, it may contain homographs from
domains other than that of AEFIs. In addition, it is diffi-
cult to address an abbreviation or acronym with more
than one meaning. We addressed this issue by writing reg-
ular expressions that make use of context from surround-
ing words or tokens. Otherwise, when faced with an
intractable situation we just left the acronym or abbrevia-
tion alone.
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Conclusion
We created a prototype spell checker which we intended
to use as a pipeline NLP tool for processing AEFI reports.
We used the UMLS SL as the primary source of dictionary
terms and the WordNet lexicon as a secondary source. We
used the UMLS as a domain-specific source of dictionary
terms with which we compared potentially misspelled
words in the corpus.

With a speed of 0.06 word per second, the spell checker
should not be used for cleaning terabyte-size files assum-
ing there are 150,000 words per megabyte. The speed lim-
itations come from computing-intensive word-list
generation and smoothing algorithms, which are meant
to correct non-regular variations which resulted from
spelling errors. In this data set, these algorithms transform
a mere 1% of tokens and entail a 100-fold increase in
processing time compared to processing with regular
expressions which transform 9% of tokens into terms
which can be mapped to UMLS concepts using a concept
tagger in the pipeline. The vaccine safety reports we used
to test the tool had an average of 152 words per docu-
ment. A stream of documents going through the pipeline
of a surveillance systems means the document processing
rate would be 6 documents per minute. This processing
rate will accommodate the usual inflow of reports from a
passive system such as VAERS, which contains about the
same amount of free text as the test documents. During a
10-year period (1991–2001) VAERS received 128,717
reports out of more than 1.9 billion doses of vaccines dis-
tributed [35]. In addition, a PPV of 47% indicates that
these algorithms introduce more errors into the process
than they correct. In other corpora with higher spelling
error rates, these spelling correction algorithms would be
more useful. Our next step will be to trim down the time-
and processor-intensive algorithms to the most useful
components and rely primarily on transformations using
regular expressions since this approach offers the best
return on investment of computing resources.
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