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Abstract
Background: In this study we propose the development of a new algorithm for selecting optimal
recording sites for limited lead body surface potential mapping. The proposed algorithm differs
from previously reported methods in that it is based upon a simple and intuitive data driven
technique that does not make any presumptions about deterministic characteristics of the data. It
uses a forward selection based search technique to find the best combination of
electrocardiographic leads.

Methods: The study was conducted using a dataset consisting of body surface potential maps
(BSPM) recorded from 116 subjects which included 59 normals and 57 subjects exhibiting evidence
of old Myocardial Infarction (MI). The performance of the algorithm was evaluated using spatial
RMS voltage error and correlation coefficient to compare original and reconstructed map frames.

Results: In all, three configurations of the algorithm were evaluated and it was concluded that
there was little difference in the performance of the various configurations. In addition to observing
the performance of the selection algorithm, several lead subsets of 32 electrodes as chosen by the
various configurations of the algorithm were evaluated. The rationale for choosing this number of
recording sites was to allow comparison with a previous study that used a different algorithm,
where 32 leads were deemed to provide an acceptable level of reconstruction performance.

Conclusion: It was observed that although the lead configurations suggested in this study were
not identical to that suggested in the previous work, the systems did bear similar characteristics in
that recording sites were chosen with greatest density in the precordial region.

Background
Body Surface Potential Mapping refers to the process of
acquisition and display of temporal and spatial distribu-
tions of electrocardiographic potentials recorded from
multiple sites on the torso [1]. In contrast to more conven-

tional recording techniques, such as the 12 lead ECG,
where scalar traces allow for assessment of wave ampli-
tudes, intervals and morphology, Body surface potential
maps (BSPM) are assessed based on the shape of their
contours, number and location of extrema and the
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dynamics of each [2]. As well as providing the ability to
locate electrocardiographic events in both space and time,
BSPMs yield more diagnostic content by capturing infor-
mation at anatomical regions not interrogated by the
widely utilised 12 lead ECG. This allows for more compre-
hensive diagnosis of conditions such as Myocardial Infarc-
tion (MI), Wolff-Parkinson-White syndrome and
Ventricular tachycardia [3-5].

As the objective is to accurately display total body surface
potential distributions, systems that use up to and in
excess of 200 recording sites, covering the entire thoracic
surface, have been proposed [6]. Such an abundance of
sampled channels means that virtually all Electrocardio-
gram (ECG) information as projected onto the body sur-
face is captured. However, although desirable the practical
limitations of such an approach are immediately obvious
as the need to apply approximately 200 surface electrodes
to a subject is enough alone to make the technique highly
infeasible in routine clinical practice. For this reason, and
based on the appreciation that there is redundancy in
BSPMs [7] there is an interest in trying to find the optimal
number and position of recording sites required to cap-
ture the necessary information required to allow visualisa-
tion and interpretation of total body surface potential
distributions.

In the current study we propose a new method for finding
the optimal location of recoding sites in 192 lead BSPMs.
The proposed algorithm differs from the existing tech-
niques in that it is based upon a simple and intuitive data
driven technique that does not make any presumptions
about deterministic characteristics of the data.

The most prolific works in this area have been that of Barr
[8] and Lux [9]. Both of these investigators have proposed
strategies to locate of the minimum number of recording
sites required to capture the maximum amount of ECG
information. In the work of Barr [8] 150 lead BSPMs were
analysed and a technique based upon principal compo-
nent analysis was proposed. This study concluded that
only 24 of the 150 recording sites were necessary to cap-
ture the relevant ECG information. In the subsequent
study by Lux [9] a more intuitive method of analysing cor-
relation and energy content in the given signals was
adopted and through analysis of 192 leads BSPMs this
study found that a subset of between 30–35 optimally
positioned recording sites was sufficient. In both studies,
the accuracy of selected recording sites were evaluated by
testing how well the signals at the chosen sites could be
used to estimate the signals at the sites that were not cho-
sen.

Before describing the proposed algorithm one must
appreciate the notion of a statistical transformation of

electrocardiographic leads. This concept is based upon the
work described in [10] where the notion of relating one
lead system to another by means of a set of statistically
derived coefficients was introduced. Based on the assump-
tion that all the independent information is captured by
the recorded leads it was shown that a linear combination
of the recorded signals can be used to estimate signals at
sites which have not been recorded. Although [10]
focused specifically on vectorcardiography, this principle
can be extended to other recording systems and a promi-
nent example of this is the commercially available EASI
lead system, originally proposed by Dower [11]. This sys-
tem uses 3 bipolar measurements, recorded from just 4
recording sites to derive the 12-lead ECG. In general and
regardless of the ECG lead system considered, the rela-
tionship between a number of recorded sites and some
estimated site can be described as:

ecge = α • ecg1 + β • ecg2 + λ • ecg3 + ........  (1)

Where ecge is the estimated ECG signal, ecg1, ecg2 and ecg3,
are the measured signals, and α, β and λ are a set of coef-
ficients that weight the measured signals. It should be
noted that the coefficients, α, β and λ, remain constant
over time and each set of these coefficients is unique to the
site being estimated. In the current study transformation
coefficients are determined using multiple linear regres-
sion (MLR) by least mean squares.

Methods
Sequential selection algorithm
The algorithm proposed in this study builds a limited lead
set by iteratively evaluating and selecting the available
sites based on their combined ability to estimate entire
surface potential distributions. The process begins by eval-
uating how well each of the 192 available recording sites
can be used individually to reconstruct a set of BSPMs.
Although the notion of estimating entire surface potential
distributions from just one recording site may seem non-
sensical, this is merely the first step in our algorithm and
it is the combination of this 'best' site and further selected
sites that are significant. The process is then repeated and
on the second pass each of the remaining 191 sites are
evaluated in conjunction with the previously selected site.
The site that works best in conjunction with the first cho-
sen site is then added to the limited lead set and the proc-
ess is repeated again. At this point we have found the best
two sites for reconstructing BSPMs and we are looking for
the third best site. On this third iteration the remaining
190 sites are evaluated in conjunction with the lead sub
set which now consists of two sites. This process is
repeated until some stopping criteria has been met, e.g. an
acceptable level of accuracy has been attained, or the
desired number of recording sites has been reached.
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Map evaluation
On each iteration the algorithm must evaluate how well
the given site(s) can reconstruct a set of BSPMs. Although
the method of determining the transformation has been
established (MLR) it is still necessary to provide some
measure of how well the reconstructed map frames com-
pare with the actual recorded map frames. This measure of
similarity is used to rank the available recording sites for
selection and as this was primarily a study in limited lead
mapping the objective was to make comparison based on
the accuracy of spatial distributions. To compare the spa-
tial distributions two different measures, spatial RMS volt-
age error and Correlation Coefficient have previously
been reported [7,9,12].

Spatial RMS voltage error
This measure is used to provide the average potential error
at each of the estimated sites not included in the limited
lead array. If P1 and P2 are the vectors of the measured and
estimated potentials respectively, and n is the number of
sites at which potentials have been estimated, the spatial
RMS error e can be determined by the equation

In previous studies this figure has been directly compared
to the estimated system noise providing an indication of
the minimum number of leads required to accurately
reconstruct total surface distributions [9,12].

Correlation coefficient
This provides a measure of the similarity in map patterns
between measured and estimated map frames independ-
ent of amplitude. If P is the original map frame and P' is
the estimated map frame the Correlation Coefficient ρ can
be described as

This measure is useful as small errors of amplitude on low
amplitude map frames may appear to be insignificant, yet
pattern differences might be extreme.

Algorithm configuration
The fact that two measures of accuracy exist mean that
there are potentially two ways in which the recording site
selection process could be guided. If the spatial RMS error
is used in the choice of each recording sites on each pass
of the algorithm it is possible in theory that recording sites
would be chosen to favour minimal potential error. On
the other hand if the correlation coefficient is used it is
possible that the lead subset shall be chosen to favour
similarities in map patterns. In the initial experiments the
spatial RMS error was chosen to guide the selection, this is
based on the assumption that as this error approaches
zero map frame patterns will increase in similarity until
they are identical, in contrast when the correlation coeffi-
cient is equal to 1 (identical patterns) this has in theory no
bearing on amplitude differences.

The remaining consideration in the development of the
algorithm was the choice of the minimum number of
recording sites that would provide an acceptable level of
reconstruction performance. As this study is primarily
focused on the development and evaluation of a lead
selection algorithm as opposed to the evaluation of some
proposed lead set, we based our stopping criteria on
results already presented in the literature. As the studies by
Barr [8] and Lux [9] suggest somewhere in the region of
between 24–35 recording sites, we elected that our algo-
rithm would terminate after 40 iterations, this being ade-
quately in excess of the numbers proposed in the previous
studies. Although the algorithm was configured to termi-
nate after 40 iterations we were keen to provide some
comparison of the suggested lead subsets with the 32 lead
subsets proposed in [12]. This is of particular interest as
the data used in that particular study is of the same format
as the data used here, allowing direct comparison of
results. For that reason, all suggested lead subsets in this
study shall consist of 32 recording sites.

Clinical data
In the current study a dataset consisting of 192 lead
BSPMs recorded from 116 subjects was used. This was
made up of a group of 59 normal subjects, exhibiting no
disease symptoms and a group of 57 subjects exhibiting
electrocardiographic evidence of old MI at various loca-
tions, see Table 1. The recording procedure involved plac-
ing 192 electrodes, in 16 equi-spaced columns of 12
electrodes, around the thoracic circumference of each sub-
ject. All 192 channels of information were recorded simul-
taneously at 1000 Hz for several seconds (5–10 cardiac
cycles). Subsequent to recording; the information from
each channel was reduced to represent one beat. This was
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Table 1: Data set breakdown detailing infarct locations.

Normals 59
Myocardial Infarction 57

Inferior 30
Anterior 14
Posterior 2
Aterolateral 8
Inferolateral 2
Inferior-posterior 1

Total 116
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achieved by taking the average of the cardiac cycles
recorded on each channel. A schematic of the electrode
array is illustrated in Figure 1. These data were acquired
during the course of NIH funded research, at the Univer-
sity of Utah, Salt Lake City, under the direction of Profes-
sor Robert Lux. All data acquisition was managed by an
ECG technician under the supervision of a board certified
cardiologist who was responsible for recruiting patients
and subjects for the study. The University of Utah Institu-
tional Review Board approved these studies. The process
of acquiring the data used in this study is also described in
[7,9,12].

All lead selection experiments were conducted on a ran-
domly selected subset of recordings from 87 of the 116
subjects available. From each subject's recording all QRS
frames were used and every fifth STT frame was used
resulting in a total of 13157 individual map frames. This
down sampling of STT information reduces computa-
tional load and is viable due to the fact that STT potential
distributions are usually simpler than QRS distributions
[9]. On each selection run 3 quarters of this data (3 out of
every 4 frames) were used to build the transformation for
each recording site under evaluation with the remaining
quarter (1 in every 4) used to evaluate the transformation.
Although this evaluation of the transformation is inde-
pendent, the measures of accuracy obtained cannot be
used to suggest the final accuracy of the lead system as
these measures will have been used to guide the selection
process. In order to eliminate the possibility of such bias
the data from the remaining 29 subjects was used to eval-
uate the lead subset. Again the same method of sampling
as applied to the training set was applied to the test set
resulting in a total of 4381 map frames.

Results
The results of the initial lead selection experiment are
illustrated in Figure 2. Here the performance of the selec-

tion process and the performance of the selected leads on
unseen data are depicted. It should be noted that although
both RMS error and correlation coefficient are plotted for
the selection process, only the RMS error was used in guid-
ing the selection. In Figure 3 we have indicated the posi-
tions of the first 32 recording sites. Additionally, to allow
comparison of the positions of recording sites in more
conventional ECG approaches the positions of the first 6
sites that the algorithm chose have been indicated using a
different marker. In order to demonstrate the ability of
these 32 recording sites in reconstructing a variety of map
frames, Figure 4 shows a selection of original map frames
in comparison to those that have been estimated from the
32 recording sites.

In order to asses the effect of using the spatial RMS error
to guide the lead selection, we set about analysing the data
that was generated during the previous selection run. To
establish if there was a difference between the best sites in
terms of RMS error and the best sites in terms of correla-
tion coefficient a series of scatter plots were constructed.
These scatter plots depict the RMS error versus correlation
coefficient on each pass of the algorithm. The first four of
these have been plotted in Figure 5. The first scatter plot,
Figure 5a, consists of 192 points and depicts the perform-
ance of each recording site on the first pass of the algo-
rithm. The second, Figure 5b, depicts the performance of
each recording site on the second iteration and as one site
has already been chosen at this stage there are now 191
points. The increase in performance in this second scatter
is also evident from the change in scale. The third and
forth scatters, Figures 5c and 5d, consist of 190 and 189
points respectively. The key observation from these scat-
ters is that there is a significantly proportional decrease in
RMS error as correlation coefficient increases; however it
is also obvious from three out of the four examples that
the best lead on each pass in terms of RMS error is not the
best lead in terms of correlation coefficient. Taking Figure
5a as an example it can be seen that the best recording site
in terms of RMS error, highlighted as a red square, is in
fact the 3rd best resting site in terms of correlation coeffi-
cient. On the analysis of further scatter plots it was found
that there were very few passes/iterations where there was
one dominant solution, i.e. best in terms of both correla-
tion coefficient and RMS error. Although it is apparent
that choosing the best recording site for one criterion
results in a reasonably good performance in the other cri-
teria, there was the concern that veering towards one cri-
teria on each pass of the algorithm may lead to a final
solution that is significantly biased toward the chosen cri-
teria.

In order to fully appreciate the effects of this observation
a further two experiments were conducted. In the first the
selection algorithm was reconfigured to use the correla-

192 Electrode ArrayFigure 1
192 Electrode Array. Schematic representation of the 192 
electrode array, depicted as an unrolled cylindrical matrix. 
The middle region correspond with the anterior torso and 
the left and right regions correspond with the posterior.
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tion coefficient on each iteration, and in the second a
multi-objective combination approach was introduced.
Here, on each iteration, as each recording site was evalu-
ated it was given a rank based on its RMS error and its cor-
relation coefficient. The two ranks for each site were then
added to produce a further score and the site with the low-
est score was chosen as the best. The results from these fur-
ther experiments in addition to the result from the first
RMS based experiment are illustrated in Figure 6.
Although it is difficult to make a statistical comparison
between these curves due to the accumulative nature of
the underlying data, it can be seen that, on visual inspec-
tion, the curves are similar to the extent where it is difficult
to distinguish between them. In Figure 7 the locations of
the top 32 leads for the further two experiments are
shown.

In addition to comparing the performance of the three
configurations of the algorithm the performance of the 32
lead subset proposed in [12] was tested using our dataset.
Although performance figures were provided in the study
in [12] these were obtained using a different data set, and
a different method for determining the transformation
coefficients making comparison difficult. The results of
our comparison are listed in Table 2. In this table the pre-

sented values indicate the median of correlation coeffi-
cient and RMS error across all reconstructed map frames.

Discussion
The first point of discussion relates to the visual compari-
son of the original and estimated map frames as shown in
Figure 4. These map frames have been estimated from the
32 lead subset chosen with the algorithm guided using
RMS error. In assessing the similarity of these example
maps it can be seen that in all cases the locations of
maxima and minima are almost identical. This is an
important criterion as the locations and dynamics of these
extrema over time provide the basis for diagnostic dis-
crimination. The discrepancy between the original and
estimated map frames is more apparent in the shape of
the contours and an interesting observation is that, on a
whole, the estimated map frames tend to have smoother
contour lines. It assumed that the more jagged contours of
the original measured maps are a result of recording arte-
fact and noise, and it would appear that the transforma-
tion coefficients, although representing the overall map
patterns well, exhibit a filtering effect by not representing
this noise. When the reconstruction performance across
all map frames in the population was observed, it was evi-
dent that on high amplitude frames (particularly QRS
frames) the RMS voltage error was generally higher than
that obtained on low amplitude map frames. This was in
contrast to the correlation coefficient which actually
improved on high amplitude frames, an observation sim-
ilar to that noted by previous investigators [12]. Although
examples of reconstructed maps from the selection exper-
iments that used the correlation coefficient and the multi-
objective approach have not been included, the resulting
maps from these experiments bore similar characteristics
to the maps illustrated here.

Although this study is focused more upon the develop-
ment of a lead selection algorithm as opposed to suggest-
ing actual lead sets for clinical utilisation, the lead set
suggested by each configuration of the selection algorithm

Positions of the top 32 recording sitesFigure 3
Positions of the top 32 recording sites. Here the posi-
tions of the top 32 recording sites are shown. The filled cir-
cles indicate the first 6 chosen sites and the remaining 26 
sites are indicated using filled squares.

Performance of algorithm when spatial RMS error is used to guide the selectionFigure 2
Performance of algorithm when spatial RMS error is 
used to guide the selection. (a) depicts spatial RMS error 
during the selection process (train) versus spatial RMS error 
on unseen test data. (b) Depicts correlation coefficient dur-
ing selection (train) versus test.
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could be considered as an optimal lead set for the studied
population. Observing the suggested lead configurations,
as illustrate in Figure 3 and Figure 7, it can be seen that
although there is little discrepancy in performance across
the three selection methods there are no two electrode
configurations that are identical. Across the three sets of
32 sites selected, there were just 7 sites that are common
to all three methods, 5 of which also appear in the 32 sites
chosen by Lux, illustrated in Figure 8. In comparison of

each of the methods with the sites chosen by Lux, the RMS
driven method suggested 12 sites in the same locations
and the correlation coefficient driven and multi-objective
methods each had 11 sites in the same positions as that of
Lux. Despite these discrepancies, the general characteris-
tics of each subset are the same with more electrodes
being suggested on the anterior surface than on the poste-
rior in all three examples. In addition to this, in each con-
figuration the highest concentration appears to be around

Sample of original and reconstructed map framesFigure 4
Sample of original and reconstructed map frames. Here a selection of original and reconstructed map frames are 
shown. The estimated frames have been reconstructed from the 32 recording sites depicted in Figure 3. RMS and CC denote 
values of RMS voltage error and correlation coefficient respectively.
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the precordial area close to the heart. Considering the
positions of the first six recording sites, it can be seen that
on each of the suggested lead sets there are at least 4 elec-
trodes positioned anteriorly and in the case of the lead set
chosen using the correlation coefficient method (Figure
7a) 5 sites are positioned on the anterior surface. In each
case there are at least two sites that are not positioned in
close proximity to the locations of the 6 unipolar/precor-
dial electrodes in the conventional 12 lead ECG. Regard-
less of the exact positions of the recording sites, it is
evident from the results presented in Table 2 that there is
a similar level of performance across all suggested sub sets
of 32 recording sites.

Although the selection algorithm appears to yield con-
vincing results, a valid concern may be expressed regard-
ing the computational cost of such an intense search
method. This relates to the fact that as each recording site
subset is being evaluated a set of transformation coeffi-
cients must be generated to allow the reconstruction of
the original BSPM frames from that subset. As stated, in
this study this transformation was determined through
the method of MLR using least mean squares. To appreci-
ate the computational intensity one must consider that as
each subset of recording sites is being evaluated an indi-
vidual set of coefficients (MLR model) is required to relate
the subset to each site to be estimated. Taking the first pass
of the algorithm as an example, evaluation of each indi-
vidual site requires the development of 191 MLR models
which are needed to predict the potentials at the respec-
tive 191 remaining sites. The first pass through the 192
available recording sites therefore requires the develop-
ment of 191 × 192 = 36672 unique coefficients. Although
this seems a large number the fact that each of the first
MLR models consists of only one independent variable
means that the calculations required are not intense. The
computational load does increase however when the
number of sites that have been selected increases, as
although there are fewer models to be developed (fewer
sites to be estimated) the models are much larger. If a
practical lead system were being developed it is highly
unlikely that the number of recording sites would ever
exceed a few dozen. Indeed it is possible that an algorithm

such as this could be used in non-mapping systems where
the location of just a few recording sites might be neces-
sary.

This latter point leads us to the next point of discussion
which is the possibility of using this algorithm in non
mapping applications. One merit of the proposed algo-
rithm is its sequential characteristics which provide
greater control over how the algorithm progresses. A prac-
tical example of where this advantage could be capitalised
upon would be if it was necessary to enforce the positions
of several recording sites before allowing the algorithm to
select further sites. A situation like this may arise if an
existing electrode system was being redeveloped and the
designer wished to maintain some of the locations used in
the original system whilst selecting new positions that
allow maximum information capture. A further scenario
may be where it is necessary to exclude certain areas of the
torso from the selection process. For example, a practical
lead system may be considered as one that did not include
posterior recording sites. If such a configuration were
desired the proposed algorithm could be configured to

Indication of lead dominance when both spatial RMS error and correlation coefficient are consideredFigure 5
Indication of lead dominance when both spatial RMS 
error and correlation coefficient are considered. Scat-
ter plot of RMS error versus correlation coefficient for first 
four passes of selection algorithm. These plots indicate that 
on each pass the best place lead in terms of RMS error is not 
the best placed lead in terms of correlation coefficient.

Table 2: Comparison of performance of 32 lead subsets. The 
performance of the three subsets proposed in this study are 
summarised along with the performance of the Lux 32 lead 
system [12]. In each case the results are presented as median 
and interquartile range.

CC RMS Error (μV)

RMS 0.978 (0.933–0.992) 19.7 (14.7–31.5)
CC 0.978 (0.933–0.992) 19.7 (14.5–30.6)
MO 0.980 (0.936–0.992) 19.4 (14.4–30.1)
Lux 0.980 (0.935–0.993) 19.4 (14.4–30.2)
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only consider the performance of anterior sites neglecting
any on the posterior.

Although this algorithm is somewhat different from that
previously reported in this domain, there are techniques
that have been used in other applications that can be com-
pared. Firstly, similarities can be drawn between this
approach and the wrapper approach to feature selection
[13], where the best features, or variables, are chosen for
classification based on how well they work accumula-
tively with a given classifier. In the wrapper approach con-
sideration is given to what classifier is used to evaluate the
performance of a given feature subset and to what search
strategy is used to add or remove features from the feature
subset. An analogy can be drawn between the classifier in
the wrapper approach and the transformation method
used in this approach, and a similar analogy exists
between the search strategy in the wrapper approach and
the iterative sequential selection method used here. In
fact, the iterative sequential selection method used here is
almost identical to the Sequential Forward Selection (SFS)
method common in the wrapper approach where features
are added one by one based on their accumulative classi-
fication performance. An equally common approach in
the wrapper context is that of Sequential Backward Elimi-
nation (SBE) where the process starts with all features

present and eliminates them one by one again based on
the performance of what remains in the feature subset.
The SBE is not a suitable option in this application as the
requirement in the initial iterations to build MLR models
with all recording sites included would be prohibitive in
terms of computational intensity. The algorithm pro-
posed in this study also bears similarities to Stepwise Mul-
tiple Regression (SMR) where the contributions of
independent variables to one dependant variable are con-
sidered and the independent variables that do not con-
tribute significantly are eliminated. There is, however, a
subtle difference as this application requires the evalua-
tion of the contribution of independent variables to a
number of dependent variables (recording sites) consid-
ered together as total surface distributions. Therefore if
SMR was applied in this application a different set of
recording sites could potentially be suggested for estimat-
ing each of the remaining sites.

Top 32 recording sites as chosen by LuxFigure 8
Top 32 recording sites as chosen by Lux.

Comparison of algorithm configurationsFigure 6
Comparison of algorithm configurations. Comparison 
of selection algorithms performance when the three evalua-
tion methods (RMS error, correlation coefficient, multi-
objective) are used to guide the search.

Top 32 recording sites using various algorithm configurationFigure 7
Top 32 recording sites using various algorithm con-
figuration. Recording sites chosen using (a) correlation 
coefficient based evaluation and (b) multi-objective evalua-
tion. In each case the best 32 recording sites are highlighted, 
with the first six shown using closed circles.
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Conclusion
In this study we have proposed an algorithm that allows
recording sites to be selected based on their actual per-
formance when estimating total body surface potential
distributions. From the outset this algorithm was
intended to be intuitive and it relied only on the presented
data. It has been demonstrated that the performance of
the resulting electrode configurations developed by the
algorithm perform comparably with lead sets that have
been suggested using similar data but using a different
technique.

In the assessment of the various configurations of the
algorithm, in terms of the metric used to guide the selec-
tion of the recording sites, it was observed that although
the locations of the resulting sites did vary, there was little
or no difference in the reconstruction performance of any
of the subsets. For this reason we conclude that either RMS
voltage error, correlation coefficient or the multi-objective
approach can be used to guide the algorithm.

Considering the lead configurations that have been pro-
posed, although these recording sites have been chosen
using a dataset that only represents normal subjects and
those who have had MI, it is valid to suggest that any of
the three configurations that were proposed would be
adequate for use in recording data from subjects from
these diagnostic backgrounds.

As a final point it should be stressed that in this study we
have proposed an algorithm that picks recording sites
based on their ability to accurately estimate BSPMs, and
although we can assume that these sites are those which
exhibit the most independent information, it has been
suggested that there is a distinction between this 'signal'
information and diagnostic information [14]. For this rea-
son we can only assume that our proposed lead systems
are only optimal for capturing signal information as diag-
nostic information has not been considered.
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