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Abstract
Background: Surveillance of Over-the-Counter pharmaceutical (OTC) sales as a potential early
indicator of developing public health conditions, in particular in cases of interest to biosurvellance,
has been suggested in the literature. This paper is a continuation of a previous study in which we
formulated the problem of estimating clinical data from OTC sales in terms of optimal LMS linear
and Finite Impulse Response (FIR) filters. In this paper we extend our results to predict clinical data
multiple steps ahead using OTC sales as well as the clinical data itself.

Methods: The OTC data are grouped into a few categories and we predict the clinical data using
a multichannel filter that encompasses all the past OTC categories as well as the past clinical data
itself. The prediction is performed using FIR (Finite Impulse Response) filters and the recursive least
squares method in order to adapt rapidly to nonstationary behaviour. In addition, we inject
simulated events in both clinical and OTC data streams to evaluate the predictions by computing
the Receiver Operating Characteristic curves of a threshold detector based on predicted outputs.

Results: We present all prediction results showing the effectiveness of the combined filtering
operation. In addition, we compute and present the performance of a detector using the prediction
output.

Conclusion: Multichannel adaptive FIR least squares filtering provides a viable method of
predicting public health conditions, as represented by clinical data, from OTC sales, and/or the
clinical data. The potential value to a biosurveillance system cannot, however, be determined
without studying this approach in the presence of transient events (nonstationary events of
relatively short duration and fast rise times). Our simulated events superimposed on actual OTC
and clinical data allow us to provide an upper bound on that potential value under some restricted
conditions. Based on our ROC curves we argue that a biosurveillance system can provide early
warning of an impending clinical event using ancillary data streams (such as OTC) with established
correlations with the clinical data, and a prediction method that can react to nonstationary events
sufficiently fast. Whether OTC (or other data streams yet to be identified) provide the best source
of predicting clinical data is still an open question. We present a framework and an example to
show how to measure the effectiveness of predictions, and compute an upper bound on this
performance for the Recursive Least Squares method when the following two conditions are met:
(1) an event of sufficient strength exists in both data streams, without distortion, and (2) it occurs
in the OTC (or other ancillary streams) earlier than in the clinical data.
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Background
Surveillance of Over-the-Counter pharmaceutical (OTC)
sales as a potential early indicator of developing public
health conditions, in particular in cases of interest to bio-
survellance, has been suggested in the literature [1]. Sales
of over-the-counter pharmaceuticals (OTCs) offer several
advantages as possible early indicators of public health.
They are very widely used [2], and reliable and detailed
electronic records of their sales exist.

Another possible advantage is the timeliness of OTC sales
relative to other observable events that might occur when
the public health is threatened. This is a particularly diffi-
cult aspect since it requires the identification of specific
events in all the data streams before a judgment can be
reached as to the correlations and the timeliness of those
events.

We have, in a previous article [3], provided evidence that
when judiciously grouped, the OTC data show time-
dependent correlations with clinical data, and that the
present days values of the latter can be estimated well
from the present and past values of the former using a set
of linear filters hj[m], where the subscript j refers to the
particular OTC product group (multiple groups are used)
and the index m refers to the time step. If we denote the
clinical data time series on day number n by y[n], and the
OTC time series on the same day number n by xj[n], (the
index j denotes the OTC product group), then the estima-
tion problem discussed in our previous paper refers to
using today's and past days' OTC data to estimate today's
clinical data, in the sense that the estimated quantity is

. The linear filters hj[m] are

assumed to have a span of M points (days).

This estimate is to be compared with the actual value of
the clinical data today. The "prediction" problem, the sub-
ject of the present paper, refers to an attempt to estimate
future values of the clinical data using today's and past
days' values of the OTC channels, i.e. the predicted quan-

tity is now , k > 0. In the

parlance of linear filter theory, the data set whose predic-
tion is desired (the dependent variable) is termed the pri-
mary data channel. All other data sets (distinct from the
primary channel) that are used to make the predictions
are known as reference channels, otherwise known as
independent variables. When the primary data set (the
dependent variable) is used to predict its own values, then
the primary channel is also the reference channel (the
independent variable).

We present a prediction method based on an adaptive
recursive least squares filter. In addition, we compare
these predictions, which we term auto predictions, with
similar predictions that use the same method applied to
the clinical data alone without referencing any OTC chan-
nels. It is our contention that when the auto prediction
results (i.e. when using the clinical data in the past to pre-
dict its future values) are equally (in the sense of mini-
mum squared error) effective as or better than those
predictions based solely on OTC streams, in all time inter-
vals, then it is highly probable that no event of interest to
biosurveillance actually exists in the clinical data. This is
based on the fundamental premises of linear optimal pre-
dictors that a nonstationary and relatively short duration
event superimposed on an otherwise stationary and pre-
dictable background cannot be predicted from the sta-
tionary background data alone. We argue that the best
performance comparison, in the context of a biosurveil-
lance system whose objective is to detect an outbreak
early, among all method/data stream combinations is tied
closely to the existence of such events. Lacking any real
specific events of sufficient signal strength, we perform a
study based on simulated events in order to compute an
upper bound on the indicated performances. We empha-
size that the system whose performance we are investigat-
ing here is a predict and detect system, in the sense that it
uses historical clinical and other ancillary data streams in
order to predict clinical data many days into the future.
The detection performance is then based on a study of
probabilities of true detections versus the probabilities of
false alarms.

The meaning of an upper bound on the detection per-
formance in this context is in the following sense. Given a
data stream yt that includes an event of short duration
then the detection performance of a specific prediction

method, is related to the quantity  where  is the
predicted value of the data stream when an event exists
and yt is the value of the data stream in the absence of the
event. This predicted value could be based on the data
stream itself, or it could be based on a combination of the
data stream and several other correlated data sets. In a
real-time situation one might perform detections based

on the quantity , where  is a prediction of the
data stream in the absence of the signal, because the actual
quantity yt is not available when the predictions are made
at t - ∆t. We contend that an upper bound on detection
performance is obtained when we use the "actual back-

ground" yt instead of the "predicted background" .

Methods
Data grouping and recursive least squares prediction
JHU/APL is currently collecting large quantities of daily
OTC sales data. We receive sales records of 622 different
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products under the general category of cold remedies from
a single vendor, with similar numbers from other vendors.
Many of these products are used to treat very similar con-
ditions. Product sales from some of these product groups
are known to be good indicators of the corresponding
clinical data. For instance, chest rub sales are highly corre-
lated with the count of physician diagnosis of acute bron-
chitis or acute bronchiolitis [4].

The OTC products of interest were grouped based on a
combination of the syndromes the product is intended to
alleviate, the physical description of the product (e. g. a
pill, a powder, a lip balm, etc.) and the age/sex group the
product is targeted for. There were 15 syndrome groups,
15 physical types, and 4 target age/sex groups (mostly age,
but 4 of the products were designated as intended espe-
cially for women). Some combinations contained no
products, but there were a total of 92 combinations that
did, so there was still some need for aggregation of these
groups. The aggregation procedure has been reported else-
where [5]. The groups we eventually used are shown in
Table 1. The clinical data are counts of outpatient encoun-
ters, based on physicians diagnoses (according to the
International Classification of Diseases, Ninth Revision
(ICD9) standards [6]) reported in insurance claims that
fall within a particular set of acute respiratory conditions
(see table 1). Encounters were included only for patients
12 years old and older. The encounters are further
restricted to include only patients living in the National
Capitol Region (NCR), which includes the District of
Columbia, Baltimore, suburban portions of Maryland
and the Washington suburbs in Virginia. The encounters
are time-tagged according to the day of occurrence.

Here, we consider the clinical data, the dependent varia-
ble, as the primary data channel (in the parlance of adap-
tive filter theory) whose values are to be predicted. The
OTC product groups (the independent variables) are then
used to predict the daily clinical data in the following
manner. Today's and several past days' OTC data are com-
bined to make a future clinical data prediction, which is

then compared to the actual value of that day's clinical
data when it becomes available, and the error is used to
update the filter coefficients in such a way as to minimize
the square of the error. For simplicity and to illustrate the
method we consider the estimation problem in which
there is only one reference channel whose value at each
time n is denoted by x[n] (note that the subscript j denot-
ing the particular product group is now missing since we
are using an example with only 1 product group). The lat-
ter is used to estimate the present value y[n] of the primary
channel (the dependent variable – office visit data). The
estimation equations, once put into the recursive form are
then easily generalized to the prediction problem. A linear
estimate of the primary channel in terms of a single refer-

ence channel is given by , where

we have assumed a filter of length M. The last equation

can be written as a vector dot product ,

where h= [h[0], h[1],..., h[M -1]]T, x[n] = [x[n], x[n -1],...,
x[n - (M - 1)]]T, and the superscript T denotes the transpo-
sition operation (the transpose of a row vector is a column
vector). A linear predictor of the primary channel (the
dependent variable) at k steps ahead is then given by

.

Clearly we could perform a similar prediction process
when we use the clinical data by itself instead of the OTC
data streams, as well as simply including the clinical data
as an "additional" reference data stream. Let P denote the
number of days ahead to predict, M denote the number of
linear filter coefficients, and N denote the number of OTC
data channels. Then the filter vector hwill have M × N ele-
ments when we predict the clinical data using the OTC

Table 1: OTC Adult Medication Product Groups

Product Group Name

ALLERGY
BRONCHIAL
COLD-ALLERGY
COUGH
FLU
POWDER
SINUS
THROAT

Simulated multiplicative eventFigure 1
Simulated multiplicative event.
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channels, and it will have M elements when we use the
clinical data to predict itself, and (M + 1) × N elements
when we combine the OTC channels and the clinical data
to predict the clinical data. The covariance/correlation
matrix of the reference channels will then be a square
matrix of the appropriate dimension in each case. The fil-
ter application and updates are recursive. Denoting the
clinical data (the dependent variable) on day n by y[n] and
the reference data (the independent variables) by xj, the
Recursive Least Squares P – days ahead prediction equa-

tion is [7]  Where L

denotes the number of reference data streams and it is
equal to N when only OTC data are used, or 1 if the clin-
ical data is used to predict itself, or N + 1 if both clinical
and OTC channels are used to predict the clinical data.
This step is repeated as many times as required in order to

obtain the predicted values . The
recursion equations and the new method of minimum
multiple look error feedback is described in Additional
file 1. We should point out that when we use the clinical
data alone (i.e. for self prediction) then the prediction
equation is of the form

, where the subscript j

could be left out since only one filter is used.

Our simulated signal was constructed by combining the
following assumptions about an event of interest that can
be reasonably expected to arise if a biological attack were
to occur. The event is the result of a deterministic multipli-

cative signal s(t), in the sense that if y(t) denotes the clin-
ical data in the absence of the signal, the presence of the
signal will lead to the following clinical data y(t){1+s(t)}.
The corresponding event has a sharp rise of about 5–10
days from a minimum of 0 to a maximum value that
shows the corresponding percent increase of clinical data
at the peak of the outbreak, above the normal "back-
ground" number. We consider the rise time of about a
week to be a reasonable assumption based on observa-
tions of infectious disease characteristics [8]. In addition,
we assume that the event has a fall off period of about
twice that of the rise time. This signal can be easily mod-
eled by a function of the form

. The log-normal shape is

based on observations as reported by Sartwell [8]. Figure
1 shows a specific example matching the requirements of
an event described above.

The simulation consists of applying this deterministic sig-
nal with a given maximum value to the OTC data, on any
given day, and applying the same deterministic signal to
the clinical data with a time delay. Then we compute pre-
dictions of the clinical data once using OTC data only,
and a second time using the clinical data itself. In both
cases we use the predicted clinical data for detection and

the detector output is , where  denotes the pre-

dicted value of the clinical data on day t. The predictions
are performed once with no signal present (to compute
false alarms), and once with signal present to compute
true detections, and for all day numbers 100 through 550.

Office visit data [clinical data] between 11/1/2001 and 5/14/2003Figure 2
Office visit data [clinical data] between 11/1/2001 and 5/14/
2003.
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OTC sales data for the same periodFigure 3
OTC sales data for the same period.
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A range of thresholds are used to calculate the total
number of detections and the total number of false
alarms. These numbers are then averaged over the total
number of days to give the probability of detection pd and
the probability of false alarm pfa, both of which are func-
tions of threshold. The Receiver Operating Characteristic
(ROC) curve is then obtained by eliminating the thresh-
old variable and plotting pd as a function of pfa. This curve
provides the most concise form of evaluating the perform-
ance of any detection system [9]. The best performance is,
by definition, a horizontal line pd = 1, while the worst is
the line pd = 0, for all values of pfa. The 45° line represents
the performance of a hypothetical detector that decided
on the presence of a true signal by tossing a fair coin, i.e.
equal probabilities of detection vs false alarm.

Simulation parameters are as follows. The signal maxi-
mum strength takes on values 10%, 100% and 200%
(percentage increases refer to the background counts). We
have chosen 2 signal lag times of 5 and 10 days (lag times
refer to the lag between the application of the maximum
signal strength to the OTC channels and the office visit
count channel). The predictor uses a filter length of 5 days
and we try 2 sets of predictions: 5 days ahead and 10 days
ahead.

Results and discussion
Figure 2 shows the actual clinical data, and figure 3 shows
all the OTC channels, for the period 11/1/2001 through
5/14/2003 consisting of 560 days. Figure 4 shows the 5-
days ahead prediction results using only the OTC chan-
nels. Figure 5 shows a similar output when the office visits
data are added in as another reference channel. Figure 6
shows the output when only the office visits data are used

to predict their own future values, i.e. OTC channels are
not used here. All results use a 5 point filter, i.e. for each
OTC product group j the corresponding filter is hj[m] and
0 ≤ m ≤ 4. The effective memory of each filter is set at
approximately 1 month.

A simple measure of the effectiveness of the predictor per-
formance (not the detector performance) is a plot of the
mean versus standard deviation of the difference between
the actual and the predicted values (prediction error vec-
tor). Figure 7 shows the means versus standard deviations
for all 3 cases and for 5-days ahead as well as 10-days
ahead predictions. The prediction error vector was com-

5-days ahead predictions of office visit data using OTC sales data, versus actual dataFigure 4
5-days ahead predictions of office visit data using OTC sales 
data, versus actual data.
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5-days ahead predictions of office visit data using OTC sales data and office visit data, versus actual dataFigure 5
5-days ahead predictions of office visit data using OTC sales 
data and office visit data, versus actual data.

5-days ahead predictions of office visit data using OTC sales data and office visit data, versus actual dataFigure 6
5-days ahead predictions of office visit data using OTC sales 
data and office visit data, versus actual data.
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puted between days 100 and 550, to allow for filter initial-
ization in the beginning; we could have started making
predictions as early as 50 days from the beginning since
the effective memory of the filter is set at 30 days, but
chose to begin making predictions at day 100 to be abso-
lutely safe. These prediction results are quite encouraging
and show significant correlations between OTC and office
visit data, in the sense that the predictions are quite close
to the actual values. What is perhaps more surprising, is
the fact that using office visit data for self prediction
apparently has the lowest error. Although these errors are
computed over the entire time section, there are no time
intervals over which the self prediction results are worse
than those when the OTC are used to predict the clinical
data.

Our interpretation is that this particular office visit data
has sufficiently strong autocorrelations at long lags that
allows for a better prediction when compared to the pre-
dictions made using the cross correlations. We emphasize
that one cannot draw any conclusions as to the best com-
bination of method/data for prediction from these results
when in fact no identifiable and significant events of
interest exist in the present data set. For instance, one can-

not state that OTC data can be safely ignored in the pre-
diction problem in favour of using the clinical data itself.
In order to illustrate this point and to place an upper
bound on detection performance of a biosurveillance sys-
tem that relies on predicting the clinical data from OTC
and/or clinical data, we have performed an analysis based
on simulated events superimposed on the present data
sets.

Figure 8 shows the ROC curves (pd vs pfa) for a 5-day lag
and 5 days ahead prediction for all three signal maximum
amplitudes. The dotted lines represent the auto-predic-
tions made using only the clinical data. The solid lines
show the predictions using the OTC data. The thickness of
the lines in each case represents the signal maximum
amplitude. Based on this figure alone, we can summarize
these results as follows. Given the assumptions in this
simulation, the auto-predictions do not appear to per-
form well in a predict-ahead and detect surveillance sys-
tem. For instance, even at signal maximum amplitude of

200%, for a  = 0.2, corresponding to a false alarm rate

of once every 5 days, the probability of detection when
using auto-predictions is barely above 60%, whereas if
one uses the OTC predictions that probability is 100%. If
a signal maximum amplitude is lowered to 100%, the
auto-prediction probability of detection is down to 40%,
and that of OTC predictions is still a very healthy 97%.
These results continue to hold so long as the lag value is
larger than or equal to the number of prediction days, as
can be seen clearly in figures 9 and 10. Figure 11 shows a
dramatic fall in performance when the latter condition is
not satisfied, i.e. when the number of prediction days
exceeds the lag number. Clearly, if we try to predict "too
many" days ahead (irrespective of the lag number), the
detection results worsen considerably. The present data
set predictions appeared to hold to about 12 days ahead.

Our choice of the synthetic signal requires further discus-
sion. Since we are interested in placing upper bounds on
the performance of a multi-stream syndromic surveillance
system that uses a prediction method to detect an
outbreak we decided to concentrate on a type of epidemic
curve that has a reasonably fast rise time and a slower fall
off. We chose the 1-week rise time and 2-weeks fall off
because they are reasonable numbers in the context of
early detection of most biological attack scenarios. It so
happens that these numbers appear to fit the observations
by Sartwell and so we used a log-normal shape. It turns
out the results are quite insensitive to the analytic form of
the signal, for instance, we could have used a "triangle"
signal with the same rise-time characteristics and reached
similar conclusions.

Finally we should discuss our results in view of the fact
that we applied the same multiplicative signal in all data

Performance characteristics of 5-days and 10-days ahead pre-dictions, using OTC sales data alone, OTC data plus office visit data, and office visit data aloneFigure 7
Performance characteristics of 5-days and 10-days ahead pre-
dictions, using OTC sales data alone, OTC data plus office 
visit data, and office visit data alone.
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streams without distortion. A complete simulation study
of the performance of a multi-stream syndromic
surveillance system that uses a prediction method to
detect an outbreak would include all possible signal dis-
tortions (including amplitude reduction, but also changes

in the shape of the signal), and all reasonable time delays;
this is a huge task and well beyond the scope of this pub-
lication. What we have attempted here is obtaining an
upper bound on this performance by varying the time
delay and the maximum amplitude of the signal but keep-
ing the signal undistorted. Any distortion of the signal
would clearly degrade the ROC curves. In the absence of a

ROC curves of auto-predictions (office visit data alone to predict itself), and OTC predictions (OTC data to predict office visit data), for 3 signal strengths, using a simulated actual lag of 5 days between OTC and office visit data and a 5-days ahead predictorFigure 8
ROC curves of auto-predictions (office visit data alone to 
predict itself), and OTC predictions (OTC data to predict 
office visit data), for 3 signal strengths, using a simulated 
actual lag of 5 days between OTC and office visit data and a 
5-days ahead predictor.

ROC curves of auto-predictions (office visit data alone to predict itself), and OTC predictions (OTC data to predict office visit data), for 3 signal strengths, using a simulated actual lag of 10 days between OTC and office visit data and a 5-days ahead predictorFigure 9
ROC curves of auto-predictions (office visit data alone to 
predict itself), and OTC predictions (OTC data to predict 
office visit data), for 3 signal strengths, using a simulated 
actual lag of 10 days between OTC and office visit data and a 
5-days ahead predictor.
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ROC curves of auto-predictions (office visit data alone to predict itself), and OTC predictions (OTC data to predict office visit data), for 3 signal strengths, using a simulated actual lag of 10 days between OTC and office visit data and a 10-days ahead predictorFigure 10
ROC curves of auto-predictions (office visit data alone to 
predict itself), and OTC predictions (OTC data to predict 
office visit data), for 3 signal strengths, using a simulated 
actual lag of 10 days between OTC and office visit data and a 
10-days ahead predictor.

ROC curves of auto-predictions (office visit data alone to predict itself), and OTC predictions (OTC data to predict office visit data), for 3 signal strengths, using a simulated actual lag of 5 days between OTC and office visit data and a 10-days ahead predictorFigure 11
ROC curves of auto-predictions (office visit data alone to 
predict itself), and OTC predictions (OTC data to predict 
office visit data), for 3 signal strengths, using a simulated 
actual lag of 5 days between OTC and office visit data and a 
10-days ahead predictor.
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general theory of infectious disease evolution and the
uncertainties associated with the impact of an infectious
disease outbreak upon all the data streams in a multi-
stream syndromic surveillance system we have found
performance upper bounds on the limited number of
cases we have studied, in conjunction with the prediction
algorithm presented here.

Conclusion
Based on our simulation results we can state the following
broad conclusions regarding a multistream syndromic
surveillance system that operates by predicting the clinical
data several days in advance and issuing early warnings if
the predicted values exceed a given thershold. This pre-
dict-and-detect system must include ancillary data
streams (such as OTC) with established correlations with
the clinical data, and a prediction method that can react to
nonstationary events sufficiently fast. Any predictions of
the clinical data using only the clinical data, i.e. relying on
self-correlations of the clinical data rather than cross-cor-
relations with other data streams such as OTC data, can be
an effective estimate of the background conditions.
Whether OTC (or other data streams yet to be identified)
can provide the best source of predicting clinical data is
still an open question. The system must also include a pre-
diction algorithm that can react sufficiently fast to nonsta-
tionary changes. The Recursive Least Squares Minimum
Distance Error algorithm presented here seems to satisfy
this condition. Finally, we have no way of knowing the
likelihood that events of interest will always be present in
both the clinical data and the ancillary streams, without
significant distortion, and with reasonable time lags. But
if any event satisfies these conditions, we have provided
the framework for a system that has an excellent chance of
detecting it in advance.
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