
BioMed Central

BMC Medical Informatics and
Decision Making

ss
Open AcceSoftware
Doublet method for very fast autocoding
Jules J Berman*

Address: Cancer Diagnosis Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

Email: Jules J Berman* - bermanj@mail.nih.gov

* Corresponding author

Abstract
Background: Autocoding (or automatic concept indexing) occurs when a software program
extracts terms contained within text and maps them to a standard list of concepts contained in a
nomenclature. The purpose of autocoding is to provide a way of organizing large documents by the
concepts represented in the text. Because textual data accumulates rapidly in biomedical
institutions, the computational methods used to autocode text must be very fast. The purpose of
this paper is to describe the doublet method, a new algorithm for very fast autocoding.

Methods: An autocoder was written that transforms plain-text into intercalated word doublets
(e.g. "The ciliary body produces aqueous humor" becomes "The ciliary, ciliary body, body produces,
produces aqueous, aqueous humor"). Each doublet is checked against an index of doublets
extracted from a standard nomenclature. Matching doublets are assigned a numeric code specific
for each doublet found in the nomenclature. Text doublets that do not match the index of doublets
extracted from the nomenclature are not part of valid nomenclature terms. Runs of matching
doublets from text are concatenated and matched against nomenclature terms (also represented
as runs of doublets).

Results: The doublet autocoder was compared for speed and performance against a previously
published phrase autocoder. Both autocoders are Perl scripts, and both autocoders used an
identical text (a 170+ Megabyte collection of abstracts collected through a PubMed search) and the
same nomenclature (neocl.xml, containing over 102,271 unique names of neoplasms). In side-by-
side comparison on the same computer, the doublet method autocoder was 8.4 times faster than
the phrase autocoder (211 seconds versus 1,776 seconds). The doublet method codes 0.8
Megabytes of text per second on a desktop computer with a 1.6 GHz processor. In addition, the
doublet autocoder successfully matched terms that were missed by the phrase autocoder, while
the phrase autocoder found no terms that were missed by the doublet autocoder.

Conclusions: The doublet method of autocoding is a novel algorithm for rapid text autocoding.
The method will work with any nomenclature and will parse any ascii plain-text. An implementation
of the algorithm in Perl is provided with this article. The algorithm, the Perl implementation, the
neoplasm nomenclature, and Perl itself, are all open source materials.

Background
Autocoding is a specialized form of machine translation.

The general idea behind machine translation is that com-
puters have the patience, stamina and speed to quickly

Published: 15 September 2004

BMC Medical Informatics and Decision Making 2004, 4:16 doi:10.1186/1472-6947-4-16

Received: 01 July 2004
Accepted: 15 September 2004

This article is available from: http://www.biomedcentral.com/1472-6947/4/16

© 2004 Berman; licensee BioMed Central Ltd.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15369595
http://www.biomedcentral.com/1472-6947/4/16
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Medical Informatics and Decision Making 2004, 4:16 http://www.biomedcentral.com/1472-6947/4/16
parse through gigabytes of text, matching text terms with
equivalent terms from an external vocabulary. Human
translators often scoff at the output of machine transla-
tors, noting the high rate of comical errors. An often cited,
perhaps apocryphal, example of poor machine translation
is the English to Russian transformation of "out of sight,
out of mind" to the Russian equivalent of "invisible
idiot."

Despite limitations, machine translation is the only way
to transform gigabytes and terabytes of text. As long as cli-
nicians, pathologists, radiologists, nurses, and scientists
continue to type messages, reports, manuscripts and notes
into electronic documents, we will need computers to
parse and organize the resulting text.

One of the many problems in the field of machine trans-
lation is that expressions (multi-word terms) convey ideas
that transcend the meanings of the individual words in
the expression. Consider the following sentence:

"The ciliary body produces aqueous humor."

The example sentence has unambiguous meaning to anat-
omists, but each word in the sentence can have many dif-
ferent meanings. "Ciliary" is a common medical word,
and usually refers to the action of cilia. Cilia are found
throughout the respiratory and GI tract and have an
important role locomoting particulate matter. The word
"body" almost always refers to the human body. The term
"ciliary body" should (but does not) refer to the action of
cilia that move human bodies from place to place. The
word "aqueous" always refers to water. Humor relates to
something being funny. The term "aqueous humor"
should (but does not) relate to something that is funny by
virtue of its use of water (as in squirting someone in the
face with a trick flower). Actually, "ciliary body" and
"aqueous humor" are each examples of medical doublets
whose meanings are specific and contextually constant
(i.e. always mean one thing). Furthermore, the meanings
of the doublets cannot be reliably determined from the
individual words that constitute the doublet, because the
individual words have several different meanings. Basi-
cally, you either know the correct meaning of the doublet,
or you don't.

Any sentence can be examined by parsing it into an array
of intercalated doublets:

"The ciliary, ciliary body, body produces, produces aque-
ous, aqueous humor."

The important concepts in the sentence are contained in
two doublets (ciliary body and aqueous humor). A
nomenclature containing these doublets would allow us

to extract and index these two medical concepts. A
nomenclature consisting of single words might miss the
contextual meaning of the doublets.

What if the term were larger than a doublet? Consider the
tumor "orbital alveolar rhabdomyosarcoma." The indi-
vidual words can be misleading. This orbital tumor is not
from outer space, and the alveolar tumor is not from the
lung. The 3-word term describes a sarcoma arising from
the orbit of the eye that has a morphology characterized
by tiny spaces of a size and shape as may occur in glands
(alveoli). The term "orbital alveolar rhabdomyosarcoma"
can be parsed as "orbital alveolar, alveolar rhabdomyosa-
rcoma" Why is this any better than parsing the term into
individual words, as in "orbital, alveolar, rhabdomyosar-
coma"? The doublets, unlike the single words, are highly
specific terms that are unlikely to occur in association with
more than a few specific concepts.

Very few medical terms are single words. In "The develop-
mental lineage classification and taxonomy of neo-
plasms" there are 102,271 unique terms for neoplasms.
All but 252 of these terms are multi-word terms [see Addi-
tional file 1] [see Additional file 2][1]. Of the 252 single-
tons, all but 34 are names of specific tumors ending in the
suffix, "oma." "Oma" is short for "tumor." Single-word
names of tumors ending in "oma" can be thought of as
doublets with the first and second words fused together
(i.e. osteoblastoma is "osteoblast" + "oma"). Some exam-
ples of "oma" terms are: acanthoma, adamantinoma,
adenofibroma, adenomyoepithelioma, adenomyoma,
adenosarcoma, ameloblastoma, etc.) In the entire taxon-
omy, there are only 34 singletons that do not end in
"oma." These are, "acrochordon, carcinoid, cyst, dermoid,
dip-nech, dipnech, erythroleukemia, fibroid, histiocyto-
sis, leucaemia, leukaemia, leukemia, macroglobulinemia,
mastocytosis, milia, milium, myelodysplasia, naevus,
neuronevus, nevus, parapsoriasis, pre-leukaemia, pre-
leukemia, precancer, preleukemia, premalignancy, prene-
oplasia, tylosis, verruca, verrucae, and wart". These single-
tons represent a mere 34/102,271 or 0.0003 of the
neoplasm terminology.

Medical autocoding can be considered a specialized form
of machine translation. Medical autocoders transform text
into an index of coded nomenclature terms (sometimes
called a "concept index" or "concept signature"). Several
innovative approaches to autocoding have used the
higher information content of multiword terms (also
called word n-grams) to match terms in text with terms in
vocabularies or to enhance the content of vocabularies by
identifying n-grams occurring in text that qualify as new
nomenclature terms [2-4]. Unlike prior studies with n-
grams, the method developed for this study does not use
statistical inferencing or the information content of bi-
Page 2 of 8
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2004, 4:16 http://www.biomedcentral.com/1472-6947/4/16
grams to infer semantic meaning from natural language.
The author has used the higher term specificity of dou-
blets [bi-grams] to construct a simple and fast lexical
parser. Lexical parsers are types of string-matching algo-
rithms. In general, the overall speed of lexical parsers is
determined by the speed with which the parser can pre-
pare an array of all possible words and phrases contained
in a block of text, coupled with the speed with which each
of these phrases can be compared against all the terms in
the nomenclature.

The purpose of this paper is to describe a novel algorithm
for autocoding based on finding runs of word-doublets
that match a list of doublets extracted from a medical
nomenclature. Using the same hardware and the same
nomenclature, the speed and accuracy of the doublet
method can be compared with another fast lexical parser.

Implementation
Nomenclature
The nomenclature used is neocl.xml, previously described
by the author and currently designated as "The develop-
mental lineage classification and taxonomy of neo-
plasms"[1]. In the context of this manuscript, the purpose
of the taxonomy is to provide a listing of all names of neo-
plasms, with synonyms grouped under a common code
number. The current version of the neocl.xml file contains
102,271 unique names of neoplasms. In constructing the
taxonomy, enormous effort was made to include every
variant name for every known neoplasm of man. Variant
names included different terms for the same concept and
different ways of expressing an individual term (e.g. vari-
ations in word order).

An example of the variety of synonyms encountered for a
single tumor is shown for "adenocarcinoma of the colon."
There are 44 synonyms listed in the taxonomy. These are:
adenoca arising from colon, adenoca arising in colon,
adenoca of colon, adenocarcinoma arising from colon,
adenocarcinoma arising from large intestine, adenocarci-
noma arising from the colon, adenocarcinoma arising
from the large intestine, adenocarcinoma arising in colon,
adenocarcinoma arising in large intestine, adenocarci-
noma arising in the colon, adenocarcinoma arising in the
large intestine, adenocarcinoma of colon, adenocarci-
noma of large intestine, ca arising from colon, ca arising
in colon, ca of colon, cancer arising from colon, cancer
arising in colon, cancer of colon, carcinoma arising from
colon, carcinoma arising in colon, carcinoma of colon,
colon adenoca, colon adenocarcinoma, colon ca, colon
cancer, colon cancers, colon carcinoma, colon carcino-
mas, colon with adenoca, colon with adenocarcinoma,
colon with ca, colon with cancer, colon with carcinoma,
colonic adenoca, colonic adenocarcinoma, colonic aden-
ocarcinomas, colonic ca, colonic cancer, colonic cancers,

colonic carcinoma, colonic carcinomas, large intestine
adenocarcinoma, large intestine with adenocarcinoma.

Input file
The input file was created by a PubMed query on "pathol-
ogy [ad] AND neoplasm [all]", at the U.S. government
website [5]. The query gathered all abstracts from the
pubmed database in which the term neoplasm occurs
somewhere in the pubmed entry, and in which the affilia-
tion of the author contains the word "pathology". The
query yielded abstracts that are likely to contain names of
neoplasms. The PubMed output file can serve as a good
test for an autocoder that uses a neoplasm nomenclature.
The PubMed search yielded 66,509 abstracts. All of the
abstracts were downloaded into a single file from the
PubMed site by setting the "Display" attribute to
"Medline" and the "Send to" attribute to "file". This pro-
duced a 170,997,880 byte plain-text file. The file was
given the filename tumor.txt, and this filename was used
by the autocoders as a parsing input file. Although this file
is not included with this manuscript, anyone in the world
with internet access can obtain a near-identical file by
repeating the same PubMed query.

Doublet autocoder
The doublet autocoder is supplied as an open source Perl
script (doubcode.pl) with this manuscript [see Additional
file 3]. Perl itself is an open source language that is bun-
dled with the Unix and Linux operating systems. In the
past decade, Perl has become very popular in the bioinfor-
matics community. Perl interpreters are available at no
cost and in versions suitable for virtually all operating sys-
tems. Perl can be obtained from the Comprehensive Perl
Archives Network [6] or from Active State [7].

The algorithm used by the doublet autocoder is described:

1. Each phrase (term) in the nomenclature (neocl.xml) is
converted into intercalated doublets, and each doublet is
assigned a consecutive number.

2. Each nomenclature phrase is assigned the concatenated
list of numbers that represent the ordered doublets com-
posing the phrase.

3. Every text record (pubmed abstract in this case) is split
into an array consisting of the consecutive words in the
text record.

4. The text array is parsed as intercalated doublets. Interca-
lated doublets from the text that match doublets found
anywhere in the nomenclature are assigned their numeric
values (from the doublet index created for the nomencla-
ture). Runs of consecutive doublets from the text that
match doublets from the nomenclature are built into con-
Page 3 of 8
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2004, 4:16 http://www.biomedcentral.com/1472-6947/4/16
catenated strings of doublet values. The occurrence of a
text doublet that does not match any doublet in the
nomenclature cannot possibly be part of a nomenclature
term. Such text doublets serve as "stop" doublets between
candidate runs of text doublets that match nomenclature
doublets.

5. The runs of matching doublets are tested to see if they
match any of the runs of doublets that compose nomen-
clature terms or if they contain any subsumed terms that
match nomenclature terms.

6. The array of doublet runs extracted from the text that
match nomenclature terms are cached in an external file.

Phrase autocoder
The phrase autocoding script, phrase.pl is included as sup-
plementary file with this article [see Additional file 4]. The
script was described in a prior publication [8]. It works by
taking text records and parsing the text into all possible
ordered phrases of all sizes up to a predetermined limit (5,
in this case). The script then examines each resultant
phrase to determine if it matches a term in the nomencla-
ture. If there is a match, the term is added to the cache of
matched terms.

Results
Speed
The speed of both coders was compared using a 170+
Megabyte text. The doublet method coded the entire text
in 211 seconds compared with 1,766 seconds required for
the phrase method. Therefore the doublet method coded
8.4 times faster than the phrase method. The text coding
rate for the doublet method is 0.8 Megabytes per second
on a desktop computer with a modest 1.6 GHz Pentium
processor.

Both the phrase method and the doublet method coders
used the same Programming Language, the same nomen-
clature, and the same data structure for the nomenclature
(a simple associative array). Both coders grab sequentially
occurring chunks of text, each chunk delimited by a dou-
ble-newline delimiter (roughly the ascii equivalent of a
paragraph delimiter) and place the grabbed text chunk
into a temporary scalar variables.

The difference between the two coders occurs when the
chunks of text are parsed. The phrase coder takes the text
and creates an array of every ordered combination of
1,2,3,4 and 5-word phrases contained in the record. This
number of elements in the phrase array is about 5 times
larger than the number of words in the record. The dou-
blet coder parses the record into the set of all ordered dou-
blet terms. This number of elements in the array of
doublets is about the same as the number of words in the

record. The phrase coder must try to match about 5 times
as many terms as the doublet coder. Also, the phrase coder
tries to match each phrase in the record array against the
entire nomenclature. The doublet coder tries to match
each doublet encountered in the input text against the col-
lection of doublet terms extracted from the nomenclature.
Because doublets of text, unlike individual words, tend to
have unique meanings, only a small subset of the dou-
blets encountered in the input text will match the set of
doublets extracted from the nomenclature. Text doublets
that do not match any doublets in the nomenclature are
"skipped." Text doublets that match doublets from the
nomenclature are concatenated to consecutive matching
doublets until a non-matching doublet is encountered.
The length of matching doublets sets the length of the can-
didate term. The algorithmic strength of the doublet
method is that it eliminates the need to create and match
[against a nomenclature] an array of all possible phrases
of all possible lengths found in a textual record.

Autocoding output
The output of the doublet method and phrase method
autocoders are provided as supplemental files with this
manuscript [see Additional file 5] [see Additional file 6].
The analysis of the autocoding output was performed
using another Perl script, doubcode.pl [see Additional file
7]. The analysis output file is also provided with this man-
uscript [see Additional file 8].

The two autocoder methods parsed a text exceeding 170
megabytes in length. The doublet method coded 4807 dif-
ferent [sometimes called unique] terms. The total number
of matching term encountered (which includes replicate
matches of terms within a record) by the doublet method
is 467,391 terms. The phrase method coded 4557 differ-
ent terms. There were 250 terms that the doublet method
matched and the phrase method missed. There were zero
terms that the phrase method matched and the doublet
method missed.

The improved performance of the doublet coder is
accounted for by its ability to match terms of any length,
while the phrase coder is limited to match terms that are
no more than 5 words in length. Because the phrase coder
parses chunks of input text into all allowed phrase size
combinations, the performance of the phrase coder is
slowed dramatically when the allowed phrase length is
large. For instance, if the theoretical maximum phrase size
were permitted for a text chunk 100 words in length, the
phrase parser would need to create an array of a size equal
to 100 × 100 or 10,000 phrases, matching each phrase
against nomenclature. If the phrase size were restricted to
5 words, then the phrase parser would only need to create
a phrase array of size 5 × 100 or 500. It is reasonable to
restrict the allowed length of coded term phrases if it is
Page 4 of 8
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2004, 4:16 http://www.biomedcentral.com/1472-6947/4/16
known that the number of nomenclature terms with
length exceeding the allowed limit is small. It is also rea-
sonable to restrict the allowed length of coded term
phrases is it is believed that terms of long length can be
successfully represented by subsumed terms within the
longer term.

For example, "Refractory anemia with excess blasts in
transformation" will be captured as a single term by the
doublet method. The phrase method will miss the 7-word
term but will code the subsumed terms, "refractory ane-
mia" and "refractory anemia with excess blasts". In this
specific instance, the doublet coder outperformed the
phrase coder. However, few cancer terms actually exceed 5
words in length, and longer terms almost always contain
modifying phrases (so-called term pre-coordinations)
that add little to the fundamental meaning of the term.

The following terms are examples of neoplasms extracted
by the doublet method and missed by the phrase method.
All of the listed terms exceed 5 words in length. "Acute
myelogenous leukemia with minimal differentiation,
acute myeloid leukemia with minimal differentiation,
adenocarcinoma arising in the parotid gland, adenoid
cystic carcinoma of submandibular gland, aids-related
primary central nervous system lymphoma, atypical glan-
dular cells of undetermined significance, atypical squa-
mous cells of uncertain significance, carcinoid tumor
arising from meckel diverticulum, extranodal marginal
zone b-cell lymphoma of mucosa-associated lymphoid
tissue, giant cell tumor of tendon sheath, giant cell
tumour of tendon sheath, glandular malignant peripheral
nerve sheath tumor, high-grade malignant peripheral
nerve sheath tumor, hurthle cell carcinoma arising from
thyroid, hyalinizing spindle cell tumor with giant rosettes,
interdigitating dendritic cell sarcoma arising from the
spleen, intermediate-grade b-cell non-hodgkin lym-
phoma, intraductal papillary mucinous neoplasm of pan-
creas, intraductal papillary-mucinous tumor with
moderate dysplasia, kaposi sarcoma arising in the heart,
large cell calcifying sertoli cell tumor, leiomyosarcoma
arising from the pulmonary artery, low grade cervical
glandular intraepithelial neoplasia, low-grade malignant
peripheral nerve sheath tumor, lymphoma arising in the
thyroid gland, malignant epithelioid peripheral nerve
sheath tumor, malignant tumor of peripheral nervous sys-
tem, malt lymphoma arising in the stomach, metanephric
adenosarcoma in a young adult, monomorphic clear cell
adenocarcinoma of salivary glands, ovarian serous bor-
derline tumor with micropapillary and cribriform pat-
terns, ovarian serous tumor of low malignant potential,
paraganglioma arising in the cauda equina, perineurial
malignant peripheral nerve sheath tumor, philadelphia
chromosome negative chronic myeloid leukemia, phos-
phaturic mesenchymal tumor mixed connective tissue

variant, pineal parenchymal tumor of intermediate differ-
entiation, pleomorphic adenoma of minor salivary
glands, polymorphous low-grade adenocarcinoma of
minor salivary gland, polymorphous low-grade adenocar-
cinoma of minor salivary glands, polymorphous low-
grade adenocarcinoma of salivary gland, poorly differen-
tiated malignant peripheral nerve sheath tumor,
porokeratotic eccrine ostial and dermal duct nevus, pri-
mary cutaneous anaplastic large cell lymphoma, primary
gastric diffuse large b-cell lymphoma, primary signet-ring
cell carcinoma of lung, primitive neuroectodermal tumor
arising in the pancreas, pulmonary immunocytoma with
massive crystal storing histiocytosis, rhabdoid transfor-
mation of tumor cells in meningioma, serous ovarian
tumor of low malignant potential, sex cord tumor with
annular tubules, signet ring cell adenocarcinoma of pros-
tate, signet-ring cell mucin-producing adenocarcinoma of
minor salivary glands, sinonasal desmoplastic small
round cell tumor, smooth muscle tumor of uncertain
malignant potential, smooth muscle tumor with an
uncertain malignant potential, splenic lymphoma with
circulating villous lymphocytes, squamous cell carcinoma
of fallopian tube, submandibular gland carcinoma ex ple-
omorphic adenoma, tall cell variant of papillary carci-
noma of thyroid, testicular large cell calcifying sertoli cell
tumor, uterine tumor resembling ovarian sex cord
tumor."

The long terms found by the doublet coder and missed by
the phrase coder represent a very small percentage of the
different terms found by either coder in the long 170+
Megabyte text (250/4807 = 5%). A cursory review of these
terms indicates that they represent rare lesions or rare var-
iants of common lesions.

Discussion
Developers of medical autocoders seldom publish manu-
scripts. It is the author's perception, based on many years
of activity in this field, that most autocoders are proprie-
tary products produced for a very specific type of job. The
author has never encountered any autocoder vendors who
revealed the speed of their autocoders or shared any pri-
mary data that measures the performance of their autoco-
ders. There really has never been any publication where
one autocoder was compared against another. This is
unfortunate because software developers may defer
implementing brilliant ideas for autocoders, if they are
uncertain whether better autocoders already exist. Even if
competing software developers were to share performance
data, there are no widely accepted standards for measur-
ing the performance of medical autocoders. One of the
purposes of this paper is to provide open access to algo-
rithms, software, performance methodology and perform-
ance outcome data.
Page 5 of 8
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2004, 4:16 http://www.biomedcentral.com/1472-6947/4/16
Accuracy issues for lexical parsers
The performance of autocoders is always a contentious
issue. The reflexive approach to measuring autocoder per-
formance usually involves selecting a small corpus of text
and allowing a human expert in a language domain to
carefully read through the lines of the text, creating a so-
called gold standard against which the autocoder can be
compared. The problems with this seemingly straightfor-
ward approach are many and have been explained by
myself and others. The many limitations of "precision and
recall" as measurements of indexing performance have
been reviewed elsewhere [9,10].

It would be a useful exercise to re-examine what autocod-
ing performance means to different people in contrast to
what autocoding performance means within the context
of lexical parsers [11,12]. First, every human coder is
biased by their different perceptions of the knowledge
domain. One coder may prefer "parsimonious" coding. In
"parsimonious" coding, there is a "best" code that repre-
sents the ideas contained in a defined section of text. A
review article on "liver cirrhosis" may contain many dif-
ferent terms, but the parsimonious coder may only pre-
serve a single code for the entire article. Another coder,
also a parsimonious coder, may not be so strict, but may
want only the best term from among a group of subterms.
So if "adenocarcinoma of endometrium" appears in text,
she may want to preserve this term but omit the so-called
atomic inclusive terms, "adenocarcinoma" and
"endometrium." Another coder may want a complete list-
ing of every matching term in a text, including terms that
occur within larger terms. Still another informatician may
want to include all ancestral terms for each term found in
the text (i.e. terms not present in the original text but
related to the textual concept).

Finally, some coders seek to create "concept signatures"
from text. A concept signature is the list of the concepts
contained in a section of text. The relationship of one sec-
tion of text to another section of text is determined by a
quantitative representation of how closely their signatures
match. Concept signatures are used to retrieve or organize
related documents, not specific concepts [13].

Lexical coders are, in a sense, perfect autocoders because
they don't use grammatic rules, they have no "exception"
lists, and they never guess or interpret text. The only thing
that lexical parsers do is to parse text, examining strings to
see if they contain exact matches to terms from a nomen-
clature. When well-constructed, they do not make mis-
takes. If they miss a valid term that is present in the text, it
is because the term was missing from the nomenclature.
Developers of lexical autocoders place enormous
demands on the curators of nomenclatures.

The most common cause of missed terms arises when the
text contains a modifying word that breaks the term into
a phrase that no longer matches anything found in the
nomenclature. For instance, "adenocarcinoma of the left
lung," would be missed by a lexical parser if the nearest
term in its terminology list is "adenocarcinoma of the
lung." A rule-based parser or a semantic parser may have
successfully teased out the "left" from the term and found
the match. In this instance, the nomenclature failed the
lexical parser because it did not list terms that indicated
tumor laterality. Lexical parsers do not match terms that
are absent from the text (i.e. no false positives). False-pos-
itive terms are possible in rule-based and semantic parsers
if they create word patterns not present in the original text.
Also, since lexical parsers strictly match phrases in text
with phrases in nomenclatures, it is possible to achieve
accurate results of dubious value. For instance, a lexical
parser would parse "adenocarcinoma of the lung is not
seen" and find a match against the neoplasm term, "ade-
nocarcinoma of the lung." The concept is present in the
text, even if though it is absent from the patient. It is a mis-
leading but "true" positive.

The doublet autocoder creates a string of words from a
chunk of text. In the case of the example corpus (PubMed
abstracts), all of the sentences from the abstract are
squeezed into a single string of words, obliterating sen-
tence boundaries. This means that if a sequence of words
crossing a sentence boundary happens to match a term in
the reference nomenclature, the coder will register a
"pseudo-positive" term. Empirical evidence suggests that
this theoretical error in the doublet autocoder simply does
not occur. A 4 megabyte collection of abstracts chunked as
whole abstracts or as chunked sentences (delimited by
period-space-space) contained no instances of pseudo-
terms created by the obliteration of sentence boundaries
in the whole-abstract text chunks. For fastidious develop-
ers who wish to ensure that their parsers respect sentence
boundaries, it is possible to pre-process text into sentences
with a sentence parser [14,15].

Lexical parsers can be modified to provide an output that
preserves the intended sense of the term as used in its con-
text. For example, if the text includes the sentence, "Aden-
ocarcinoma of the lung is not present." The "sensible"
lexical parser may be modified to tag the "adenocarci-
noma of the lung" with a negation modifier, preserving
the intended sense of the term. The author has previously
published an "in place" method of inserting codes directly
into sentences, preserving modifier terms (including
negations) [16].

Comparing parsers
The two lexical parsers used the same programming lan-
guage (Perl), the same nomenclature, the same data struc-
Page 6 of 8
(page number not for citation purposes)

BMC Medical Informatics and Decision Making 2004, 4:16 http://www.biomedcentral.com/1472-6947/4/16
ture to hold the nomenclature, the same text corpus, and
the same method for breaking the complete text into text
chunks. Differences between the performance of the two
autocoding methods were accounted for entirely by the
algorithmic processes by which chunks of text are parsed
into phrases that are matched against the common
nomenclature. It is easy to compare speeds. The doublet
parser required 211 seconds to parse the 170+ Megabyte
file, while the phrase parser required 1,776 seconds. Three
algorithmic properties contribute to the speed advantage
of the doublet coder over the phrase coder: 1) The doublet
coder parses text into a number of phrases that is 5-fold
smaller than the number of phrases produced by the
phrase coder; 2) Doublets that are not found in any of the
nomenclature terms can be quickly excluded, 3) Succes-
sive text doublets that match doublets from the nomen-
clature can be quickly concatenated and tested for
matches in the nomenclature. These are the algorithmic
differences between the phrase coder and the doublet
coder and presumably account for the improved speed of
the doublet method.

Comparing coding accuracy is somewhat trickier. As dis-
cussed, lexical parsers have no "false positive" matches.
Lexical parsers, unlike natural language processors, do not
construct context-based new word phrases from native
text. Lexical parsers only match exact phrases found in text
with exact nomenclature terms. Therefore, neither the
doublet coder nor the phrase coder have false-positive
term matches. Coding output was compared by examin-
ing the different terms matched by the two coders. The
number of different terms found by the doublet method
was 4,807, compared with 4,557 terms found by the
phrase method. There were no terms found by the phrase
method and missed by the doublet method. There were
250 terms missed by the phrase method and found by the
doublet method (about 5% of the number of different
terms found by the doublet method). For the most part,
these terms represented rare neoplasms with pre-coordi-
nated modifiers. The reason that such rare terms were
encountered is due to the large size of the text (exceeding
170 Megabytes). When the doublet and phrase methods
are judged by their ability to extract nomenclature from
text, their output would be similar for small text sizes or
when the primary purpose of the coding is to extract and
count commonly occurring terms.

Conclusions
The doublet method is a novel approach to autocoding. It
can autocode 0.8 Megabytes of text per second on desktop
computer using a modest 1.6 GHz processor. For this
manuscript, the doublet autocoder was tested on a corpus
of medical text that exceeded 170 Megabytes in length and
used a publicly available nomenclature of neoplasia con-
taining 102,271 unique terms. In a side-by-side compari-

son with a publicly available fast lexical autocoder, the
doublet method was 8.4-fold faster. The doublet algo-
rithm is generalizable to any type or length of plain-text
using any nomenclature. The algorithm and the Perl
implementation script are available as open source docu-
ments.

Availability and requirements
The autocoding scripts are short programs written in Perl.
Perl is a freely available open source programming lan-
guage. Perl interpreters for virtually any operating system
are available from several sites on the web [6,7]. These
sites have links to rich sources of online information on
the Perl language. The autocoding script will execute on
any operating system hosting a Perl interpreter. It requires
an external plain-text file (to be autocoded) and a nomen-
clature. With minor modification, the Perl scripts will use
any parsable nomenclature that contains listed plain-text
terms associated with alphnumeric concept codes.

The Perl scripts (doublet.pl and phrase.pl) will work with-
out modification using the current version of "The devel-
opmental lineage classification and taxonomy of
neoplasms," which is provided with this manuscript [see
Additional file 1] [see Additional file 2].

Competing interests
None declared.

Authors' contribution
The work expresses the opinion of the author and does
not represent policy of the U.S. government.

Additional material

Additional File 1
Neocl.xml is the developmental lineage classification and taxonomy of
neoplasms, in XML format. Because neocl.xml exceeds 7 Megabytes when
uncompressed, a gzipped version of the file is provided (neoclxml.gz).
After downloading from the biomedcentral site, the filename should be
provided with a .gz suffix (if absent from the filename as downloaded).
After decompressing the file, the file shoud be renamed "neocl.xml". The
file can be viewed on current web browsers, but experience has shown that
many browsers lack sufficient memory to display the entire file. Otherwise,
the file can be viewed on a wordprocessor or an ascii editor.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S1.gz]

Additional File 2
Neoself.gz is the ascii flat-file version of the neocl.xml file. The file exceeds
16 Megabytes when expanded. Each line-record of the file consists of the
numbered name of a different term, its code value, and the hierarchical
list of its ancestral [class] terms from the developmental lineage classifica-
tion and taxonomy of neoplasms.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S2.gz]
Page 7 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S1.gz
http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S2.gz

BMC Medical Informatics and Decision Making 2004, 4:16 http://www.biomedcentral.com/1472-6947/4/16
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

References
1. Berman JJ: Tumor classification: molecular analysis meets

Aristotle. BMC Cancer 2004, 4:10.
2. Franz P, Zaiss A, Schulz S, Hahn U, Klar R: Automated coding of

diagnoses: three methods compared. Proc AMIA Symp
2000:250-254.

3. Heja G, Surjan G: Using n-gram method in the decomposition
of compound medical diagnoses. Int J Med Inf 2003, 70:229-236.

4. Kim W, Wilbur WJ: Corpus-based statistical screening for
phrase identification. J Am Med Inform Assoc 2000, 7:499-511.

5. PubMed [http://www.pubmed.org]
6. Comprehensive Perl Archive Network [http://www.cpan.org]
7. ActiveState [http://www.activestate.com]
8. Berman JJ: Resources for comparing the speed and perform-

ance of medical autocoders. BMC Med Inform Decis Mak 2004,
4:8.

9. On Search: Precision and Recall [http://www.tbray.org/ongoing/
When/200x/2003/06/22/PandR]

10. Kagalovsky Y, Moehr JR: A new look at information retrieval
evaluation: proposal for solutions. J Med Syst 2004, 28:103-116.

11. Berman JJ, Moore GW: SNOMED-Encoded surgical pathology
databases: a tool for epidemiologic investigation. Mod Pathol
1996, 9:944-950.

12. Moore GW, Berman JJ: Performance analysis of manual and
Automated systemized nomenclature of medicine
(SNOMED) coding. Am J Clin Pathol 1994, 101:253-256.

13. Grivell L: Mining the bibliome: searching for a needle in a hay-
stack? EMBO Reports 2002, 3:200-203.

14. Berman JJ: Medical Sentence Parsing in PERL. Arch Pathol Lab
Med 2002, 126(abstracts):781-802.

15. Berman JJ: Improved Medical Sentence Parser. Arch Pathol Lab
Med 2003, 127(abstracts):789-813.

16. Berman JJ: Concept-Match Medical Data Scrubbing: How
pathology datasets can be used in research. Arch Pathol Lab Med
2003, 127:680-686.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1472-6947/4/16/prepub

Additional File 3
Doubcode.pl is a Perl script that implements the doublet method for text
autocoding and expects an external file named tumor.txt as the source cor-
pus and a file named neocl.xml as the reference nomenclature.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S3.pl]

Additional File 4
Phrase.pl is a Perl script that implements the doublet method for text
autocoding and expects an external file named tumor.txt as the source cor-
pus and a file named neocl.xml as the reference nomenclature.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S4.pl]

Additional File 5
Doub.out is the plain-text output of the doublet method for text autocoding
(i.e. output of doubcode.pl).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S5.out]

Additional File 6
Quickcan.txt is the plain-text output file for phrase method for text autoc-
oding (i.e. output of phrase.pl).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S6.txt]

Additional File 7
Doubcomp.pl is the Perl script comparing the output files produced by
doubcode.pl and phrase.pl.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S7.pl]

Additional File 8
Doubcomp.txt is the plain-text output of doubcomp.pl.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1472-
6947-4-16-S8.txt]
Page 8 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S3.pl
http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S4.pl
http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S5.out
http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S6.txt
http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S7.pl
http://www.biomedcentral.com/content/supplementary/1472-6947-4-16-S8.txt
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11079883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984469
http://www.pubmed.org
http://www.cpan.org
http://www.activestate.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15198804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15198804
http://www.tbray.org/ongoing/When/200x/2003/06/22/PandR
http://www.tbray.org/ongoing/When/200x/2003/06/22/PandR
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15171072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15171072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8878028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8878028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8135178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8135178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8135178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11882534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12741890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12741890
http://www.biomedcentral.com/1472-6947/4/16/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Implementation
	Nomenclature
	Input file
	Doublet autocoder
	Phrase autocoder

	Results
	Speed
	Autocoding output

	Discussion
	Accuracy issues for lexical parsers
	Comparing parsers

	Conclusions
	Availability and requirements
	Competing interests
	Authors' contribution
	Additional material
	References
	Pre-publication history

