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Abstract

Background: The increasing availability of genome data motivates massive research studies in personalized
treatment and precision medicine. Public cloud services provide a flexible way to mitigate the storage and
computation burden in conducting genome-wide association studies (GWAS). However, data privacy has been
widely concerned when sharing the sensitive information in a cloud environment.

Methods: We presented a novel framework (FORESEE: Fully Outsourced secuRe gEnome Study basEd on
homomorphic Encryption) to fully outsource GWAS (i.e., chi-square statistic computation) using homomorphic
encryption. The proposed framework enables secure divisions over encrypted data. We introduced two division
protocols (i.e., secure errorless division and secure approximation division) with a trade-off between complexity and
accuracy in computing chi-square statistics.

Results: The proposed framework was evaluated for the task of chi-square statistic computation with two case-
control datasets from the 2015 iDASH genome privacy protection challenge. Experimental results show that the
performance of FORESEE can be significantly improved through algorithmic optimization and parallel computation.
Remarkably, the secure approximation division provides significant performance gain, but without missing any
significance SNPs in the chi-square association test using the aforementioned datasets.

Conclusions: Unlike many existing HME based studies, in which final results need to be computed by the data
owner due to the lack of the secure division operation, the proposed FORESEE framework support complete
outsourcing to the cloud and output the final encrypted chi-square statistics.

Introduction
Owing to the community effort on big data, biomedical
science moves focus towards data-driven methodologies
[1], which rely on collecting, integrating and analyzing
large scale data. For biomedical studies, especially the gen-
ome analysis, the required storage and computational
capacities may easily exceed the available resources in a
single institution. Recently, cloud computing [2] emerges
as a flexible alternative to support cost-effective biomedi-
cal research with big data. Researchers can rely on a cloud
environment to easily scale up their studies with large

scale data. However, the adopt of cloud computing in bio-
medical studies also yields more and more concerns about
the potential data privacy risk in comparison with the
local computing environment. As genome data are extre-
mely sensitive, the storage of raw genome in a cloud may
increase the disclosure risk.
The recently announced NIH policy [3] allows NIH

funded studies to utilize public clouds to facilitate data
analysis. However, the researchers instead of the cloud
providers are responsible for the data security and privacy.
Many existing attacks [4-6] also demonstrate the vulner-
ability of de-identified genome data. Thus, it is important
to protect the privacy of genome data [7-9]. The rapid
improvements of the data protection techniques make it
possible to perform certain computations over encrypted
data [10,11] based on homomorphic encryption.
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In [12], Gentry proposed the first fully homomorphic
encryption scheme to enable both addition and multipli-
cation operations over encrypted data. Brakerski et al.
[13,14] improved homomorphic encryption scheme
based on learning with errors (LWE). Lauter et al. [15]
presented several secure statistical algorithms for genetic
association studies based on homomorphic encryption.
Besides, Togan et al. [16] studied the integer compari-
son problem over homomorphic encrypted data.
Recently, Graepel et al. [17] and Naehrig et al. [18] also
showed that certain machine learning algorithms can be
implemented using HME. Wang et al. [24] proposed a
novel homomorphic encryption based framework to
securely computing on exact logistic regression. Cheon
et al. [19] developed a protocol for HME-based edit dis-
tance calculation that employed the greedy algorithm to
obtain the upper bound of exact edit distance. Zhang
et al. [25] improved homomorphic edit distance compu-
tation by combining path-finding algorithm and integer
comparison.
In this paper, we propose the FORESEE framework to

achieve secured and fully outsourced chi-square statis-
tics computation in a public cloud. We assume that the
cloud faithfully follows the protocol but may be curious
of information from the received data, which is the so-
called semi-honest adversary model [20]. The proposed
FORESEE framework enables secure division operation
over the homomorphic encrypted data and allows the
cloud to directly release the study results. To be con-
crete, the contribution of this paper is two-fold.

• We develop a secure errorless division protocol,
where a one-to-one mapping function is constructed
for the floating numbers in computation and the
study results can be accurately decrypted with a
lookup table.
• We present a secure approximation division protocol
to balance the complexity and accuracy with well-
designed secure integer division in secure computation.
In implementation, binary tree product and group-
based computation are adopted to reduce circuit depth
and the number of homomorphic multiplications.

For validation, experimental results show that the pro-
posed FORESEE framework can identify all the significant
SNPs based on the chi-square statistics with a moderate
complexity using multiple slots for parallel computation.

Method
For clarity, in the rest of this paper, we use bold symbols
to represent vector and matrix variables and normal sym-
bols for scalar variables. Without specification, �

� is
reserved for the encrypted version of variable or function
Δ and log (·) stands for the logarithm with base 2.

Secure outsourcing GWAS
In this paper, we focus on the task of secure outsour-
cing GWAS in the 2015 iDASH challenge [21]. Given
the genotypes from two groups over a number of single
nucleotide polymorphisms (SNPs), we aim to securely
calculate the chi-square statistics for the SNPs between
the given case-control groups. The chi-square statistic)
c2 is used by chi-square test to statistically assess
whether there is significant association between the
genetic variants and disease status. Typically, c2 is
obtained by cumulating the normalized squared devia-
tions between the observed and expected frequency dis-
tribution of alleles.

χ2 =
∑
i

∑
j

(
Oi,j − Ei,j

)2
Ei,j

(1)

Here, Oi,j and Ei,j are the observed and expected allele
counts for allele j, e.g. j = 1 for allele ‘A’ and j = 2 for
allele ‘a’ in (see Table 1) from the case (i = 1) or control
(i = 2) group, respectively.
Let us denote N1 = O1,1 +O1,2 and N2 = O2,1 +O2,2

the total number of alleles in the case and control
groups, respectively. In general, Ei,j is computed by
((O1,j +O2,j) · Ni)/(N1 +N2) for i = 1, 2 and j = 1, 2. If
we assume that the case-control groups have the same
number of n patients, we can obtain N1 = N2 = 2n .
Thus, Equation (1) can be simplified by

χ2 =
4n · (O1,1 − O2,1)

2

(O1,1 +O2,1)[4n − (O1,1 +O2,1)]
(2)

Equation (2) indicates that, in addition to homo-
morphic additions and multiplications, the c2 statistic
computation over encrypted dataset requires one secure
division for fully outsourced GWAS, which is not sup-
ported in many existing HME-based schemes [15,17,22].
For example, if the numerator and denominator in
Equation (2) are released directly due to the lack of
secure division operation, one can easily infer the under-
lying allele counts (i.e., O1,1and O2,1) by solving a system
of equations. To address the problem, we propose the

Table 1. Observed allele counts for SNP, where O1,1 and
O1,2 are the number of alleles A and a in the case group,
O2,1 and O2,1 are the corresponding counts in the control
group, N1 and N2 are the total allele counts for the case
and control group, respectively

SNP A a Total

Case O1,1 O1,2 Nl = O1,1 + O1,2

Control O2,1 O2,2 N2 = O2,1 + O2,2

Total O1,1 + O2,1 O1,2 + O2,2 Nl + Nl2
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FORESEE framework to enable secure division operation
for the c2 statistic computation on an untrusted cloud.

The proposed framework
Figure 1 illustrates the proposed FORESEE framework,
which allows secured and fully outsourced chi-square
statistics computation in a public cloud and enable flex-
ible release of study results. Using homomorphic
encryption, the data owner can encrypt observed allele
counts and directly upload to the public cloud. Conse-
quently, the chi-square statistics can be securely com-
puted according to Equation (2) based on homomorphic
computation. Contrary to many existing HME-based
schemes [15,17,22], the proposed framework develops
two protocols for secure division operations over
encrypted data, so that the final results are not necessa-
rily computed by the data owner. As a result, authorized
users are able to access the encrypted study results
when granted the private key for decryption. Remark-
ably, the secrecy of uploaded sensitive information and
released study results can be guaranteed under the pro-
posed framework, as the trusted party would not inter-
act with the untrusted public cloud. Thus, the proposed

scheme enables secure outsourcing of the chi-square
statistic computation to public cloud services, by which
individuals or single institutions could contribute to the
chi-square statistic computation in GWAS in a secure
manner.
In the FORESEE framework, we develop two protocols

for secure division operations, namely, secure errorless
division and secure approximation division. The secure
errorless protocol makes a secure one-to-one mapping
from floating numbers to a set of encrypted positive
integers. Consequently, authorized users can decrypt the
study results with a lookup table. To achieve errorless
division, the proposed protocol requires a deep circuit.
To balance the accuracy and complexity in chi-square

statistic computation, the secure approximation division
protocol is proposed as an alternative solution. Using
secure integer division, the protocol approximates the
study results with a tunable error rate. To improve its effi-
ciency, binary tree product and group-based computation
are designed to reduce circuit depth and the number of
homomorphic multiplications.
In the following subsections, we will elaborate both

protocols developed for the FORESEE framework.

Figure 1 Conceptual diagram for the proposed FORESEE framework.
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Secure errorless division protocol
In this section, we propose the secure errorless division
protocol when both dividend and divisor are small (e.g.,
less than 100). Considering that secure division opera-
tion is not available in existing HME-based schemes
[15,17,22], we construct a one-to-one mapping function
from floating numbers to a set of encrypted positive
integers. Thus, the study results can be accurately
decrypted with a lookup table corresponding to the one-
on-one mapping function.
Secure mapping for division outcomes
To map the study result (in floating numbers), we con-
struct a function with an integer output that uniquely
corresponds to the division outcomes given a dividend
and divisor. Let us denote m ∈ [0, m̄] and w ∈ [1, w̄]
the dividend and divisor, respectively. Here, the upper
bounds m̄ and w̄ of m and w should be predefined, so
that the lookup table for decryption can be synchronized
for all the authorized users. Consequently, we construct
a two-dimensional function F(m,w) that returns the
positive integer um,w corresponding to an index of the
division result of m/w in floating number.

F(m,w) = um,w (3)

In the ciphertext domain, um,w can be determined by
the polynomials of m and w related to the ciphertext
modulus p. According to the Fermat Theory, we can
construct a simplified function with less number of
homomorphic multiplications. Given the prime p >mw ,
the secure mapping function is

F̂(m̂, ŵ) ≡ m̂ŵp−2(modp). (4)

In Proposition 1, we demonstrated that the secure
mapping proposed in Equation (4) is a one-to-one map-
ping from floating outcomes of m/w to a set of
encrypted positive integers.
Proposition 1 Given arbitrary positive integers m1,

m2, w1, and w2 taking their values [1, |√p|] , they satisfy

m1

w1
=
m2

w2
, (5)

if and only if F(m1,w1) ≡ F(m2,w2)(modp) , where
|√p| is the round function that returns the maximum

integer not greater than
√
p .

Proof. Please refer to Appendix I.
Proposition 1 implies that Equation (4) can map any

pairs of (m̂, ŵ) with the same irreducible fraction to the

same outcome F̂(m̂∗, ŵ∗) , where m* and w* are the

integer numerator and denominator, respectively that
have no other common divisors. For example, given the

ciphertext modulus p = 101, F̂(2̂, 1̂) would be 2̂ for the

pairs (2̂, 1̂), (4̂, 2̂) and (8̂, 4̂) . This fact means that the
encrypted outcome can be securely released, as the
authorized users can only obtain the accurate irreducible
fraction m*/w*, but cannot infer the exact value of
(m̂, ŵ) .
Algorithm 1: Secure errorless division
0: Inputs: encrypted variable m̂, ŵ , upper bound

m̄, w̄ , the ciphertext modulus p.
1: Let ŝ∗0 = ŵ, ŝ∗ = m̂ .

2: Let u∗ =
⌊
log

(
p − 2

)⌋
3: Decompose p − 2 as , where is the

number of nonzero bits in the binary representation of
p − 2 and . is the position of i-th nonzero bit.
4: For each i = 1,2,..., u*

5: ŝ∗i = ŝ∗i−1 ∗ ŝ∗i−1
6: end for
7: For each i = 0,1,...,
8:
9: end for
10: Outputs: ŝ∗
During decryption, users can find the accurate study

result with a lookup table, which consists of all possi-
ble irreducible fractions within ranges m ∈ [0, m̄] and
w ∈ [1, w̄] . Here, we provide two examples, where
m̄ = w̄ = 10 and p is set to 101 as the smallest prime
greater than m̄w̄ = 100 . It is worth mentioning that we
can obtain the study result in floating number in
Example 2. This fact verifies the accuracy of the pro-
posed secure errorless division.
Example 1 The authorized users would obtain s* = 2

by decrypting ŝ∗ = 2̂ . The pair of co-prime integers (m,
w) corresponding to F̂(m̂, ŵ) ≡ 2̂ (mod 101) is (2,1).
Thus, = m/w = 2.
Example 2 When ŝ∗ = 3̂5, (m,w) = (4, 3) as

F̂(m̂, ŵ) = 4̂ · 3̂99 ≡ 3̂5(mod101). As a result, = 4/3.

Secure approximation division protocol
In this subsection, we aim to develop the secure approx-
imation division protocol. Since n (i.e., the number of
patients in case or control group) is assumed to be a
known integer, we denote A and B the dividend and

divider of
(O1,1 − O2,1)

2

(O1,1 +O2,1)[4n − (O1,1 +O2,1)]
in Equation

(2), respectively. Thus, the chi-square statistic can be
rewritten as

χ2 = 4n ∗ A ∗ (
1
B
) (6)

where A = (O1,1 − O2,1)2 is a nonnegative integer, and
B = (O1,1 +O2,1)[4n − (O1,1 +O2,1)] is a positive inte-

ger. Thus, given encrypted counts Ô1,1 and Ô2,1 , Â and

B̂ can be obtained with homomorphic multiplications
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and additions. Since the fraction team 1/B, with the value
less than one, cannot be evaluated in the ciphertext
domain, we scale it up by multiplying a positive integer
ℳ. Therefore, the c2 statistic can be approximated by

χ2 =

4n · decrypt
(
Â

⌊
M̂

B̂

⌋)
M

,
(7)

where
⌊
M/Bi

⌋
is the round function that returns the

maximum integer not greater than M/Bi , e.g.,
⌊
7/3

⌋
= 2

and
⌊
10/15

⌋
= 0 . Here, ℳ is a public information and

should be large enough, as the upper bound of relative

error is determined by 1/min
(M

B

)
× 100% =

(
400n2

M
)
% .

Usually, we set M = min

⎛⎜⎜⎝p − 1,

⎢⎢⎢⎢⎢⎣ p − 1

max
(
A
B

)
⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎠ ,

where p is the ciphertext modulus. According to Equa-
tion (7), we develop the secure approximation division
protocol based on secure integer division.
Secure integer division
In this subsection, we describe the secure integer divi-

sion protocol to achieve secure To compute

⌊
M̂
B

⌋
o in

Equation (7), we first introduce a vector T with its 6-th
element defined by

ti =
⌊M
Bi

⌋
i ∈ [1, 2n] (8)

where Bi = i * (4n− i), i = 1,2,...,2n are the possible
values of B in chi-square statistic computation (see
equation (6)). Consequently, given ℳ, we define a func-
tion f(x) which satisfies

f (Bi) =
⌊M
Bi

⌋
i ∈ [1, 2n] (9)

In our implementation, a one-dimensional function is
formulated using Lagrange interpolating polynomial
with x ∈ {B1,..., B2n}

f (x) =
2n∑
i=1

ti

∏
1≤l≤2n,

l �=i
(x − Bl)∏

1≤l≤2n,
l �=i

(Bi − Bl)
(10)

Since division is intractable for homomorphic
encrypted data, we need to derive a surrogate function
for Equation (10) that can be implemented based on
homomorphic multiplications and additions. For simpli-
city, we denote ui. the divisor for x = Bi. in Equation (10).

ui =
∏

1≤l≤2n,l�=i
(Bi − Bl) (11)

Consequently, we can construct a surrogate function
for Equation (10) by numerically finding a set of integers
vi. with 1 ≤ vi. ≤ p − 1 for 1 ≤ i ≤ 2n, that satisfy

uivi ≡ 1 (mod p) (12)

Here, p is the cipheretext modulus (i.e., a prime under
double-CRT representation in the BGV scheme). Thus,
we demonstrate the existence of {vi} in Proposition 2 to
guarantee the computational tractability of f(x) in the
ciphertext domain.
Proposition 2 For each ui = 1,2,...,2n, given p > ℳ, at

least one vi can be found to satisfy (12).
Proof. Please refer to Appendix II.
Substituting 1/�1≤l≤2n,l�=i(Bi − Bl) with vi in Equation

(10), we can reformulate f(x) with multiplications
instead.

f (x) =
2n∑
i=1

[tivi
∏

1≤i≤2n,
l �=i

(x − Bl)] (13)

We transform Equation (13) into the combination of
polynomials of x by expanding the products and com-
bining the coefficients.

f (x) =
2n−1∑
i=0

h′
ixi (14)

Here, h′
i is the coefficient for the i-th order of x (i.e., xi.)

after polynomial expansion, which includes viBl and ti. In

the ciphertext domain, we can construct the function f̂ (x̂)

for secure integer division
⌊
M̂/x̂

⌋
.

f̂ (x̂) ≡
2n−1∑
i=0

ĥix̂
i(mod p) (15)

where x̂ ∈ {B̂1, B̂2, . . . , B̂2n} are finite positive encrypted

integers, and ĥi ∈ [0̂, p̂ − 1̂] is obtained by encrypting

hi ≡ h′
i(mod p) . We set hi = 0 with i > 2n − 1.

Implementation optimization
The secure integer division can be optimized to further
reduce the cumulative circuit depths (CCD) and number
of homomorphic multiplications (HMs). To achieve this
goal, we adopt group-based computation and binary tree

product to generate f̂ (x̂) in implementation.
To reduce the number of HMs, a group-based compu-

tation is adopted to calculate f̂ (x̂) . The key idea of the

proposed group-based optimization is to first compute a

set of ĥc·d+ix̂i with i ∈ [0, d], where d is number of
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elements in each group, and c = 0,..., C is the group index
with the total number of groups C =

⌊
(2n − 1) /d

⌋
+ 1.

After grouping, we get the following equation with a
reduced number of HMs.

f̂ (x̂) ≡
C−1∑
c=0

[
x̂c.d

(
d−1∑
i=0

ĥc·d+ix̂i
)]

(mod p) (16)

Algorithm 2 describes the generation of

X̂ =
(
1̂, x̂, . . . , x̂d

)
using binary tree product. The num-

ber of HMs and CCD required to calculate X̂ can be

reduced to d − 1 and
⌊
log (d − 1)

⌋
+ 1 , respectively.

Algorithm 2: Binary tree product for generating X̂
0: Inputs: encrypted variable x̂ , the maximum power d
1: For i = 2,3,..., d
2: Let l1 = 2�log(i−1)	 .
3: Let l2 = i − l1.
4: x̂i = x̂l1 · x̂l2 .
5: end for
6: Outputs: X̂ =

(
1̂, x̂, . . . , x̂d

)
An additional optimization can be applied in equation

(16) by replacing the multiplication ĥc·d+ix̂i as the sum-

mation over a total number of ĥc·d+i additions of x̂i to
reduce the number of HMs.
Since the time cost of HMs is larger than HAs,

we determine d by minimizing the number of HMs.
As shown in Table 9 the total number of HMs
required for secure integer division is 2C + d − 3. The
number of groups C and the number of elements in
each group d are selected to minimize the number of

HMs F (d) = d + 2
⌊
(2n − 1) /d

⌋− 3 . Given an integer

n, F(d) ≈ d +
2(2n − 1)

d
− 3 can obtain its mini-

mum 2
√
4n − 2 − 3 , only when d =

√
2(2n − 1) . Since

d is an integer, it is estimated by
⌊√

2 (2n − 1)
⌋

to

minimize F(d). Thus, C can be estimated by⌊
(2n − 1) /d

⌋
+ 1 accordingly. Using the optimal d and

C, secure integer division can be achieved based on

the encrypted function f̂ (x̂) in Equation (15). Algo-

rithm 3 elaborates the secure integer division. In line
2, in order to obtain X̂′ , the inputs of Algorithm 2 are
set tox̂d and C − 1, respectively.
Algorithm 3: Secure integer division
0: Inputs: encrypted variable x̂ , group size d , the

number of groups C, the ciphertext modulus p, the
polynomial parameters hi, i = 0,1,...,2n − 1
1: Compute X̂ = (1̂, x̂, . . . , x̂d) according to Algorithm 2

2: Compute X̂ =
(
1̂, x̂d, . . . , x̂(C−1)d

)
according to

Algorithm 2

3: For each c = 0,1,..., C − 1
4: For each i = 0,1,..., d − 1
5: Calculate ĥcd+ix̂

i

6: end for
7: end for
8: Let â = 0̂
9: For each c = 0,1,..., C − 1
10: â′ = 0̂.
11: For each i = 0,1,2,..., d − 1
12: Update â′ = â′ + ĥcd+ix̂

i

13: end for
14: Update â = â + â′x̂cd
15: end for
16: Outputs: â = f̂ (x̂). .

Parallel computation using multiple slots

Since HME schemes with ciphertext space Z
Ls
q support

single instruction multiple data (SIMD) with Ls slots, we
can use parallel computation to reduce the number of
homomorphic multiplications (HMs) and homomorphic
additions (HAs). Denote â =

(
â1, â2, . . . , âLs

)
and

b̂ = (b̂1, b̂2, . . . , b̂Ls ) the two encrypted ciphertexts with Ls
slots. SIMD is applicable to simultaneous computation of

the addition â + b̂ =
(
â1 + b̂1, â2 + b̂2, . . . , âLs + b̂Ls

)
and

â · b̂ =
(
â1 · b̂1, â2 · b̂2, . . . , âLs · b̂Ls

)
multiplication. In two

ciphertexts, only two slots in the same position can oper-
ate with each other.
In Algorithm 1, multiple encrypted outputs can be cal-

culated at the same time with parallel computation. When
the result is returned back to the user, the user extracts
the integer in each slot and search it in the lookup table.
Noticeably, in the parallel computation, mu and nu should
be selected as the upper bounds of all the dividends and
divisors in the slots. Similarly, multiple slots can also
be used in the secure approximation division protocol.
The secure integer division developed in Algorithm 3 can
be simultaneously conducted for Ls pairs of inputs

(âi, b̂i), i = 1, 2, . . . , Ls using multiple slots.

Results
In this section, we evaluate the proposed FORESEE fra-
mework, which was implemented with HElib [23], one of
the most efficient open-source HME libraries based on
the LWE theory [13,14]. The evaluations were made on
an Ubuntu 14.04 server with Intel Xeon CPU E5-2687W
@ 3.10GHz and 256 GB memory. We present the perfor-
mance in the terms of time and memory cost. First, we
provide the results of secure errorless division on simu-
lated data. Moreover, we provide the performance of chi-
square statistics based on the secure approximation
division.
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Simulation study
Table 2 elaborates the experimental setups for the
secure errorless division protocol. Given the ciphertext
modulus p, the upper bound m̄ (i.e., dividend) and w̄
(i.e., divisor) is set to

⌊√
p
⌋
. A number of Ls slots are

used for parallel computation. The lifting parameter for
plaintext base is set to 1. The security level is 80. The
number of columns in key switching is 2. Hamming dis-
tance is 64.
Using HElib, one ciphertext can contain multiple slots

to have many integers encrypted into the ciphertext
with the public key. Thus, the size of the public key is
related to the number of multiple slots Ls in addition to
the ciphertext modulus p and the number of levels in
modulus chain L. Taking Table 2 for example, Ls for
(m̄, w̄) = (70, 70) is 3144, which is greater than most
ones. Thus, its ciphertext sizes are much larger than the
other configurations with close values of m̄ and w̄ .
Using HElib, we are able to evaluate all the slots in

the ciphertext in parallel. Table 3 shows the average
execution time for the secure errorless division protocol.
Based on the lookup table generated for various para-
meters (m̄, w̄) , the proposed protocol is efficient for
secure division operation over m ≤ 100 and w ≤ 100.
However, its circuit depths increase rapidly with the
growth of m and w, which limits its application for lar-
ger dividends and divisors.

Chi-square statistic computation
We employ the secure approximation division protocol
in secure chi-square statistic computation. Two datasets
from iDASH genome privacy protection challenge are
used for evaluation, which contain 311 SNPs and 610
SNPs, respectively in the case-control groups, each con-
sisted of with 200 individuals,
In homomorphic encryption, the ciphertext modulus p

and the number of levels in modulus chain L are set to
25600000039 and 51, respectively. The public and

private key sizes are both around 2.6 GB. The lifting
parameter for plaintext base is set to 1. The security
level is 80. The number of columns in key switching is
2 and the Hamming distance is 64. To reduce computa-
tional complexity, we use LS = 864 slots in parallel com-
putation. For secure integer division, ℳ is 25600000000.
f and a are accordingly set to 28 and 15 for 200 indivi-
duals in each group.
Table 4 provides the time cost for homomorphic eva-

luation of both datasets in chi-square statistics computa-
tion, including key generation, encryption, total and
average execution time. Using multiple slots, the secure
approximation division protocol can achieve the chi-
square statistics computation in less than one second in
average. Table 5 evaluates the accuracy of computation
in terms of the mean-squared error (MSE) and maximum
error between the exact and the approximate chi-square
statistics, where the MSE are less than 5 × 10−10.
The evaluation on maximum error also supports the
conclusion.
Remarkably, we also computed the p-value for each

SNP based on the chi-square statistic and applied differ-
ent p-value cutoffs as 0.05, 0.01, and 0.005. The secure
approximation division protocol is demonstrated to find
out all the significant SNPs for both datasets under dif-
ferent p -value cutoffs. As a result, the proposed proto-
col provides a good tradeoff between accuracy and
complexity for secure chi-square statistic computation.

Table 2. Experimental setups for secure errorless divisio

(m̄, w̄) p L Ls Public key size Private key size

(30,30) 907 23 678 0.67 GB 0.68 GB

(40,40) 1,601 26 1,309 1.00 GB 1.00 GB

(50,50) 2,503 29 276 0.50 GB 0.51 GB

(60,60) 3,607 30 270 0.67 GB 0.68 GB

(70,70) 4,903 31 3,144 3.30 GB 3.30 GB

(80,80) 6,421 31 342 0.81 GB 0.82 GB

(90,90) 8,101 31 309 0.81 GB 0.82 GB

(100,100) 10,007 33 5,952 3.40 GB 3.40 GB

The inputs are positive integers m (i.e., dividend) and w (i.e., divisor) with
corresponding upper bounds m̄ and w̄ . p is plaintext base; L is number of
levels in modulus chain; and Ls is number of slots for parallel computation.
Moreover, the storage costs of key generation are also provided as reference.

Table 3. Time cost in seconds for key generation,
encryption, and errorless division computation using
various parameters

(m̄, w̄) Key generation Encryption Execution time

Total Average

(30,30) 44.8395 9.13476 9.13476 0.0135

(40,40) 64.4364 9.61973 9.61973 0.0074

(50,50) 76.5504 11.3389 11.3389 0.0411

(60,60) 73.7685 12.0161 12.0161 0.0445

(70,70) 117.846 13.9717 13.9717 0.0044

(80,80) 87.9779 4.14286 13.3369 0.0390

(90,90) 87.9528 4.10576 15.5242 0.0502

(100,100) 127.002 16.7352 16.7352 0.0028

The average execution time is obtained by averaging over all the slots used.

Table 4. Time cost in seconds for key generation,
encryption, and the computation of chiRsquare statistics
using different parameters based on secure
approximation division

# of SNPs Key generation Encryption Execution time

Total Average

311 212.32 355.61 286.75 0.92

610 222.53 428.05 315.67 0.52

The average execution time is obtained by averaging over all the slots used.
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Furthermore, we compare the two proposed protocols
in the chi-squared statistics computation. For secure
errorless division protocol, we use the same parameters
list above, except that L is set to 151 to guarantee the
required circuit depth in implementation. Table 6 and 7
compare the computational complexity and storage cost
for the two protocols, respectively. In Table 6 the secure
errorless division protocol requires about 10, 20 and 5
times in complexity for key generation, encryption, and
execution (computation), when compared with the
secure approximation division protocol. Table 7 shows
that the ciphertext key sizes for secure errorless division
are about 8 times larger due to the greater L. These
results imply that the secure approximation division
protocol provides a good trade-off in terms of complex-
ity and accuracy for chi-squared statistic computation.

Discussions
In this section, we analyze the computational complexity
of the proposed FORESEEE protocol and discuss its
potential extension and its limitation.

Complexity analysis
In this subsection, we make an analysis on the computa-
tional complexity of the secure errorless division and
secure approximation division protocols. Cumulative cir-
cuit depth2 (CCD) and the numbers of homomorphic
multiplications (HMs) are provided for both protocols
in the FORESEE framework.
We begin with the complexity analysis for secure

errorless division protocol (i.e., Algorithm 1). As shown
in Table 8 the number of HMs to calculate ŝ∗i at each

iteration in A1 line 5 is 1. The number of HMs to
obtain s* at each iteration in A1 lines 8 is also 1. There-
fore, the CCD in calculating ŝ∗i in A1 lines 4-6 are⌊
log

(
p − 2

)⌋
. The depths to obtain s* in A1 lines 7-9

are
⌊
log

(
p − 2

)⌋
+ h + 1

Table 9 provides the CCD and number of HMs for
secure approximate division (i.e., Algorithm 3). The
number of HMs to obtain X̂ and X̂′ are d − 1 and
C − 2, respectively. To evaluate Equation (18),
the total number of HMs are d + 2C − 3. By using
binary tree product based optimization, the circuit
depths required for computing X̂ and X̂′ are⌊
log (d − 1)

⌋
+ 1 and

⌊
log (c − 2)

⌋
+ 1 ,respectively.

Finally, the total CCD for secure approximate division
operation is

⌊
log (c − 2)

⌋
+
⌊
log (d − 1)

⌋
+ 3 .

Potential extension
In this paper, we proposed the FORESEE framework to
address the problem of fully outsourcing chi-square sta-
tistic computation to a public cloud. However, the appli-
cation scenarios for the FORESEE framework, especially
the secure approximation division protocol, can be
further extended to securely compute other statistics
tests that involve division operations. One intuitive
example is the Transmission disequilibrium test (TDT)
developed to assess the genetic linkage between the
genetic variants and disease status in family-based asso-
ciation studies. TDT is based on the binomial test with
one degree of freedom, which is asymptotically equiva-
lent to the chi-square hypothesis test.

Limitation
There are several limitations in the FORESEE frame-
work. First, in secure approximation division protocol,

Table 5. Recall and precision with different p-value cutoffs in identifying significant SNPS on both datasets, where the
mean-squared error (MSE) and maximum error between the exact and the approximate chi-square statistics

# of SNPs p-value cutoff # of significant SNPs Precision Recall MSE (×10−10) Maximum error (×10−6)

311 0.05 24 1 1 3.21 5.5

0.01 20 1 1

0.005 20 1 1

610 0.05 56 1 1 4.07 6.0

0.01 27 1 1

0.005 23 1 1

Table 6. Time cost in seconds for key generation,
encryption and the computation of chi8squared statistics
using different parameters based on secure errorless
division (ED) and secure approximation division (AD)
protocols

# of SNPs Key generation Encryption Execution time

ED AD ED AD ED AD

311 2206 212.3 9575 355.6 1900 287

610 2131 222.5 9026 428.1 1660 316

Table 7 L (i

# of SNPs L Public key size Private key size

ED AD ED AD ED AD

311 151 51 23.3GB 2.6GB 23.6GB 2.6GB

610
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the upper bound of approximation error depends on the
ciphertext modulus G. Therefore, G should be large
enough to guarantee the accuracy in computation,
which degrades the efficiency of the FORESEE frame-
work. Second, the computational and storage costs
based on homomorphic encryption are still very high.
For example, key generation and encryption is much
more timeconsuming than computation. The ciphertext
sizes are also a heavy burden for communication.
Finally, it is still a challenging problem to generalize the
secure errorless division protocol. In summary, there is
still room to improve the proposed division protocols in

the FORESEE framework through better algorithm
design, efficient coding in the HElib and parallelization.

Conclusion
In this paper, we proposed a novel FORESEE framework
for the secure outsourcing GWAS in the iDASH genome
privacy protect challenge, especially for the chi-square
statistic computation. The proposed framework consists
of two protocols for secure division operation, namely
secure errorless division and secure approximation divi-
sion. The secure errorless protocol made a bijection
between floating numbers and a set of encrypted positive

Table 8. Complexity analysis in terms of cumulative circuit depth2 (CCD) and the number of homomorphic
multiplications (HMs) for secure errorless division protocol (Algorithm 1)

Algorithm 1 CCD # of HMs

1: Let ŝ0∗ = ŵ, ŝ∗ = m̂ .

2: Let u∗ =
⌊
log

(
p − 2

)⌋
3: Decompose − −

4:For each i = 1,2, ..., u*

5: ŝ∗i = ŝ∗i−1 ∗ ŝ∗i−1

⌊
log

(
p − 2

)⌋
1

6: end for

7: For each i = 0,1, ...,

8: 1

9: end for

Total:

Table 9. Complexity analysis in terms of cumulative circuit depth2 (CCD) and the number of homomorphic
multiplications (HMs) for secure approximation division (Algorithm 3)

Algorithm 3 CCD # of HMs

1: Compute X̂
⌊
log (d − 1)

⌋
+ 1 d − 1

2: Compute X̂′ ⌊
log (C − 2)

⌋
+
⌊
log (d − 1)

⌋
+ 2 C − 2

3:For c = 0,1, ..., C − 1

4: For i = 0,1, ..., d − 1

5: Calculate ĥcd+ix̂
i − −

6: end for

7: end for

8: â = 0̂
9: For c = 0,1, ..., C − 1

10: â′ = 0̂ − −

11: For i = 0,1, ..., d − 1

12: â′ = â′ + ĥcd+ix̂
i − −

13: end for

14: â = â + â′x̂cd
⌊
log (C − 2)

⌋
+
⌊
log (d − 1)

⌋
+ 3 1

15: end for

Total:
⌊
log (C − 2)

⌋
+
⌊
log (d − 1)

⌋
+ 3 2C + d − 3
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integers. Thus, it could output the accurate study results
based on a lookup table. On the other hand, the secure
approximation division protocol adopted secure integer
division to obtain approximate study results with a
tunable accuracy. The protocol was able to balance the
complexity and accuracy by using the group-based com-
putation and binary tree product with improved effi-
ciency. In comparison to existing HME-based schemes
[15,17,22], both protocols enabled fully outsourced
secure GWAS in an untrusted public cloud and could
directly release study results to authorized users for
decryption. Experimental results show that the secure
approximation division protocol can capture all the sig-
nificant SNPs in chi-square statistic computation with a
moderate computational complexity.

Appendix I: Proof of Proposition 1
Since m1w

p−2
1 ≡ m2w

p−2
2 (mod p) , we can obtain Equa-

tion (17) by multiplying w1w2 on the both sides.

w2m1w
p−2
1 ≡ w1m2w

p−2
2 (mod p) (17)

According to the Fermat’s little theorem,

wp−1
i ≡ 1(mod p) i = 1, 2. (18)

When w1 and w2 are coprime with p, we can find that

w2m1 ≡ w1m(mod p) (19)

Since w2m1 ≤ ⌊√
p
⌋ ∗ ⌊√p

⌋
< p and w1m2 ≤ ⌊√

p
⌋ ∗ ⌊√p

⌋
< p ,

it holds for the prime p that

−p < w2m1 − w1m2 < p (20)

From Equations (19) and (20), we obtain that
w2m1 = w1m2, which comes to Proposition 1.

Appendix II: Proof of Proposition 2
We recall the Fermat’s little theorem that, given a prime p,

qp−1 ≡ 1(mod p) (21)

where p and q are coprime numbers. Since
ui ∈ [1, p − 1] , the greatest common divisor for ui and
p is always 1. Given an integer ui , we can derive

v′i = up−2
i to satisfy uiv

′
i ≡ 1 (mod p) in Equation (12).

Thus, by considering vi ≡ v′i (mod p), vi. ∈ [1, p − 1]
can be found for Equation (12). As a result, we draw the
Proposition 2.
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