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Abstract

and the extended iKernel, respectively.

Understanding functions of proteins is one of the most important challenges in many studies of biological
processes. The function of a protein can be predicted by analyzing the functions of structurally similar proteins,
thus finding structurally similar proteins accurately and efficiently from a large set of proteins is crucial. A protein
structure can be represented as a vector by 3D-Zernike Descriptor (3DZD) which compactly represents the surface
shape of the protein tertiary structure. This simplified representation accelerates the searching process. However,
computing the similarity of two protein structures is still computationally expensive, thus it is hard to efficiently
process many simultaneous requests of structurally similar protein search. This paper proposes indexing techniques
which substantially reduce the search time to find structurally similar proteins. In particular, we first exploit two
indexing techniques, i.e, iDistance and iKernel, on the 3DZDs. After that, we extend the techniques to further
improve the search speed for protein structures. The extended indexing techniques build and utilize an reduced
index constructed from the first few attributes of 3DZDs of protein structures. To retrieve top-k similar structures,
top-10 x k similar structures are first found using the reduced index, and top-k structures are selected among
them. We also modify the indexing techniques to support 8-based nearest neighbor search, which returns data
points less than @ to the query point. The results show that both iDistance and iKernel significantly enhance the
searching speed. In top-k nearest neighbor search, the searching time is reduced 69.6%, 77%, 77.4% and 87.9%,
respectively using iDistance, iKernel, the extended iDistance, and the extended iKernel. In #-based nearest neighbor
serach, the searching time is reduced 80%, 81%, 95.6% and 95.6% using iDistance, iKernel, the extended iDistance,

Introduction

The size of protein structure database such as the Protein
Data Bank (PDB) continues to grow. PDB had around
1000 structures in 1992, but now it stores over 150,000
structures. In addition, the number of proteins with
unknown functions is increasing due to efforts in structural
genomics projects. Knowing the functions of proteins is
crucial to many studies of biological processes. Especially,
researchers need to know the key proteins that play an
important role for severe deseases, and it is directly related
to human life. Therefore, assigning functions to novel pro-
teins is one of the most significant problems in proteomic
study, and several methods have been developed to assign
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functions to an unknown protein. Basically, the function of
a protein can be identified by searching amino acid
sequence database for similar sequences that the functions
are already known. However, the 3D structures of proteins
are more conserved than the sequences and using the
structural information provide more reliable similarity
measures.

Many methods have been introduced for pair-wise pro-
tein structural search. They align the two structures and
compute the Root Mean Square Deviation (RMSD)
between the core atomic positions, e.g., alpha carbon coor-
dinates, of the aligned proteins. However, most of methods
based on structural alignment cannot be used to search
structures against large database, since it has high compu-
tational complexity. Sael et al. introduced a new approach
for fast protein surface similarity search using 3DZDs [1].

© 2013 Kim et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:hwanjoyu@postech.ac.kr
http://creativecommons.org/licenses/by/2.0

Kim et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):58

http://www.biomedcentral.com/1472-6947/13/51/S8

This approach does not consider individual residue/atom
positions, or the arrangement of the secondary structure
segments. 3DZD has three advantages: 1) fast k-nearest
neighbor search, 2) rotational invariance, and 3) easy
adjustment of the resolution of the structural representa-
tion resolution. In particular, using 3DZDs, it is possible
to retrieve similar protein structures in seconds among
150k protein structures. However, few seconds are still too
long for a real time search system, since response time
increases further when multiple search requests are pro-
cessed simultaneously. To enhance the searching speed,
using indexing technique could be a good solution [2,3].
We exploit indexing techniques on 3DZDs in order to
speed up protein structure search. Specifically, we apply
two indexing techniques, iDistance and iKernel, on 3D-
Surfer data set, and extend them for further speed up [4].
To fully take advantage of the indexing techniques, we
also provide 6-based nearest neighbor search which
returns data points less than 6 to the query point. The
experimental results show that the indexing techniques
both decrease the searching speed, and our nearest neigh-
bor search algorithms further speed up the protein struc-
ture search. Speicifically, in top-k nearest neighbor search,
the searching time is reduced 69.6%, 77%, 77.4% and
87.9%, respectively using iDistance, iKernel, the extended
iDistance, and the extended iKernel. In #-based nearest
neighbor serach, the searching time is reduced 80%, 81%,
95.6% and 95.6% using iDistance, iKernel, the extended
iDistance, and the extended iKernel, respectively.

This paper is organized as follows. We briefly intro-
duce related works about protein structure search and
top-k query search. Then, we explain iDistance, iKernel
and the extended top-k query search method in combi-
nation with iDistance and iKernel. Finally, we provide
experimental results to verify the efficiency of our
approaches, and conclusion with future works.

Related work

Protein structure

A protein consists of a sequence of amino acid (AA) resi-
dues. A sequence of AA residues folds into a 3-dimen-
sional (3D) structure in space and forms a functional
protein. A 3D structure of a protein is recorded in a pdb
file format as a set of Cartesian coordinates of all the
atoms in the protein. The 3D structure contains rich infor-
mation relating to function and evolution of the protein.

Protein structure search

Earlier structural similarity measurements were designed
for pair-wise analysis where the user only needed to com-
pare handful of protein structures [5-7]. However, as the
number of known structures increased more methods are
proposed for similarity search in protein database [8,9].
One of the most intuitive approaches is to compare the
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coordinates of corresponding residues or atoms of pro-
teins after structural alignment [10,11]. Root Mean Square
Deviation (RMSD) is often used as the similarity measure.
Due to its high computational complexity, structure align-
ment is done by using Dynamic Programming (DP) or its
extensions [6,12,13].

There are major structure databases such as PDB,
CATH [14], and SCOP [15] which provides only keyword
search and browsing of pre-computed classification.
Some database systems that are able to take a query
structure are for the search includes Distance matrix
ALIgnment (DALI) server [16], Vector Alignment Search
Tool (VAST) search [17], and eF-site database [18].
Given a query protein structure, they need around an
hour to finish searching their databases. Zeyar et al. sug-
gests an indexing method called ProtDex for fast search
in 3D protein structure database [19]. Although it per-
forms faster than DaliLite [8], one of the most popular
protein structure search algorithms, the search time of
ProtDex takes over a few minutes and it is not practical
for online database searches.

3D-Surfer

3D-Surfer is a new and efficient protein structural search
system which represents protein structures based on 3D-
Zernike Descriptor (3DZD). The major advantage of
3DZD is that it allows a fast k-nearest neighbor (k-nn)
search of protein structures. It has been verified that the
retrieved k-nn proteins by 3D-Surfer have similar func-
tional and evolutional information in terms of SCOP clas-
sification [20]. Some of the characteristics of the 3DZDs is
that it is rotational invariant, and the resolution of the
representation of protein structures are easily adjusted by
changing the order, and descriptors of the lower order are
contained in the descriptors of the higher order.

Nearest neighbor search algorithm

There is a long stream of researches on finding nearest
neighbor search problem which is an optimization pro-
blem for finding closest points in metric spaces. The
simplest method is to compute the distance from the
query point to every other point in the database. It has
O(Nd) complexity where N is the number of data points
and d is the dimensionality of the data, and 3D-Surfer
also used this approach. For efficient top-k search, there
have been various methods via space partitioning
including X-tree, TV-tree, and SR-trees [21-23].
iDistance that we used here is also space partitioning
method. There are other methods such as iKernel which
is an indexing technique and designed for efficient cal-
culation of support vector machine (SVM). The details
of iDistance and iKernel are described in the methods.
Note that those methods cannot be directly used for
protein structure data, thus in this work we exploit the
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3DZD of protein structures and apply indexing techni-
ques on the 3DZDs.

Methods

In this section, we first introduce the protein structure
dataset and their 3D-Zernike Descriptor (3DZD). Then,
the descriptions of iDistance and iKernel methods and
the proposed efficient top-k query search method based
on the characteristics of 3DZD are provided.

Protein structural dataset and 3D-Zernike Descriptor
3DZDs are compact and rotationally invariant representa-
tion of 3D structures. 3DZD has been successfully used
for protein [1] and ligand structure analyses [24] as well.
We provide brief description of 3DZD for reader’s conve-
nience. Detailed description can be found in [25,26].

The 3DZD descriptors for protein structural dataset of
158781 number of protein chain structures was obtained
through 3D-Surfer database. The entire structures in PDB
was collected and processed on 2009 [27]. For each of the
pdb files that contain one to several protein chains, the
chains were separated and surfaces of each chain were
obtained through molecular surface calculation program,
MSROLL version 3.9.3 [28], and then voxelized. Each of
the voxelized protein surface were used as a input to
3DZD conversion program and a vector of 121 numbers
called invariants were computed.

In 3DZD construction, a given 3D function f{x) that
contains a surface information of protein is expanded into
a series of Zernike-Canterakis bases defined as follows:

Zn(r, 9, ) =Ru(NY" (9, ¢) (1)

where -l < m < ,0<1<n, (n-1)is even, Y"(¥, ¢) are
spherical harmonics, and R,; are radial functions con-
structed to convert Zy(r, ¥, ¢)to polynomials in the
Cartesian coordinates, Zy;(x). To obtain the 3DZD of fix),
3D Zernike moments need to be computed first. They are
defined by expanding the orthonormal bases as follows:

3 -
o= | SOz ©)

Then, the 3DZD, F,;, is computed by normalizing 7]
as follows:

m=l
Fu= | Y (Qm)? (3)

m=—1
where # is the order of 3DZD determining the resolu-
tion of the descriptor. Then, the norms allow ratational

invariance to the desriptor. For each pair of # and /, 3DZD
has a series of invariants, the numbers in the vector of
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3DZD, where # is ranged from 0 to the predefined order
(20 in this case).

Figure 1 is an example of 3DZD of two proteins, triose-
phosphate isomerase (PDB code: 2krl-A) and interleukin-
4 receptor a-chain (PDB code: 3DVG-A). As you can see,
two proteins have different structures overall and their
descriptor also shows visible difference (Figure 2).

Indexing techniques

In this work, we exploit two indexing techniques: iDis-
tance and iKernel. Two indexing techniques partition
given data points into clusters and using the clusters to
find k-nn. Note that both techniques exactly retrieve k
nearest neighbor results given a query. The details of the
two indexing methods follows.

iDistance

iDistance is an efficient indexing technique for k-nearest
neighbor search in a high-dimensional metric space [29].
It depends on how data are partitioned and how refer-
ence points for each partition are defined (we will hence-
forth mention partition as cluster for terminology
consistency between iDistance and iKernel). After clus-
tering and reference point selection, each data point is
indexed according to the distance between its reference
points.

To build an index, the reference points are selected by
data clustering. Although various clustering techniques
can be used to select reference points, we have used k-
means clustering. And then, data points are assigned its
closest reference point. During the assignment process,
the data point is recorded with the distance which is
called iDistance and is used as a key for top-k search.
The iDistance is computed as follows:

y=1ix C+dist(p, O;) (4)

where y is iDistance of point p in i-th cluster, O;, and
C is a constant used to stretch the data ranges of
indexes.

To retrieve top-k results, we visit the clusters to check
whether the cluster can have nn or not. The radius r that
indicates query region defined as the range from the
query, and r increases by Ar to form a larger query region
after iterations. When the query region is overlapped with
certain cluster, we notice that the cluster will have nearest
points. Therefore, at each iteration, we first check whether
the target cluster C; can have nn of query g by comparing
the distance from g to the reference point of C;, and the
farthest distance in C,. If the area of C; overlaps with the
query region (Figure 3-(a)), it indicates that C; can have
nearest neighbor. Therefore, we check the data points in
the cluster to find the nearest points from the outermost
position of the cluster. If g is located in C; (Figure 3-(b)), it
also indicates that C; have nn. In this case, we need to
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(a) 2kr1-A

Figure 1 Two example proteins. (a) 2kr1-A and (b) 3DVG-A.

.

(b) 3DVG-A

search the cluster inward and outward from the position
of g.

iKernel

iKernel is originally designed for the efficient learning of
support vector machine (SVM) [30]. However, it is also
applicable for top-k search for Euclidean distance. Similar

to iDistance, it first divide given data points to clusters
where the clusters have set of rings which are the data
structure defined for iKernel. Given a query, it searches
k-nn by visiting each cluster and its rings.

To build an index, given data points are clustered into m
clusters and centroids of each clusters are computed in the

Value

60 80 100 120

Zernike descriptor number

—o— 2krl-A = 3DVG-A

\

Figure 2 3D Zernike descriptors of two example proteins. The dimension of 3DZD is 121.
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region.

\

(a) Query is out of the cluster

Figure 3 Top-k search using iDistance. x mark is query; circle mark is data point; circle with solid line is cluster; circle with dashed line is query

(b) Query is in the cluster

feature space. Various clustering techniques can be
applied. Then, based on those centroids and clusters, we
can build an index by assigning data points into a set of
rings in clusters as follows.

SRR RN R LI T
1 2 1 2
Gy {Cap x[ZI]x(Zl) ) (Cop x(zz)x[zz] x(zg% (5)

Note that each ring have g number of data points. The
paramter g is user adjustable and need to be determined
prior to index construction.

To process a k-nn of a query structure, we exploits the
index and Minimal Possible Distance (MPD) [30]. MPD is
the minimal possible distance between a query g and ring
structure C;;. With this new notion of the MPD, k-nn
search works as follows. Given a query point ¢, we first
initialize a priority queue Q with a set of pair ;C;;, MPD;
of each cluster in the ascending order of their MPDs
between the g where only the outermost ring is considered
first. Then, at each iteration, the top entry of Q is popped.
If a ring is popped, the data points in the ring are inserted
to Q with the distance from ¢, and if the popped item is a
data point, it is simply added into top-k result since the
priority queue ensures that all instances in the queue have
larger distances from g and also all rings have larger
MPDs between g.

We now explain how top-k processing can be done with
an example (Figure 4 and Table 1) when k = 2. In the
queue, Q, rings or data points are ordered in the distance

in ascending order (In the table, the leftmost item has the
lowest distance). At the first iteration, Cs 4 with the lowest
MPD is popped. Then the distance from q to its instances,
Pglzi, Pgiz, and Pgiz, and the MPD to its inner ring Cs 3, are
computed and these instances are inserted back to Q (the
second row in Table 1). At the second iteration, the top
instance Pgiz is added to output since it is guaranteed to
be top-k. Then, the priority queue ensures that all data
points in the queue are farther from ¢. and all rings have
larger MPDs to g which suggests that all the data points
within these rings have larger distance to g as well. At the
third iteration, the top instance, ring Cs 3 is popped and its
data points Pg,ls), Pg,zs), and P?S) are added to the queue. At
the fourth iteration, the top instance, a ring C, 3 is popped
and its instances ng, Pg, and Pg are added to the
queue. Lastly, the top instance, PS; is popped and
returned as output. Then the top-k processing terminates
since top k = 2 instances are identified.

Partitioning

For both indexing techniques, we require division of
data set into clusters by assigning similar number of
data points to each cluster. First method randomly
selects reference points and assign remaining data points
to their closest reference point. K-means clustering,
which is one of the most widely used clustering meth-
ods, is also tested. The goal of K-means clustering algo-
rithm is to divide a set of points into k clusters so that
the within-cluster sum of squares is minimized [31].
K-means algorithm is easily applicable to problems and
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is the mininum possible distance of j-th ring of i-th cluster.

Figure 4 Top-2 query processing in iKernel. g is query point, C; is i-th cluster, there are same number of data points in rings (Pw'), and MPD;;

n

performance is often shown to be satisfying. However, it
also has some disadvantages as the K-means algorithms
is a local search procedure and it suffers from the ser-
ious drawback that its performance depends on the
initial starting conditions [32]. Therefore, in this work,
we repeatedly cluster data points and conduct experi-
ments, and select the best result.

Figure 5 shows that the number of data points assigned
to clusters. As you can see, using K-means generates more
stable clusters with similar amount of data points. If some
clusters have larger number of data points than other clus-
ters, we need to search their region more than other clus-
ters. Therefore, balancing the number of data points in
clusters is required for efficient k-nn search. In experiment,

Table 1 Top-2 query processing

we compare those partitioning strategies in terms of search
speed.

Extended top-k search based on 3DZD

According to 3DZD, the descriptor vector has one nota-
ble characteristic. The prior dimensions in the descrip-
tor vector indicate global shape and the posterior
dimensions include more specific shape information.
Based on this fact, we propose an extended top-k search
approach for protein structure based on 3DZD. In this
approach, the index is constructed based on the data set
using only the prior half of original vectors. Retrieval
result of top-250 using first 60 invariants in the descrip-
tor vectors covered 94.8% of the top-25 retrieval result

step output top updated Q (new items in bold)
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Figure 5 The number of data instances assigned to clusters by random and k-means clustering. The solid line is random clustering, and

Clusters

using the full descriptors as shows in Figure 6. In addi-
tion, finding top-k x 10 result using half dimension
takes less time than using basic indexing techniques
(Figure 7) where iD-s and iK-s is the result of top-k x
10 for iDistance and iKernel using small dimensions,
respectively, and iD-121 and iK-121 is the result of

top-k for iDistance and iKernel using original 121 dimen-
sions. This shows that using half of the descriptor for
indexing allows a fast and accurate approximation of using
the full descriptor.

Based on this observation, we introduce a new approach
for top-k search as follows.

100

)
o

=~

Coverage (%)

cp
o
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9Y.2 -
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Figure 6 The coverage of top-25 in top-250 as the dimension used
and the number of data points in each ring, g is 50.
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Figure 7 The change of processing time as the dimension used for index increases. The number of clusters, M, is 866, <Ar, C >is <0.2, 4 >,

1 Given a query protein Q, search top-k x 10 result
using the indexing structure with 60-dim (the half of
entire dimension).

2 Using the top-k x 10 results, find exact top-k result.

Note that k x 10 is very small number compared to
the size of the database (around 1.6 million).

Threshold-based nearest neighbor search

In preliminary experiments, we found that the proces-
sing time/evaluation ratio of the top-k nearest neighbor
search is very different depending on the queries. It is

different from the linear search which always shows sta-
bility as g varies (Figure 8). Intuitively, we can see that if
the distance between k-th nearest neighbor and query is
large, both indexing techniques need to visit more clus-
ters and the list of k-th nearest neighbor is frequently
changed during the search procedure. In addition, if the
distance between two proteins is large, it indicates that
they are not similar in terms of their structural informa-
tion and they do not share functional information as
well. Therefore, we cast the nearest neighbor search task
as threshold-based nearest search in order to guarantee

-
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(a) Processing time (sec.)

Figure 8 The distribution of processing time of fKNNs. The experiment is conducted with 100 randomly selected query proteins.
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stable processing time/evaluation ratio with reliable
results.

The nearest neighbor search can be solved based on two
different user parameters of either the number of nearest
neighbor, &, or the threshold of the distance between near-
est neighbors and query,  (From now on, we call the sec-
ond approach as #-based nearest neighbor seach).
Therefore, we exploit the indexing techniques in #-based
nn search as well. Using 6, a data point can be nearest
neighbor, only if they have shorter distance to the query
than 6. To do this, in the linear scan, we need to check
whether the distance between each protein structure and
query is less than 6 or not, we do not need to check the
number of nearest neighbor, k. In the iDistance, we set the
query range, r as 6. Then the number of visiting clusters
and computing the distance between their data points ot
query decreases, when the number of nearest neighbor
with shorter distance than 6 has smaller than k. In the
iKernel, the search process is terminated untill the Mini-
mum Possible Ditance (MPD) of the popped instance is
smaller than 6. It also reduces the cost of visiting clusters
and computing the distance bewteen the query and their
data points. Note that, using 6, the extended approaches
always return the exact nearest neighbors.

Results

In this section, we verify the effectiveness of indexing tech-
niques on top-k search of protein structures. Sael et al.
showed that 3DZD works well on finding similar proteins
in terms of functional and evolutionary characteristics
based on SCOP classification [1]. The SCOP provides the
ordering of all proteins of known structure according to
their evolutionary and structural relationships. In addition,
both of iDistance and iKernel are not approximate techni-
ques and find exact top-k nn from database according to
the structural similarity described by 3DZD. Therefore, we
only measure the efficiency in terms of processing time
and evaluation ratio. The evaluation ratio is computed as
the fraction of accessed data points over the number of
database (1 for linear scan since it access all data points in
the data set). The processing time could be affected by the
various factors including performance of machine, the
number of users, and network environment. In contrast,
the evaluation ratio shows consistent measure.

The experiments were conducted on the machine,
Intel Core(TM) i7 CPU (3.40GHz), and 16 GB memory.
In overall experiment, we used 100 data points that are
randomly selected from data set, and averaged entire
processing time and evaluation ratio.

The user parameters

There are a few parameters that are needed to be optimized
in the iDistance and iKernel methods. In this section, we
observe how the result varies as the user parameters varies
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to select the best. We also observe how the cluster number
affects the top-k search. We vary the partition data points
using different number of clusters: 121, 242, 498, and 866.
121 is the dimensionality of data set, and 242 is the two
times the dimensionality ([29] refers that this way works
well on iDistance). And the others are according to SCOP
classification hierarchy. 498 is the number of families, and
866 is the number of protein domains [15]. We assume
that the numbers defined by domain experts could have
good evidence of cluster number. The followings include
the explanation of user parameters and their experimental
result.

There are two user paramters: Ar and C in iDistance. r is
the distance radius of query region that indicates an area
that we need to search, and Ar is the amount of value
added to r after each iteration, and C is used to obtain key
value for index construction. Although we have conducted
some experiments to tune C as well, it seems not affect
much on top-k search. Therefore, in this work, we set C as
4 by maintaining few of data instances are overlapped
between clusters as [29] did. Figure 9 shows the changes
of processing time and evaluation ratio as Ar increases.
The results show that smaller Ar and larger number of
clusters generally performs better. It indicates that iDis-
tance depends highly on the number of clusters. In con-
trast to statement made by Jagadish et al. that using two
times the dimension of data as the number of clusters
often works well, the result show that when the data size
is very large, large number of clusters is needed as well.
Therefore, different from Jagadish’s work [29], it is likely
that when the data size is very large, we have to use large
cluster number as well.

For the optimized value, we decided to use 0.2 as Ar
and 866 as the number of clusters, since it shows the
best result in terms of the evaluation ratio. Though it
does not result out the best result in terms of processing
time, the difference among Ar is not that large com-
pared to the difference among the dimensions.

There is one parameter, g, in iKernel. The parameter g is
the number of data points in rings of the clusters. As men-
tioned before, for top-k search, we visit the rings according
to its MPD and add all data instances of the ring into the
priority queue, which is sorted at the end of every itera-
tion. Figure 10 shows that the best performance is
obtained using the 50 when the number of cluster is 866.
The result also seems that when the number of cluster is
small, the amount of changes as g varies becomes small.
When the number of clusters is small, the number of rings
decreases as well, so that the result affects by g less than
when the number of clusters is large.

For the optimized value, we decided to use 50 as g
and 866 as the number of clusters, since it shows the
best result in terms of the evaluation ratio as well as the
processing time.
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Figure 10 The efficiency of top-k search using iKernel with g. g is the number of data points in each ring when iKernel is used.
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The comparison of clustering techniques

First, we compare the performance of the two clustering
approaches: Random clustering and K-means clustering
algorithm. In addition to normal clustering requirement
of high inter-distance and low intradistance between the
clusters, for efficient indexing purposes, we require that
the size of clusters are balanced, that is clusters should
have similar number of data points. Intuitively, if some
clusters have more data points than others, search time
for those clusters will be high. Table 2 shows that index-
ing techniques with k-means clustering, although
slightly slower, have better evaluation ratio than random
clustering. Therefore, the following results in later

sections use the result by the indexing techniques with
k-means algorithm.

The number of nearest neighbor, k
Although we have fixed the k to 25 in the previous experi-
ments, we explore the effect of k and the performance. As

Table 2 The effectiveness of clustering (Processing time
(sec.)/Evaluation ratio)

iDistance iKernel
Random 0.34124/0.2132 0.26173/0.2251
K-means 0.3237/0.2 0.246/0.2122
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Figure 11 The processing time/evaluation ratio as k increases.
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expected, the processing time increases (Figure 11). How-
ever, the increase processing time is less for iKernel than
iDistance as k increases, and iKernel shows works faster
than overall. In terms of the evaluation ratio, the result is
different. Though the difference is small, iDistance shows
better result than iKernel. It indicates that when k becomes
large, iKernel needs to search more data points than iDis-
tance since it adds all of data points in visited rings com-
puting the distance between the data point and query.
However, the overall processing cost is less for iKernel.

The filtering threshold,

In this section, we explore the effect of 8 and the perfor-
mance. As 6 increases, the processing time/evaluation
ratio increases as well since we need to visit more clusters

and data points (Figure 12). However, still we can guaran-
tee better and stable efficiency with exact results. Different
from the result of &, iDistance works faster than iKernel in
many cases, even its evaluation ratio is larger than iKernel.
It shows that iDistance is more rubost to 8 than iKernel.
When we use k as nn constraint, iKernel visits less number
of data points and is terminated quickly since data points
divided into rings which is more specific data structure
than clusters. However, when we use 6 as nn constraint,
iKernel visits more rings (and data points) than iDistance
due to the same reason.

We also provide the ratio of queries not having nearest
neighbors according to given queries, and the average
number of nearest neighbors resulted from 6-based near-
est neighbor search (Figure 13). As easily expected, there
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are more nearest neighbors and less queries with no near-
est neighbors as 6 increases. When we set 6 as 2, the num-
ber of nearest neighbor is reasonable (similar to 25), and
about 20% of queries do not have results. We use 2 as 6
for next experiments, since the processing time/evaluation
ratio is reduced enough compared to the linear search and
the nearest neighbors are close to the queries compared to
top-k nn search.

The stability of processing time/evaluation ratio

To show the stability of the #-based nearest neighbor
search, we observe the distribution of the processing time/
evaluation ratio of the proposed methods. As shown before
(Figure 8), when we find top-k nearest neighbors, the pro-
cessing time/evaluation ratio is not stable according to

different queries. According to the Figure 14, 6-based nn
search shows more stable performance than the top-k nn
search since using @ can filter out many clusters and data
points which have long distance. In addition, it always
retrieves exact nearest neighbors having the distance to
query less than §. Therefore, -based nearest neighbor
search will be useful to some users who want to find near-
est neighbors with tighten similarity to query protein.

The enhancement with the extended nearest neighbor
search

In this section, the result of the extended approaches is
compared to the best results of the basic approach dis-
cussed in the previous section. Since we use optimal
paramters based on previous experiments. First, we
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Table 3 The comparison of the proposed approaches in
top-k nearest neighbor search (Proc. is processing time
measured in second and Eval. is evaluation ratio)

LS iDistance iKernel
basic ext. basic ext.
Proc. 1.0567 03212 0.2387 (95.2) 02434 0.128 (95.2)
Eval. 1 03 0.202 (95.2) 0.1761 0.1993 (95.2)

Table 4 The comparison of the proposed approaches in
0-based nearest neighbor search (Proc. is processing time
measured in second and Eval. is evaluation ratio)

LS iDistance iKernel
basic ext. basic ext.
Proc. 1.08 02128 0.0479 0.2091 0.087
Eval. 1 0.1254 0.0537 0.075 0.0222

provide the result of the proposed approaches in top-k
nearest neighbor problem (Table-3). In the table, the
number in bracket is the ratio of actual top-25 result in
top-25 result which are approximately obtained by the
extended approach (which is same to the preliminary
result, Figure 6). As you can see, the enhancement of
iDistance and iKernel with basic top-k search is not that
large, the extended approaches work much faster than
basic approaches. In addition, iKernel always works fas-
ter than iDistance. Among iKernel results, it looks like
the basic approach works faster than the extension, but
it is not. Note that when they access to data instance to
compute inner products of vectors, in the case of basic
approach, there are 121-dimensional vectors. However,
in the case of the extended approach, the inner product
takes 60-dimensional vectors. It indicates that if the
difference is small between two approaches, the extended
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approach may work better than the basic approach in
real. In addition, when the number of query is small, the
quality is comparable. However, when the number of
query becomes large, the difference of processing time
becomes larger as well.

Next, we conducted same experiments for the pro-
posed approaches in #-based nearest neighbor search
(Table 4). Similar to Table 3, using index techniques
works faster than the linear scan, and the extended
approaches work much faster than the basic approaches.
However, in 0-based nearest neighbor search, iDistance
works faster than iKernel in many cases. The reason is
described in Section. Accordingly, we conclude that iDis-
tance is proper to find nearest neighbors which have
shorter distance than the fixed distance, and iKernel is
proper to find exact number of nearest neighbors. Gener-
ally, in addition, the results show that the extended
approaches further speed up the basic approaches in
both of top-k and 0-based nearest neighbor search on the
protein structure data set.

Simulation result

To support our statement more, we simulate the scenario
that a number of users enter queries at the same time via
multi-threading (Figure 15). According to the result, the
basic approaches work faster than the linear scan and the
extended approaches further speed up the basic
approaches, and the #-based nn search works much faster
than the top-k nn search since using 6 we can filter out
more clusters (or rings) and data points. Using k, iKernel
works faster than iDistance which indicates that iKernel
is more efficient to find exact number of nearest neigh-
bor with new structure, ring. In constrast, however, using
0, iDistance works faster than iKernel which indicates
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Figure 15 The simulation result as the number of query increases. x-axis is the number of users in log scale.
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that iDistance is more appropriate to find the nearest
neighbor within the fixed distance, 6.

Conclusion

In this paper, we introduce an efficient indexing for pro-
tein structure search where protein structures are repre-
sented as vectors by 3D-Zernike Descriptor (3DZD).
When we retrieve top-k nearest neighbors, using indexing
techniques alone, we were able to make the search speed
77% faster compared to the prevoius version of 3D-Surfer
that uses linear Euclidian distance scan between the
3DZDs in the database. We also proposed an extended
version of the protein structure search based on the key
observation that the prior dimension of the descriptor
indicates global shape of the protein structure. Using the
extended techniques it is improved up to 87.9%. When we
retrieve nearest neighbor with shorter distance to the
query than 6, using indexing techniques alone, we were
able to make the search speed 81% faster compared to the
linear scan. Using the extended techniques it is improved
up to 96%. For future work, we will improve the nearest
neighbor search with indexing techniques by utilizing the
characteristics of the query prior to searching. In addition,
we will apply indexing techniques for protein binding site
similarity search with other data set represented based on
3DZD as well.
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