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Abstract

Background: Most previous Protein Protein Interaction (PPI) studies evaluated their algorithms’ performance based
on “per-instance” precision and recall, in which the instances of an interaction relation were evaluated
independently. However, we argue that this standard evaluation method should be revisited. In a large corpus, the
same relation can be described in various different forms and, in practice, correctly identifying not all but a small
subset of them would often suffice to detect the given interaction.

Methods: In this regard, we propose a more pragmatic “per-relation” basis performance evaluation method instead
of the conventional per-instance basis method. In the per-relation basis method, only a subset of a relation’s
instances needs to be correctly identified to make the relation positive. In this work, we also introduce a new high-
precision rule-based PPI extraction algorithm. While virtually all current PPI extraction studies focus on improving F-
score, aiming to balance the performance on both precision and recall, in many realistic scenarios involving large
corpora, one can benefit more from a high-precision algorithm than a high-recall counterpart.

Results: We show that our algorithm not only achieves better per-relation performance than previous solutions
but also serves as a good complement to the existing PPI extraction tools. Our algorithm improves the
performance of the existing tools through simple pipelining.

Conclusion: The significance of this research can be found in that this research brought new perspective to the
performance evaluation of PPI extraction studies, which we believe is more important in practice than existing
evaluation criteria. Given the new evaluation perspective, we also showed the importance of a high-precision
extraction tool and validated the efficacy of our rule-based system as the high-precision tool candidate.

Background
The volume of new biomedical literatures available for
processing rapidly increases. Currently more than 2000
new articles are added daily to the Medline database. As
it became obvious that purely manual curation cannot
cope with the fast growing data, attention has been
increasingly directed to the automatic information
extraction techniques from the BioNLP and Bio-text
mining communities. The protein-protein interaction
(PPI) extraction problem is the most extensively studied

information extraction problem in the biomedical
domain.
PPI extraction research is largely categorized into two

groups based on the types of classification models they
use. One group of approaches use rules and patterns to
describe the matching protein pairs [1-4]. The others rely
on machine learning methods to predict the interaction
pairs [5-8]. New methods are consistently introduced,
improving extraction performance. However, we argue
that there is an inherent and grossly ignored problem in
the performance evaluation methods employed in the
research.

* Correspondence: kangj@korea.ac.kr
Department of Computer Science, Korea University, Seoul, Korea

Lee et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):S7
http://www.biomedcentral.com/1472-6947/13/S1/S7

© 2013 Lee et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:kangj@korea.ac.kr
http://creativecommons.org/licenses/by/2.0


First, virtually all PPI extraction research focuses on
improving F-score, which gives equal emphasis on both
precision and recall. Depending on the application sce-
nario, we may have to value one more than the other. For
example, suppose we are to construct a knowledge base
for biomedical events by combining manually curated
sources together with automatically extracted information
through literature mining. In such a case, one might prefer
a high-precision PPI extraction tool to its high-recall
counterpart because potential false positive relations intro-
duced by the high-recall tool will significantly degrade the
accuracy and reliability of inferred knowledge from the
combined database. In spite of this, almost all existing PPI
research focus on improving F-score, giving equal weights
on both precision and recall.
Second, current PPI research evaluates their perfor-

mance on a “per-instance” basis. For example, in AIMed
corpus [9], the IL-6 and gp130 pair appears total of 29
times, 8 instances annotated as positive (i.e., “interaction”)
and the remaining 21 annotated as negative. According to
the conventional per-instance basis evaluation, 100% accu-
racy is achieved only when a PPI tool correctly labels all
the 8 positive instances as positive and the remainders as
all negative. However, in principle, the 8 positive instances
describe the same relation, IL6/gp130 interaction. They
merely describe it in different linguistic styles, some
straightforward and some others complex and/or indirect.
Hence, correctly identifying any one of them would be
helpful.
The “non-interaction” cases aggravate the situation. In

AIMed, the PTF/TBP pair is annotated 26 times, all as
negative. Just a single mistake will make the PTF/TBP
pair an “interaction,” i.e., a false positive, or at least put it
in limbo where human intervention is required in order
to draw a definitive conclusion. The false positive pro-
blem aggravates as the size of corpus increases. Note that
the AIMed corpus consists of 225 abstracts containing
only 1955 sentences. The real-world corpus (e.g.,
PubMed) which we have to deal with in practice, is sub-
stantially larger than the benchmark corpora. This
strongly suggests that, although it has been grossly
ignored so far by the researchers developing PPI tools, an
ultra-high precision PPI extraction tool can be extremely
useful to domain scientists who actually use it in many
application scenarios.
Given these observations, we introduce a new perfor-

mance evaluation method based on “per-relation” basis
instead of the conventional per-instance basis, which is
more pragmatic in practice. We also introduce a new pat-
tern-based PPI extraction method that achieves extremely
high precision while retaining good recall in the new per-
relation basis evaluation. We have reported the preliminary
performance results of our rule-based algorithm in [10]. In

this work, we generalize our algorithm into a two-tier fra-
mework. With this framework, our rule-based algorithm
can be combined with other PPI solutions through simple
pipelining. For example, we can use an existing high-per-
formance extraction algorithm in the first phase and then
pipeline the results to our high-precision rule-based algo-
rithm for the second screening.
We expect that our method is more practical in real-

world applications than conventional methods that are
designed to balance the per-instance basis precision and
recall. We validate our method using the AIMed corpus,
a widely used benchmark corpus for PPI extraction tasks.

Related work
PPI extraction research is largely categorized into two
approaches: pattern-based and machine learning-based
approaches. We briefly survey the two methods below.
Pattern-based PPI extraction
Pattern-based methods define lexical and/or syntactic pat-
terns to find matching text regions that are likely to con-
tain PPIs. Many of early PPI systems fall into this category
[11-13]. Blaschke et al used a pre-defined set of 14 verbs
indicating interactions and composed a series of rules
based on the verb and protein arrangement [11]. Ono et al
defined simple POS rules for matching interactions [13].
They also employed regular expression patterns to filter
negative sentences in order to reduce false positives.
Huang et al proposed a method for automatically generat-
ing patterns for PPI extraction [12]. They used a dynamic
programming algorithm to compute discriminative pat-
terns by aligning sentences and key verbs that describe
interactions. Finally, a matching algorithm is proposed to
evaluate the patterns.
More recently, approaches utilizing computational lin-

guistic technologies have been introduced [1,2,4]. These
methods use parsing techniques to make the patterns
more precise and systematic. The methods are further
divided into two categories: shallow parsing-based [1,3]
and deep parsing-based [2,4]. Parsing is a very computa-
tionally demanding NLP task. The shallow parsing-based
methods tradeoff accuracy for computational efficiency.
In [1], Ahmed et al split complex sentences into simple
clausal structures made up of syntactic roles, tagged bio-
logical entities using ontologies, and finally extracted
interactions by analyzing the matching contents of syn-
tactic roles and their linguistic combinations. Meanwhile,
Fundel et al proposed an extraction system, RelEx,
employing more sophisticated rules utilizing “full” parse
tree structures [2]. Rinaldi et al also employed a probabil-
istic dependency parser to extract patterns describing
biological interactions [4].
These pattern-based methods achieve good perfor-

mance with respect to F-score. However, because of the
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coarsely defined rules, they produce large numbers of
false positives, making them inapplicable to use cases
where “per-relation” precision is important.
Machine learning-based PPI extraction
Recently, many machine learning-based approaches have
employed linguistic engineering techniques including
shallow and full parsing. Among them, kernel-based
methods have been investigated most extensively [5-8].
They typically parse a sentence containing a protein pair
and extract some lexical and syntactic features from the
parsing result. Depending on the approaches, the
extracted features either are vectorized to be used with
conventional kernel functions such as RBF and polyno-
mial kernels [6,14,15], or are used as is as input to a cus-
tom-designed kernel [5,8,16].
Many of the recently introduced custom kernels are

convolution kernels [17]. Convolution kernels take as
input two discrete structures such as strings, trees, and
graphs, and compute their similarity by recursively aggre-
gating the similarity of their “parts.” In our context, some
relevant parts of the parse tree or lexical subsequences can
be used as the input to the convolution kernels. Kernel
methods in this category include subsequence kernels
[18,19], tree kernels [20,21], and shortest path kernels [9].
Please see [22] for a more comprehensive survey and
benchmark study for the kernel-based methods.
Data: A protein pair to be tested, sentence/clause,

dependency tree
Result: Positive, if interaction exists; Negative,

otherwise
foreach rule Ri from R1 to R8 do
test if the input pair matches Ri;
if matched then
return Positive;

end
end
Return Negative;
Algorithm 1: Rule-based PPI classifier
Although the machine learning-based approaches gener-

ally achieve better performance than the pattern-based
approaches, they still face the same problem. Because of
the inherent probabilistic nature of the machine learning
methods, it is very difficult to design an ultra-high preci-
sion machine-learning based classifier. For this reason, the
machine learning-based approaches also are not appropri-
ate for our problem context. In this work, we address
these problems by introducing a rich set of high precision
lexical/syntactic rules.

Methods
Our rule-based system works in two steps: text prepro-
cessing/parsing and PPI rule evaluation for extraction.
We explain the details for the two steps below.

Text preprocessing and parsing
Recent study shows that the accuracy of a parser has a
non-negligible impact on the accuracy of PPI extraction
tasks [23]. As no parser can be perfect, we preprocess the
text in order to reduce the potential risk of parser errors.
In this work, we follow the preprocessing procedure used
in [6]. First, we replace the protein names with PROTEIN0,
1, 2, etc., in order to replace a complex multi-word protein
name with a single term. This practice is commonplace in
many PPI extraction studies because comprehensive pro-
tein name dictionaries are available and the focus of the
study is to find the relations, and not the entity recognition
[8,22]. Second, we remove parentheses and the enclosed
words if no protein exists within the parenthetical remark.
Third, sentences consisting of multiple clauses are split
into separate clauses, and finally, only the sentences/clauses
containing at least two proteins are analyzed with the Stan-
ford parser to produce the dependency tree [24].

Rule-based PPI extraction
We model the PPI extraction task as a binary classifica-
tion problem. For each protein pair within a sentence, all
rules are applied in sequence until a matching rule is
found. The outline of our rule-based PPI classification is
given in Algorithm 1. Given a candidate protein pair, a
sentence containing the pair, and its dependency tree, the
algorithm returns positive if a matching rule is found,
and negative otherwise.
We use a total of eight rules in our framework. The

first three are the refined versions of the rules introduced
originally in the RelEx system [2]. The rest are the newly
introduced rules in this work. We explain the rules using
examples below.
Rule 1: Pi - REL - Pj
An example sentence and its dependency relations are

illustrated in Figure 1-R1. In this example instance, two
PPIs exist: P0 - P1 and P0 - P2. This rule is intended to
capture a pattern where the first protein is the nominal
subject (nsubj), verb corresponds to a relation word, and
the second protein is either a direct object (dobj) or a
prepositional modifier (prep* ) of the verb. In the exam-
ple, P0 is the subject of “interacts,” a relation word, and
P1 is the prepositional modifier of “interacts,” and hence
P0 - P1 matches the rule. P0 - P2 is also extracted by the
same rule.
Note that we also handle negation by checking if a nega-

tion (neg) dependency exists on either the relation word or
the subject. For example, in a sentence, “P0 does not bind
to P1,” no PPI is extracted because there exists a neg
dependency from “bind” to “not.” As for the relation
words, we compiled 67 keywords that clearly describe var-
ious types of interactions between a pair of proteins. The
relation keywords are shown in Table 1.
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If the parsing result is always correct, the rule should
extract correct PPIs all the time. However, it is far from
reality. Long-distance relations in complex sentences are
typically prone to parsing errors. The long-distance rela-
tions are also susceptible for mistakes by human

annotators due to the high complexity of sentences. As we
are specifically aiming for an extreme high-precision PPI
extraction method, we ignore such long-distance relations.
We achieve this by considering only the pairs within a
seven-word window on the original sentence. We also put

Figure 1 Dependency relations for the example sentences.

Table 1 Relation keywords

Activation activate, increase, induce, initiate, stimulate, promote, catalyze, up-regulate, coactivate, potentiate, precipitate, reactivate

Deactivation block, decrease, down-regulate, inactivate, inhibit, reduce, repress, suppress, interfere, antagonize, degrade, obstruct

Creating
bond

associate, link, dimerize, heterodimerize, crystalize, methylate, phosphorylate, assemble, polymerize, bound, bond, oligomerize,
glycosylate, bind, complex, form, conjugate, acetylate, couple

Breaking
bond

cleave, demethylate, dephosphorylate, sever, unbind, depolymerize, dissociate, deacetylate, deglycosilate, disassemble

Signaling mediate, modulate, participate, regulate, control, interact, react, contact, response, encode, recognize, stabilize, destabilize, target
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a constraint on the maximum number of dependency-
bearing words allowable in between the two proteins. We
empirically determined the max to be three. In the exam-
ple, P0 - P2 is a valid candidate because the two proteins
fall within a seven-word window and there are only three
dependency-bearing words in between them (i.e., “with”
and “and” do not count).
Rule 2: REL - of - Pi - PREP - Pj
This rule is intended to match a phrase like “binding of

P0 to P1” as shown in the example in Figure 1-R2. We
first find a relation word “binding” and follow the prep_of
dependency to retrieve the first protein P0. We then fol-
low a prep* dependency to capture the second protein P1.
Other examples that match this rule include “activation of
P0 by P1” and “interaction of P0 with P1.” The negation
handling in this case is done in two different places. First,
as in the example, “no interaction of P0 with P1 was
found,” the negation (neg) dependency must be checked
on the relation word ("interaction”). Second, the negation
also can occur at verb level as in the following example:
“activation of P0 by P1 was not identified.”
Rule 3: REL - {between, of} - Pi - and - Pj
We first find a relation keyword and follow the pre-

p_between or prep_of dependencies from the keyword to
retrieve two proteins. In the example in Figure 1-R3, there
are two relation keywords ("regulation” and “interaction”)
in the sentence but only the second ("interaction”)
matches the rule. The negation handling is performed in a
similar way as Rule 2.
Rule 4: Pi - and - Pj - REL
This rule covers the cases where a protein conjunction

(P0 and P1) is involved in nsubj dependency and the con-
junction is linked to a relation keyword. However, not all
relation keywords are acceptable in this rule. The rule
rejects the PPI if the relation keyword is involved in
either dobj or prep* dependency. The “form” in the exam-
ple in Figure 1-R4 is the only exception; it is allowed only
if it has “complex” as its dobj. The negation is handled in
the same way as Rule 1.
Rule 5: Pi - {-, /} - Pj - {interaction, complex, hetero-

dimer, product, assembly}
This rule defines a lexical pattern that matches phrases

such as “P0-P1 complex” and “P0/P1 heterodimer.”
The negation is handled in the same way as Rule 2

and 3.
Rule 6: Pi - VERB - {receptor, ligand, substrate,

binding protein} - {for, of} - Pj
This rule is constructed using both syntactic and lexical

relations. A sentence like “P0 is a receptor for P1” implies
that P0 will bind to P1. We identify four such keywords
as above that imply the binding property between the
two proteins. The negation is handled in the same way as
Rule 1.

Rule 7: Pi - {receptor, ligand, substrate, binding pro-
tein} - (Pj)
In the example, “erythropoietin receptor (EPOR),” we

know that EPOR is a protein that acts as a receptor for
erythropoietin. We capture such relation using this sim-
ple lexical rule. The same relation holds for ligand and
substrate. No negation handling is necessary in this rule.
Rule 8: Pi - {binding domain, binding site} - {in,

within, on, of} - Pj
This is a sister rule to Rule 7, defining a similar relation

using “binding domain” and “binding site.” Like the rule
above, it is a handy lexical pattern that matches high pre-
cision binding relations. For example, “CD30L binding
domain on the human CD30 molecule” suggests a PPI
between CD30L and CD30. No negation handling is
required in this rule.

Results
Datasets
In order to test the performance of our approach, we use
AIMed [9] corpus, which is considered as the de facto
standard for the PPI extraction benchmark. There also
exist several other benchmark corpora but we decided to
use only AIMed for several reasons. Pyysalo et al [25]
conducted a comparative analysis of five popular PPI cor-
pora including AIMed [9], BioInfer [26], HPRD50 [2],
IEPA [27], and LLL [28]. They reported that there are
sizable discrepancies among the corpora, which are intro-
duced mainly by the differences in annotation policy.
Unlike others, AIMed strictly focuses on causal rela-

tions that lead to physical changes or changes in
dynamics in the target molecule. The other corpora
include non-causal interactions such as part-of and is-a
relations. For example, BioInfer annotates static rela-
tions like protein family memberships, as interactions.
Some corpora are more inclusive while some others are
more restrictive in interaction determination. Because of
these differences, the number of annotated interactions
and the level of certainty differ widely across the cor-
pora. We chose AIMed because we focus only on the
causal relations and aim to extract only highly certain
relations; AIMed turns out the best-fit benchmark for
our purpose.

Baselines
We compare our approach with two state-of-the-art PPI
extraction methods: a tree kernel-based method [20] and a
hybrid method [6]. The tree kernel-based method uses a
subset tree kernel for learning [17]. The hybrid method
works in two steps. In the first phase, it groups candidate
PPI pairs by applying five hand crafted template patterns
and in the second phase, it trains an SVM per group using
a different set of features in each group. The performances
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of the two methods are reported as comparable to other
current state-of-the-art methods.

Evaluation method
As mentioned earlier, we argue that we need a new way
to measure the PPI extraction performance. In this work,
we introduce a “per-relation” basis performance evalua-
tion method. The key idea behind this new evaluation
method has been discussed already in the introduction
section. Now we formulate the per-relation evaluation
metrics. Let ̂TP denote the number of true positive rela-
tions, ̂FP, the false positives, and ̂FN, the false negatives.
While the conventional “per-instance” TP and FP are
computed by counting the number of correctly predicted
relation instances, our “per-relation” ̂TP and ̂FP are com-
puted by counting the number of distinct protein pairs
that are predicted correctly.
The question here is by what criteria we decide the

interaction and non-interaction for a pair. A viable solu-
tion is a sophisticated weighted vote based on the predic-
tion labels assigned to each instance of the relation [29].
However, in this work, we use a simple strategy where
one positive instance makes the corresponding relation
positive. We leave the investigation for a more sophisti-
cated voting scheme for future work because it is out of
scope of the current work. Finally, we turn to define the
per-relation precision, recall, and F-score as follows.

Precision =
̂TP

̂TP + ̂FP
(1)

Recall =
̂TP

̂TP + ̂FN
(2)

F − score =
2× Recall × Precision
Recall + Precision

(3)

Performance of our rule-based algorithm as a stand-alone
extraction system
Table 2 shows the experiment results. Our approach
achieved the highest precision in both per-relation and
per-instance evaluations. We conducted the test by vary-
ing the minimum number of instances per relation (here-
after, MIpR). For example, the first group (MIpR = 1)
represents experiment where we test relations with at
least one instance (i.e., all relations; equal to full AIMed
corpus). Similarly, the second group (MIpR = 2) repre-
sents the experiments involving only the relations with at
least two instances. In order to test the effects of the
number of positive instances on the classification accu-
racy for a positive relation, we further constrained the
number of positive instances per positive relation to be at

least two in the second group (likewise, three in the third
group, etc.). We need this additional constraint because
even for a positive PPI relation, there are many negatively
annotated instances for it. In AIMed, there are total of
618 positive and 2312 negative relations (not instances).
A positive relation contains on average 1.6 positive and
1.5 negative instances.
As shown in Table 2, our rule-based approach exhibits

the highest precision in all groups in both per-relation and
per-instance evaluations. The per-relation precision is
around 95-96% and the per-instance precision is around
94-97%. As expected (and intended so), the per-instance
recall is not impressive achieving only 15-24%. On the
other hand, the per-relation recall gradually improves up
to 82% in group 5. We note that the baseline approaches
tradeoff the per-relation precision for the per-relation
recall as they move on from group 1 to group 5. Contrast-
ingly, our approach does not degrade the precision while
achieving substantial improvement on recall as it move on
to group 5. Figure 2 illustrates the performance changes
over the varying minimum instance requirements. These
results suggest that our high-precision approach is more
appropriate than the baseline approaches, especially for a
use case involving large corpora.

Improving the performance of baselines with our method
We wanted to test if our high-precision method can be
augmented to an existing PPI extraction tool, in order
to improve the performance of the original method. In
Table 3, the first and the third rows represent the (per-
instance) performances of the original baselines. The sec-
ond row represents the result obtained from pipelining the
hybrid baseline and our rule-based method. The pipelining
is done as follows. We run the hybrid method to comple-
tion and save the instances that are predicted positive. We
then run our method over those instances rejected by the
hybrid method and finally compute the overall TP and FP
by aggregating the numbers obtained from the first and
the second runs. As we can see, the performance of the
hybrid baseline, though marginal, was improved.
The performance improvement was much more signif-

icant with SST-PT. The precision, recall, and F-score
were improved by 15%, 48%, and 37%, respectively. The
result suggests that our high-precision method can be
also useful even in the conventional “per-instance” basis
evaluation scenarios as we can achieve easy improve-
ments of the performance of existing tools through the
simple pipelining of our method.

Performance of our rule-based method as a two-tier
extraction system
Motivated by the positive results from the pipelining
approach in the previous section, we generalize our
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extraction framework to a two-tier system. Our rule-
based method can be placed either in the first tier or in
the second tier while plugging in an existing PPI tool in
the remaining tier. This two-tier system has many possi-
ble materializations; for example, in the first tier, we run
our high-precision rule-based extraction method and
pipeline all the negatively labeled instances to an SVM
classifier in the second tier for an additional screening.
We evaluated several popular machine learning mod-

els for our two-tier system including Support Vector
Machine (SVM), Naive Bayesian (NB), Decision Tree
(DT), and k-Nearest Neighbor (kNN), in addition to the
two baseline PPI extraction tools. For the machine
learning models, as features we used two sets of bigrams
taken from a forward dependency chain which is a
dependency path from the root of a dependency tree to

the first protein and from a backward chain which is a
dependency path from the root to the second protein.
For improving the accuracy and efficiency of the
machine learning models, we performed feature selec-
tion where we picked the top-100 bigrams from each of
the two bigram sets (i.e., sets of bigrams taken from the
forward and the backward chains) based on the differ-
ences between their occurrences in the forward chains
and the backward chains; for example, the top-100 for-
ward bigrams are selected after sorting the bigrams
based on the number of the occurrences in the forward
chains subtracted by the number of the occurrences of
the corresponding bigrams in the backward chains.
Table 4 shows the results of the experiments where our

rule-based system is put in the first tier. For example,
with the MIpR being set to one, the “ours+hybrid” model

Figure 2 Per-relation and per-instance evaluation results with varying “min #instance per relation”.

Table 2 Per-relation and per-instance performance evaluation results

Min #Inst. per Relation #Uniq. Relations #Instances Methods Per-Relation Per-Instance

Pos Neg Pos Neg TP FP Precision Recall F-Score TP FP Precision Recall F-Score

1 618 2,312 1,000 4,834 ours 132 7 0.95 0.214 0.349 153 10 0.939 0.153 0.263

hybrid [6] 477 344 0.581 0.772 0.663 694 584 0.5431 0.6941 0.6091

SST-PT [20] 195 102 0.657 0.316 0.427 217 170 0.5612 0.2172 0.3132

2 197 695 579 2,827 ours 80 3 0.964 0.406 0.571 101 5 0.953 0.174 0.294

hybrid [6] 183 164 0.527 0.929 0.673 389 327 0.543 0.672 0.601

SST-PT [20] 103 71 0.592 0.523 0.555 131 113 0.537 0.226 0.318

3 89 314 363 1,835 ours 51 2 0.962 0.573 0.718 67 3 0.957 0.185 0.310

hybrid [6] 88 98 0.473 0.989 0.640 250 236 0.514 0.689 0.589

SST-PT [20] 56 47 0.544 0.629 0.583 85 79 0.518 0.234 0.322

4 51 181 249 1,349 ours 35 2 0.946 0.686 0.795 50 3 0.943 0.201 0.331

hybrid [6] 49 67 0.422 0.961 0.587 160 170 0.485 0.643 0.553

SST-PT [20] 35 30 0.538 0.686 0.603 62 54 0.534 0.249 0.340

5 28 107 157 984 ours 23 1 0.958 0.821 0.884 37 1 0.974 0.236 0.380

hybrid [6] 28 44 0.389 1 0.560 105 105 0.500 0.669 0.572

SST-PT [20] 21 15 0.583 0.75 0.656 37 30 0.552 0.236 0.331
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achieved the per-relation precision, recall, and F-score of
0.594, 0.772, and 0.671, respectively. It represents a slight
improvement from the stand-alone hybrid model shown
in Table 2 (2.2%, 0%, 1.2% from 0.581, 0.772, 0.663,

respectively). Similarly, per-instance performance also
was improved by 2.8%, 1.0%, 2.0% from 0.543, 0.694,
0.609 to 0.558, 0.701, 0.621, respectively. Similar
improvements were observed in all five MIpR settings
from 1 to 5 while the gain gradually increased as the
MIpR increased. For example, with MIpR = 5, the per-
relation performance was improved by 5.9%, 0%, 4.3%
from 0.389, 1, 0.560 to 0.412, 1, 0.584, respectively. The
per-instance performance was also improved by 10.2%,
2.8%, 7.0% from 0.5, 0.669, 0.572 to 0.551, 0.688, 0.612,
respectively.
The improvement of the stand-alone SST-PT model was

even more drastic. With MIpR = 5, SST-PT’s per-relation
performance was improved by 9.9%, 19.1%, 13.7% from

Table 3 Performance improvement of baselines through
pipelining our approach

TP FP Prec. Rec. F

Hybrid 694 584 0.543 0.694 0.609

+ours
(%increase)

713
(2.7%)

585
(0.2%)

0.549
(1.2%)

0.713
(2.7%)

0.621
(1.8%)

SST-PT 217 170 0.561 0.217 0.313

+ours
(%increase)

322
(48.4%)

178
(4.7%)

0.644
(14.8%)

0.322
(48.4%)

0.429
(37.1%)

Table 4 Performance of the two-tier extraction system: our rule-based system in the first tier

Min #Inst. per Relation #Uniq. Relation #Instances Methods Per-Relation Per-Instance

Pos Neg Pos Neg TP FP Precision Recall F-Score TP FP Precision Recall F-Score

ours 132 7 0.950 0.214 0.349 153 10 0.939 0.153 0.263

+hybrid 477 326 0.594 0.772 0.671 701 555 0.558 0.701 0.621

+SST-PT 231 112 0.673 0.374 0.481 287 167 0.632 0.287 0.395

1 618 2,312 1,000 4,834 +SVM 152 44 0.776 0.246 0.374 172 67 0.720 0.172 0.278

+NB 247 254 0.493 0.400 0.442 285 410 0.410 0.285 0.336

+DT 155 40 0.795 0.251 0.382 180 67 0.729 0.180 0.289

+kNN 215 226 0.488 0.348 0.406 242 310 0.438 0.242 0.312

ours 80 3 0.964 0.406 0.571 101 5 0.953 0.174 0.294

+hybrid 183 151 0.548 0.929 0.689 395 310 0.560 0.682 0.615

+SST-PT 127 62 0.672 0.645 0.658 186 102 0.646 0.321 0.429

2 197 695 579 2,827 +SVM 94 36 0.723 0.477 0.575 116 63 0.648 0.200 0.306

+NB 113 110 0.507 0.574 0.538 151 196 0.435 0.261 0.326

+DT 90 21 0.811 0.457 0.585 112 45 0.713 0.193 0.304

+kNN 129 138 0.483 0.655 0.556 163 235 0.410 0.282 0.334

ours 51 2 0.962 0.573 0.718 67 3 0.957 0.185 0.310

+hybrid 88 94 0.484 0.989 0.650 257 222 0.537 0.708 0.611

+SST-PT 70 38 0.648 0.787 0.711 129 58 0.690 0.355 0.469

3 89 314 363 1,835 +SVM 58 22 0.725 0.652 0.687 78 32 0.709 0.215 0.330

+NB 59 54 0.522 0.663 0.584 86 89 0.491 0.237 0.320

+DT 53 5 0.914 0.596 0.722 70 8 0.897 0.193 0.318

+kNN 66 85 0.437 0.742 0.550 97 153 0.388 0.267 0.316

ours 35 2 0.946 0.686 0.795 50 3 0.943 0.201 0.331

+hybrid 51 63 0.447 1 0.618 171 150 0.533 0.687 0.600

+SST-PT 45 27 0.625 0.882 0.732 92 43 0.681 0.369 0.479

4 51 181 249 1,349 +SVM 38 15 0.717 0.745 0.731 55 25 0.688 0.221 0.335

+NB 42 43 0.494 0.824 0.618 67 86 0.438 0.269 0.333

+DT 36 5 0.878 0.706 0.783 54 8 0.871 0.217 0.347

+kNN 44 56 0.440 0.863 0.583 74 104 0.416 0.297 0.347

ours 23 1 0.958 0.821 0.884 37 1 0.974 0.236 0.380

+hybrid 28 40 0.412 1 0.584 108 88 0.551 0.688 0.612

+SST-PT 25 14 0.641 0.893 0.746 57 22 0.722 0.363 0.483

5 28 107 157 984 +SVM 25 12 0.676 0.893 0.769 40 18 0.690 0.255 0.372

+NB 24 21 0.533 0.857 0.657 40 40 0.500 0.255 0.338

+DT 23 4 0.852 0.821 0.836 37 8 0.822 0.236 0.367

+kNN 26 31 0.456 0.929 0.612 45 51 0.469 0.287 0.356
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0.583, 0.75, 0.656 to 0.641, 0.893, 0.746, respectively, while
its per-instance performance was improved by striking
percentages of 30.8%, 53.8%, 45.9% from 0.552, 0.236,
0.331 to 0.722, 0.363, 0.483, respectively.
On the other hand, the two-tier approach turned out to

be not as effective for improving the performance against
our stand-alone rule-based system as it was for improv-
ing the baselines. For example, with MIpR = 5, the per-
relation performance of our method after pipelining to
the hybrid model was improved by -133%, 21.8%, -51.4%
from 0.958, 0.821, 0.884 to 0.412, 1, 0.584, for precision,
recall, F-score, respectively. Similarly, the per-instance
performance was improved by -76.8%, 192%, 61.1% from
0.974, 0.236, 0.38 to 0.551, 0.688, 0.612, respectively. The
two-tier approach generally improved the per-relation
and per-instance recall of our rule-based model while
substantially degrading its precision. Similar observations
were made across the models.
In this test, we only used one type of feature, the

dependency bigram, for the machine learning models. In
order to see if we can improve the performance further
by adding more features to the models, we conducted an
additional test as shown in Table 5. We only show the

result of the “ours+SVM” model in this test. The remain-
ing models showed the similar performance characteristic
as that of the “ours+SVM” model. The first row in each
MIpR group represents the result of “ours+SVM” with
the top-100 forward and backward dependency bigrams.
The second row represents the result produced with an
additional feature of dependency length which is the
length of a dependency path from the root of a depen-
dency tree to a protein. We used both forward and back-
ward dependency lengths. The third row shows the result
with an offset distance between two proteins in a sen-
tence added in addition to the original dependency
bigrams. The fourth row shows the result from using all
three types of features including the dependency bigrams,
the dependency lengths, and the offset distance. As we
can see in the table, however, the improvement that we
achieved by adding more features was not significant.
Only a slight improvement on precision was achieved by
using the dependency lengths together with the depen-
dency bigrams.
Finally, we conducted the same experiment as Table 4

after swapping the tiers. In this test, the two baseline
models and the four machine learning models are used

Table 5 Performance of the “ours+SVM” model with incremental feature sets

Min #Inst. per Relation #Uniq. Relation #Instances Methods Per-Relation Per-Instance

Pos Neg Pos Neg TP FP Precision Recall F-Score TP FP Precision Recall F-Score

1 618 2,312 1,000 4,834 ours+SVM 152 44 0.776 0.246 0.374 172 67 0.720 0.172 0.278

+dep. len. 149 35 0.810 0.241 0.371 170 52 0.766 0.170 0.278

+dist. 150 39 0.794 0.243 0.372 171 63 0.731 0.171 0.277

+both 151 38 0.799 0.244 0.374 173 58 0.749 0.173 0.281

2 197 695 579 2,827 ours+SVM 94 36 0.723 0.477 0.575 116 63 0.648 0.200 0.306

+dep. len. 94 32 0.746 0.477 0.582 117 53 0.688 0.202 0.312

+dist. 92 35 0.724 0.467 0.568 117 54 0.684 0.202 0.312

+both 94 32 0.746 0.477 0.582 116 51 0.695 0.200 0.311

3 89 314 363 1,835 ours+SVM 58 22 0.725 0.652 0.687 78 32 0.709 0.215 0.330

+dep. len. 57 22 0.722 0.640 0.679 76 31 0.710 0.209 0.323

+dist. 57 22 0.722 0.640 0.679 75 31 0.708 0.207 0.320

+both 57 22 0.722 0.640 0.679 76 31 0.710 0.209 0.323

4 51 181 249 1,349 ours+SVM 38 15 0.717 0.745 0.731 55 25 0.688 0.221 0.335

+dep. len. 36 13 0.735 0.706 0.720 52 19 0.732 0.209 0.325

+dist. 38 15 0.717 0.745 0.731 55 25 0.688 0.221 0.335

+both 36 13 0.735 0.706 0.720 52 19 0.732 0.209 0.325

5 28 107 157 984 ours+SVM 25 12 0.676 0.893 0.769 40 18 0.690 0.255 0.372

+dep. len. 25 11 0.694 0.893 0.781 40 15 0.727 0.255 0.378

+dist. 25 12 0.676 0.893 0.769 40 18 0.690 0.255 0.372

+both 25 11 0.694 0.893 0.781 40 15 0.727 0.255 0.378
1Note that the result shown here is different from the ones reported in [6]. It may be due to the differences in SVM optimization parameters used for the
experiments. We obtained the codes from the authors’ web page at http://staff.science.uva.nl/̃bui/PPIs.zip and ran as is with the parameters: RBF kernel gamma -
0.0145; C = 9; Weka Cost-SensitiveClassifier optimization.
2In [20], the authors reported the macro-averaged precision, recall, and F-score, which are incomparable to other performance results. Following the general
convention in PPI research, we compared the performance using the precision, recall and F-score computed with only positive class prediction results. The
original implementation was not available. We implemented it on SVM-LIGHT-TK ver 1.2 obtained from http://disi.unitn.it/moschitti/Tree-Kernel.htm. The
optimization parameters used are C = 8 and l = 0.6 (as reported in [20])
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as the first tier system and our rule-based model is used
as the second tier system. The result is shown in Table 6.
The performance of the baselines was improved in both
per-relation and per-instance evaluations as we pipelined
the negatively-labeled instances to our rule-based system.
For example, with MIpR = 5, the per-relation perfor-
mance of the SST-PT method was improved by 4.6%,
19.1%, 10.5% from 0.583, 0.75, 0.656 to 0.61, 0.893, 0.725,
respectively. The per-instance performance was also
improved by 23.2%, 78.0%, 56.8% from 0.552, 0.236,
0.331 to 0.68, 0.42, 0.519, respectively. However, the two-
tier approach was not as effective for improving our rule-

based system as it was for the baselines. Similar to the
previous experiment in Table 4, the two-tier system
degrades the precision while improving the recall.

Discussion
As we can see from the results, our high-precision rule-
based system is quite effective in many aspects especially
for use cases involving large corpora. The results show
that our rule-based system not only performs well as a
stand-alone system but also serves well as a complement
to other existing PPI extraction models. The latter prop-
erty is important as our rule-based system can improve

Table 6 Performance of the two-tier extraction system: our rule-based system in the second tier

Min #Inst. per Relation #Uniq. Relation #Instances Methods Per-Relation Per-Instance

Pos Neg Neg TP FP Precision Recall F-Score TP FP Precision Recall F-Score

1 618 2,312 1,000 4,834 ours 132 7 0.950 0.214 0.349 153 10 0.939 0.153 0.263

hybrid+ 479 344 0.582 0.775 0.665 705 584 0.547 0.705 0.616

SST-PT+ 257 108 0.704 0.416 0.523 322 178 0.644 0.322 0.429

SVM+ 131 57 0.697 0.212 0.325 140 84 0.625 0.140 0.229

NB+ 235 247 0.488 0.380 0.427 261 410 0.389 0.261 0.312

DT+ 157 73 0.683 0.254 0.370 169 120 0.585 0.169 0.262

kNN+ 219 260 0.457 0.354 0.399 237 366 0.393 0.237 0.296

2 197 695 579 2,827 ours 80 3 0.964 0.406 0.571 101 5 0.953 0.174 0.294

hybrid+ 183 164 0.527 0.929 0.673 399 327 0.550 0.689 0.612

SST-PT+ 132 73 0.644 0.670 0.657 203 118 0.632 0.351 0.451

SVM+ 88 48 0.647 0.447 0.529 106 78 0.576 0.183 0.278

NB+ 107 113 0.486 0.543 0.513 140 230 0.378 0.242 0.295

DT+ 88 41 0.682 0.447 0.540 104 85 0.550 0.180 0.271

kNN+ 125 151 0.453 0.635 0.529 152 250 0.378 0.263 0.310

3 89 314 363 1,835 ours 51 2 0.962 0.573 0.718 67 3 0.957 0.185 0.310

hybrid+ 88 98 0.473 0.989 0.640 262 236 0.526 0.722 0.609

SST-PT+ 71 48 0.597 0.798 0.683 136 82 0.624 0.375 0.468

SVM+ 43 28 0.606 0.483 0.538 59 40 0.596 0.163 0.256

NB+ 59 69 0.461 0.663 0.544 82 113 0.421 0.226 0.294

DT+ 49 17 0.742 0.551 0.632 61 26 0.701 0.168 0.271

kNN+ 59 86 0.407 0.663 0.504 84 151 0.357 0.231 0.281

4 51 181 249 1,349 ours 35 2 0.946 0.686 0.795 50 3 0.943 0.201 0.331

hybrid+ 50 67 0.427 0.980 0.595 171 171 0.500 0.687 0.579

SST-PT+ 45 32 0.584 0.882 0.703 98 57 0.632 0.394 0.485

SVM+ 33 19 0.635 0.647 0.641 47 35 0.573 0.189 0.284

NB+ 41 53 0.436 0.804 0.565 64 116 0.356 0.257 0.299

DT+ 32 7 0.821 0.627 0.711 43 11 0.796 0.173 0.284

kNN+ 39 61 0.390 0.765 0.517 59 118 0.333 0.237 0.277

5 28 107 157 984 ours 23 1 0.958 0.821 0.884 37 1 0.974 0.236 0.380

hybrid+ 28 44 0.389 1 0.560 114 105 0.521 0.726 0.607

SST-PT+ 25 16 0.610 0.893 0.725 66 31 0.680 0.420 0.519

SVM+ 21 14 0.600 0.750 0.667 29 22 0.569 0.185 0.279

NB+ 23 41 0.359 0.821 0.500 35 73 0.324 0.223 0.264

DT+ 18 3 0.857 0.643 0.735 26 4 0.867 0.166 0.279

kNN+ 24 38 0.387 0.857 0.533 35 68 0.340 0.223 0.269
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the performance of existing solutions simply by pipelining
the existing solutions to ours without having to modify the
internals of the other existing tools.
We also demonstrated that the generalized two-tier

platform for PPI extraction is a viable alternative. The
two-tier system can be useful for improving the perfor-
mance of legacy PPI tools and also can be useful for use
cases where recall is equally important. The remaining
challenge is how we can retain the high precision of our
rule-based system while improving its recall in the two-
tier system. This seems to be an inherently difficult pro-
blem. The extraction model in the other tier should be
extremely conservative in determining positive instances
in order to retain the high precision. The six models we
tested in this experiments all failed to achieve this goal.
We leave this as our future work.

Conclusion
In this work, we argued that the current “per-instance”
basis performance evaluation method is not pragmatic in
many realistic PPI extraction scenarios. To address this
problem, we introduced a new “per-relation” basis evalua-
tion method. In the new method, precision and recall are
computed based on the number of distinct relations (not
instances) that are classified correctly. We also proposed a
high-precision rule-based PPI extraction method and
showed our method achieves substantially higher precision
than two state-of-the-art PPI extraction baselines in both
per-relation and per-instance evaluation. Finally, we gener-
alized our rule-based model to a two-tier PPI extraction
system, in which our rule-based model is augmented with
other existing extraction models through pipelining. With
this two-tier system, we demonstrated that our rule-based
model is also a valuable complement to other existing PPI
tools. In our future work, we plan to investigate more
sophisticated weighted voting scheme in order to make
our PPI extraction system more robust to potential parsing
and annotation errors. We also plan to investigate highly
conservative high-precision machine learning models in
order to retain the high precision of our rule-based system
while improving the recall when used in our two-tier
system.
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