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Abstract

Background: Biological systems are robust and complex to maintain stable phenotypes under various conditions.
In these systems, drugs reported the limited efficacy and unexpected side-effects. To remedy this situation, many
pharmaceutical laboratories have begun to research combination drugs and some of them have shown successful
clinical results. Complementary action of multiple compounds could increase efficacy as well as reduce side-effects
through pharmacological interactions. However, experimental approach requires vast cost of preclinical
experiments and tests as the number of possible combinations of compound dosages increases exponentially.
Computer model-based experiments have been emerging as one of the most promising solutions to cope with
such complexity. Though there have been many efforts to model specific molecular pathways using qualitative and
quantitative formalisms, they suffer from unexpected results caused by distant interactions beyond their localized
models.

Results: In this work, we propose a rule-based multi-scale modelling platform. We have tested this platform with
Type 2 diabetes (T2D) model, which involves the malfunction of numerous organs such as pancreas, circulation
system, liver, and adipocyte. We have extracted T2D-related 190 rules by manual curation from literature, pathway
databases and converting from different types of existing models. We have simulated twenty-two T2D drugs. The
results of our simulation show drug effect pathways of T2D drugs and whether combination drugs have efficacy or
not and how combination drugs work on the multi-scale model.

Conclusions: We believe that our simulation would help to understand drug mechanism for the drug
development and provide a new way to effectively apply existing drugs for new target. It also would give insight
for identifying effective combination drugs.

Background
Over past decades, the drug discovery process has been
slowed down and the costs for developing a drug have
gone up [1]. It is because experimental drug discovery has
focused on phenotype result without underlying mechan-
ism. The underlying mechanisms of many of drugs are
still unascertainable like a black box [2]. Therefore, it is
difficult to identify off-targets of drugs, which cause unex-
pected side-effects.
Recently, the development of biology technological

advancements increased the understanding of molecular

biology. It makes possible to extend our knowledge of
mechanisms of drugs in a molecular level.
Accumulated large number of observed data of a mole-

cular behaviour makes possible to construct computa-
tional drug-response prediction model. The computational
model brought benefits such as time reduction, cost
reduction and side-effects prediction to drug development.
The drug response accompanies the change in effect on

cellular level to organ level caused by a drug. Therefore,
computational model for drug response prediction is
needed to be represented with multi-level interactions [3].
Systems approaches have long been used in pharmacol-

ogy to understand drug action at the organ and organismal
levels using experimental and computational approaches It* Correspondence: dhlee@biosoft.kaist.ac.kr
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would be great challenges to construct a computational
model of a multi-level for understanding drug action and
discovering drug with the lack of multi-level data.
Drug response prediction model can be used to predict

the efficacy of multi-compound drug as well as the efficacy
of single-compound drug [4-6]. Complex disease such as
cardiovascular disease, diabetes, and cancer, are caused by
complex factors. To treat complex disease, multi-com-
pound drug is more efficacious than single-compound
drug. For example, in a case of recently FDA-approved
CLEOPATRA that targets HER2-positive breast cancer, the
addition of pertuxumab significantly increased progres-
sion-free survival time, compared with trastuzumab plus
docetaxel. Also it has no increment in cardiac toxic effects,
which is the side-effect of trastuzumab plus docetaxel [7].
The development of multi-compound drugs using cell-

based experiments is quite challenging because of vast
amounts of possible combinations in pharmaceutical
laboratories. For instance, about 100,000 potential thera-
peutic agents have been the object of focus to be tested in
NCI60 anticancer drug screen [8]. If pair of combination
drugs are tested among them, the number of screening is
more than. When we screen combinations of more than
two drugs or multi-dose, the number of screening is
increasing exponentially [9]. Computational approaches
have emerged as one of the most promising solutions to
this challenge. To simulate the behaviour of dynamic sys-
tem caused by multi-compound drugs, it is needed to sys-
tematically model a human body as multi-level model.

Computational model for drug response simulation
The simulation model of biological networks could be
differed according to the specification of nodes in a sys-
tem. Nodes that are specified by discrete values are simu-
lated by qualitative method such as Boolean network or
Petri-net model. Others nodes that have continuous
values are simulated by quantitative method such as
ordinary differential equation (ODE) model.
Jack et al. conducted qualitative investigation of cellular

responses using Boolean network [10]. They investigated
the response of biological systems by the effect of chemi-
cals at molecular level and tissue level. Jin et al. developed
enhanced Petri-net model to investigate a genetic mechan-
ism for effects of drug combinations [11]. They integrated
data on large-scale biological network and made Petri-net
model from the biological network. Although their model
is large enough to investigate drug actions, it predicts only
cellular response of pairwise drug combinations by Petri-
net simulation result.
To obtain accurate results in analysing drug action by bio-

logical networks, constructing an accurate biological net-
work is needed. Nelander et al. made a model that derives
network models from molecular profiles of perturbed

cellular systems [12]. They predicted results of multiple
genetic alterations by ODE model.
Previous research focused on constructing models that

investigate the biological response of the drug effect. How-
ever, previous research did not investigate at whole-body
level.

Multi-scale modelling
Type 2 diabetes (T2D) is caused by a problem in the way
body makes or uses insulin [13]. Usually when we get
T2D, our fat, liver, and muscle cells do not respond prop-
erly to insulin. T2D cannot be understood by investigating
only one organ, which produces insulin for drug discovery
processing. It occurs when several organs’ interaction does
not work properly. So, we need to investigate systemati-
cally organs’ interactions. There are many complex dis-
eases that have multi causalities, such as schizophrenia,
stroke, etc.
To investigate these complex diseases, we need to model

biological systems as multi-level system that contains
molecular level, cell/tissue-level and organ-level. Cell-level
are affect by biological processes at the molecular level
and biological processes at the cell/tissue level influence
dynamics at organ level as Figure 1. This hierarchical orga-
nization and the causalities between different levels are
characteristics of biological systems [14,15]. As we men-
tioned, we are lack of understanding about tissue level and
organ level. Hence, it is difficult to make a whole-body
model mathematically, like in ODE. Qualitative modelling
could be used to overcome this difficulty. Among qualita-
tive modelling methods, we will utilize the context of rule-
based modelling to model a whole-body level.
Simpler form of rule-based modelling [16,17] makes it

possible to converts rules based on various sources of
knowledge, such as literature and computational models
of different formalisms. And this formalism can describe
more diverse states of a component in biological system
than the Boolean network model.
We previously proposed rule-based multi-level simula-

tion model [18]. In previous work, we showed the possi-
bility of our model to simulate the multi-compound drug
effect on human body, which is multi-level system. In
this work, we improved previous model to have better
performance.

Results
We have collected 190 rules from various sources such as
pathway database, ODE model, and Petri-net model. The
number of rules extracted from pathway databases, ODE
models, and Petri-net models are 67, 5 and 45 respectively.
In this work, we have focused on type 2 diabetes (T2D)

as a target for the simulation. Therefore, we have curated
T2D-related rules from a pathway database, such as Kyoto

Hwang et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):S4
http://www.biomedcentral.com/1472-6947/13/S1/S4

Page 2 of 9



Encyclopedia of Genes and Genomes (KEGG), Pathway
Interaction Database (PID) and related literatures. These
rules have been extracted from pathway data that contain
known twenty-two T2D drugs: Saxagliptin, Sitagliptin, Vil-
dagliptin, Metformin, Miglitol, Voglibose, Acarbose, Exe-
natide, Liraglutide, Mitiglinide, Nateglinide, Repaglinide,
Chlorpropamide, Glipizide, Gliquidone, Tolbutamide, Gli-
mepiride, Glyburide, Pioglitazone, Rosiglitazone, Troglita-
zone, Pramlintide [19].
In this work, We have also integrates converted rules

from different formalism like T2D-related nonlinear ODE
model. This ODE model contains beta-cell mass, insulin,
glucose as variables. Components, which are the features
describing pertained organs, in converted rules are beta-
cell, hepatocyte, adipocyte and circulation system. That is,
these are the T2D-related organs or cell types.
The initial conditions of T2D related attributes are

known from literature [13]. We set the initial conditions
of others as normal. Initial states of all attributes in our
model are normal. To simulate effect of T2D drugs with
our model, we need to make our model to T2D model. To
make our model as T2D model, we have added T2D-
cause rules, which are related to insulin resistant [20-22].
During simulation, rules induced by T2D drugs and rules
caused by T2D compete each other.
We simulated effect of well-known twenty-two T2D

drugs. The criterion of T2D diagnosis is established by the
World Health Organization definition, which is the state
of glucose in blood.

Drug effect pathway
Our simulation platform shows drug effect pathways,
where the drug actions propagates from the target to the
final nodes for the therapy that can change disease state to

normal state. Figure 2 demonstrates the metformin effect
pathway on T2D model. It shows integrated drug effect
pathway of metformin in the rules [20].We simulated
effect of single drug at each simulation step among
twenty-two drugs. According to simulation results, all
twenty-two drugs repress the state of glucose in the circu-
lation system. It could also investigate effects of multi-
drugs through a simulation.
According to the metformin effect pathway (Figure 2),

metformin targeted PRKAB1 enzyme in hepatocyte. The
metformin activate insulin secretion through GLUT4 and
inhibits gluconeogenesis, which generate glucose, by inhi-
biting PEPCK and Glucose 6-phosphatase. This result
shows corresponding mechanisms of metformin, which
previously studied [23]. Drugs (i.e. pioglitazone, rosiglita-
zone, troglitazone) targeting muscle cells inhibit insulin
resistance and glucose level. Drugs targeting pancreas
cells (i.e. exenatide, glyburide etc.) help insulin secretion
and regulation of glucose metabolism.

Combination drug
Our simulation platform can show whether combination
drugs have substantial efficacy for treatment or not, and
how combination drugs work on multi-scale model. We
simulated metformin, which targets hepatocyte, with
other drugs as combination drug. There were twenty-one
pairs of combination drug that consisted with metformin.
It was identified that the sixteen among twenty-one pairs
of combination drug have efficacy through our simula-
tion. Fifteen pairs of combination drug have strong evi-
dence of efficacy from previous clinical studies (Table 1).
In a case of metformin and rosiglitazone (Figure 3), met-

formin makes the state of gene PRKAB1 in hepatocyte cell
up and rosiglitazone makes the state of PPARg in adipocyte

Figure 1 The scheme of the multi-scale network. Molecular interaction between drug and target lead to alterations in cellular- and tissue-level
network, which lead to alteration in organ-level network, which, in turn, lead to whole body phenotype change.
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up. The result of metformin action reduces glucose level in
circulation and the result of rosiglitazone action reduces
glucose level by different pathways. In this way, we can
assist to investigate the mechanism of combination drugs
by our simulation result.

Conclusions
In this paper, we proposed novel rule-based whole-body
level simulation platform. We defined composition of
rules and components of this rule-based platform, which
can be regarded as nodes in a network, that is, a multi-
level network. Subsequently, we extracted rules by manual
curation from literatures, pathway databases and convert-
ing different modelling formalisms such as Petri-net and
ODE. We modelled multi-scale system that each compo-
nent and rule has a different time scale of the response.
To reflect this biological character, we utilized the thresh-
old to limit the change of component’s state for discerning
different time-scale. To simulate drug effect on the model,
we added curated rules known as causes of T2D. Conse-
quently, there exists an intervention between action of dis-
ease-causing rules and action of drug-induced rules. The
results of our simulation show drug effect pathways of
T2D drugs and how combination drugs work on whole-
body level.
The result of simulation shows conceptual effect path-

ways. In combination drug effect simulation, it can show
up whether combination drugs effect on the disease or
not. The limitation of prediction of type of combination
drugs, such as the synergistic and the addictive would be
remained to challenges in this field.
We expect that we can suggest new pairs of combina-

tion drugs or mechanisms of drugs by the result of our
simulation by augmented rules through text mining
approach [24] and other strategies.

Table 1 Supporting evidence for combination drug
simulation result.

Drug A Drug B Drug development State

Metformin Saxagliptin FDA approved

Metformin Sitagliptin FDA approved

Metformin Vildagliptin FDA approved

Metformin Miglitol Literature [26]

Metformin Voglibose FDA approved

Metformin Liraglutide Phase 3

Metformin Mitiglinide Phase 3

Metformin Nateglinide Literature [27]

Metformin Repaglinide FDA approved

Metformin Glipizide FDA approved

Metformin Gliquidone Literature [28]

Metformin Glimepiride FDA approved

Metformin Glyburide FDA approved

Metformin Pioglitazone FDA approved

Metformin Rosiglitazone FDA approved

We simulated twenty-one pairs of combination drug that consisted with
metformin. It was identified that the sixteen among twenty-one pairs of
combination drug have efficacy. Fifteen pairs of combination drug have
strong evidence of efficacy from previous clinical studies: ten pairs are FDA-
approved and two pairs are in clinical trials. And also three pairs have been
investigated in several literatures [26-28].

Figure 2 Single drug simulation result on T2D model. Metformin drug effect pathway on T2D model.
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Methods
A whole-body scale platform, which enables us to iden-
tify the spread of drug effect to cells or organs, is neces-
sary for whole-body simulation. We have implemented
the platform based on rule-based modelling.

Components and rules
The description of a biological system in this work con-
sists of a collection of components and rules. A compo-
nent in a biological system represents an organ, a cell,
or a drug and so on (Figure 4). A rule is composed of
left and right side to describe the action of rule:

(
Component type, Component name, Attribute type, Attribute name, Condition

) →(
Component type, Component name, Attribute type, Attribute name, Action

)

The left-hand-side of rules is a trigger, which deter-
mines the change of the right-hand-side of rules, and the
right-hand-side of rules is an expected perturbed status
by the left-hand-side. Each side of rule has five features:
four features describe the component itself and one fea-
ture describes the dynamic status. Component type
stands for the kind of components such as organs, cells,
or drugs. It makes us to discriminate the hierarchy of
components. Component name indicates the specifica-
tion of corresponding component type. A component
can have multiple attributes. Attributes have hierarchical
relationship to the component (Figure 4). For example,
when component type is a cell, attribute type can be
things in a cell such genes, hormones, metabolites and so
on. Each attribute has different state values. For example:

The states of gene, metabolite =
{
low, normal, high

}
The states of channel =

{
close, open

}
The left-hand-side of rules can trigger the right-side of

rules when they satisfy the condition, which is fifth feature
at the left-hand-side of rules. Each attribute has different
condition value by its attribute type. For example:

The condition values of gene, metabolite =
{
up, down

}
The condition values of channel =

{
close, open

}
The condition of a rule signifies the change of state

value of an attribute.
The description of condition ‘up’ is:
Si(t) = state of i attribute gene at t step.

Si (t) =
{

high, Si (t − 1) =
{
normal, high

}
normal, Si (t − 1) = {low}

The description of condition ‘down’ is:
Si(t) = state of i attribute gene at t step.

Si (t) =
{
normal, Si (t − 1) =

{
high

}
low, Si (t − 1) = {normal, low}

When the condition is satisfied, the state of an attri-
bute is changed by ‘Action’ in the right-hand-side of a
rule. Each attribute has different action value by its attri-
bute type. For example:

The condition values of gene, metabolite =
{
up, down

}
The condition values of channel =

{
close, open

}

Figure 3 combination drug simulation result on T2D model. Combination drug (Metformin and rosiglitazone) effect pathway on T2D model.
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The description of action ‘up’ is:
Si(t) = state of i attribute gene at t step.

Si (t + 1) =
{

high, Si (t) =
{
normal, high

}
normal, Si (t) = {low}

The description of action ‘down’ is:
Si(t) = state of i attribute gene at t step.

Si (t + 1) =
{
normal, Si (t) =

{
high

}
low, Si (t) = {normal, low}

So, the description of this rule is that:
(
Cell, hepatocyte, gene, PRKAB1, up

) → (
Cell, hepatocyte, gene, AGRP, up

)

Gene AGRP, which is in hepatocyte cell, change state
from ‘normal’, ‘high’ to ‘high’, or from ‘low’ to ‘high’
when gene PPKAB1, which is in hepatocyte cell, has
changed state from ‘normal’, ‘high’ to ‘high’, or from ‘low’
to ‘normal’.

Rule extraction strategy
One of the main issues of system development is collect-
ing rules of the system in a whole-body scale for the
simulation. For this purpose, we have extracted rules
from disparate information sources to increase coverage:
pathway database, ordinary differential equation (ODE)
model and Petri-net.
A rule curated from experts was described based on

dynamic status rather than the static. It is based on the
assumption that the body system changes its status
through perturbation. If a certain component of cellular
system does not alter, other components connected to it
cannot be affected permanently. Thus, curators have

extracted the rules from the context of the data that
describes perturbed status of a certain component. A
well-curated signalling pathway database, pathway inter-
action database (PID) provides valuable information of
diverse signalling protein interactions. Regulations of
proteins in each pathway were annotated explicitly, so it
could be converted to our rule formulae straightfor-
wardly. For the analysis of Type 2 diabetes (T2D),
related pathways like insulin pathway and insulin-
mediated glucose transport pathway in PID were consid-
ered to be extracted as a rule for the simulation. This
database also provides integrated resources from
external databases, such as BIOCARTA, REACTOME.
Therefore, we could also collect other insulin path-
way-related rules of external databases through these
databases.

Rule conversion from different modelling formalisms
An ODE model is composed of several differential equa-
tions describing relationship between variables in the
model. Some of the variables have clear relationship (i.
e., activation or inhibition) in, for instance, first-order
linear differential equations. However, some of equations
of nonlinear form make the relationship of variables dif-
ficult to determine.
We have examined whether the effect of a certain

variable to others shows a monotonic changes. Taking
an advantage of rule-based simulation, we have only
focused on the direction rather than the quantity. We
were able to extract rules of variables if they affect each
other monotonically. We also identified the nonmonoto-
nical relationship of variables if the range of changing
pattern of effect could be determined.

Figure 4 Component and attribute. Component is the place where attribute is or drug is. Attribute is the subject of the rule or drug
existence.
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Conventional Petri-net has the graphical structure con-
taining a transition and a place as an element of the
graph. A transition element means the changing action,
not the actual component, that mediates the interconver-
sion of place elements of the Petri-net through its action,
and a place element is a component of the body system
that takes the change of its status. Therefore, based on
the context of transition elements, we were able to
extract rules from places elements (i.e., place elements
will be located in the left- and right-hand-side of a rule
with its perturbed status determined by the context of
transition elements.)

The overview of simulation
This system has three kinds of inputs, such as a compo-
nent, a rule, and a disease file. The component file con-
tains information about components such as component
types, component names, attribute types and attribute
names. The system constructs components according to
the component file (Figure 5). The disease file contains
disease states of components. The system initiates the
state of components by a disease file to make the system
as a patient model. After all components in the system
are initiated, the system simulate according to the rules
in the rule file. The result file will be produced after
simulation is over. The result file has all state changes of
every component during the simulation. Each component

has the threshold for changing its state. Each threshold of
the components is different depending on the component
types.
Simulation algorithm
This system uses an asynchronous updating simulation
method to observe drug responses and drug effect path-
ways to implement stochastic rule firing. Before running
simulation, the system is initialized by T2D patient
model and T2D related drugs. Using T2D patient model,
the states of components, which are related to T2D, in
the system are changed to abnormal. Then, drugs are
injected to the simulation system. The action of drug
injection means the start of the simulation.
Algorithm.1 and 2 show the simulation running pro-

cess. R means all rules in the system. C means all compo-
nents in the system. AR(t) is a set that has all executable
rules in the specific time t. AC(t) is a set which has all
active components at time t. And RFS(c) is the rule firing
score of a component c. After a rule execution, the RFS
of a component, which is affected by the rule effect score,
which is RS(r), will be changed. TH(c) is the rule execu-
tion threshold of a component. If RFS(c) is greater than
TH(c), the state of component c is updated by the rule.
To model differences in the speed of signal propagation

in the body, we used a random-order asynchronous
updating algorithm. Executable rules are selected through
Algorithm 1. Next, one rule is randomly selected from

Figure 5 The overview of system platform. The platform constructs components by component file. Then, it initiates components by disease
file, which contain components value in disease status. Then, it simulates component by rules.

Hwang et al. BMC Medical Informatics and Decision Making 2013, 13(Suppl 1):S4
http://www.biomedcentral.com/1472-6947/13/S1/S4

Page 7 of 9



executable rules and executed. Then, the states of com-
ponents are updated if condition of the randomly
selected rule is satisfied. Then, all rules activated by the
randomly selected rule are added to AR for the next
iteration step. We repeated the above simulation 100
times as a Monte Carlo approach for finding drug effect
pathways.
R = {x|x is a rule}
C = {x|x is a component}
AR(t) = {x|x is an active rule at time t}
AC(t) = {x|x is a component at time t}
RFS(c) = (rule firing score of a component)
TH(c) = (rule execution threshold of a component)
RS(r) = (rule effect score)
Algorithm.1: RunSimulation( )

Algorithm.2: UpdateComponentSet(AC(t),Ri)

Algorithm.2 shows how to update the states of the com-
ponents in AC when Ri is executed at time t. First, save all
components affected by Ri at ACi. Then, repeat update of
RFS of Cj and check RFS is greater than threshold of the
component Cj, which is TH, until AC has not any element.
If the RFS is greater than the threshold, the state of the
component is updated.
Algorithm.2 shows how to update the states of the

components in AC when Ri is executed at time t. First,
save all components affected by Ri at ACi. Then, repeat
update of RFS of Cj and check RFS is greater than thresh-
old of the component Cj, which is TH, until AC has not
any element. If the RFS is greater than the threshold, the
state of the component is updated.

Rule execution threshold
Real human body parts (i.e. organs, cellular components,
enzymes) have biological functions which have various
timescale to complete the function. Therefore, for more
accurate simulation, each component has its own thresh-
old that represents the state change. Each rule execution
threshold of the components differs depending on the
component type and attributes type.
We determined threshold of the components based on

Bitting, et al [25] and assumed that molecules or cells have
smaller threshold (1.0) than tissue or organ threshold
(60.0).
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