
RESEARCH ARTICLE Open Access

Towards computerizing intensive care sedation
guidelines: design of a rule-based architecture for
automated execution of clinical guidelines
Femke Ongenae1*, Femke De Backere1, Kristof Steurbaut1, Kirsten Colpaert2, Wannes Kerckhove1,
Johan Decruyenaere2, Filip De Turck1

Abstract

Background: Computerized ICUs rely on software services to convey the medical condition of their patients as
well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines
quickly and accurately. However, the development of services is often time-consuming and error-prone.
Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are
often ambiguous, which leads to unnecessary variations in treatments and costs.
The goal of this paper is to present a semi-automatic verification and translation framework capable of turning
manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual
and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communica-
tion between the IT and the medical domain. This leads to a less time-consuming and error-prone development
phase and a shorter clinical evaluation phase.

Methods: A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-
based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An
overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown
how this framework can be integrated into a service-oriented architecture (SOA).

Results: The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an
example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow
and executing and deploying this Rule-based application as a part of a SOA. The results show that the
performance of Drools is comparable to other technologies such as Web Services and increases with the number
of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows.

Conclusions: The framework is an effective solution for computerizing clinical guidelines as it allows for quick
development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring
the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical
staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline.

Background
Introduction
Computerized decision support systems (CDSS) have
the potential of improving the quality of health care
[1-3]. However, more than 20 years after the first
reports about this potential, the adoption rate of using

Information and Communication Technology (ICT) to
quickly and accurately guide diagnosis and therapy is
still very low. However, one of the main reasons for this
slow adoption rate is the gap in communication between
the ICT and medical domain. These projects unite peo-
ple with different backgrounds, such as software develo-
pers, health services researchers, physicians and domain
experts. Uniting all these people in a team requires
effort and commitment to overcome the communication

* Correspondence: Femke.Ongenae@intec.ugent.be
1Department of Information Technology (INTEC), Ghent University - IBBT,
Gaston Crommenlaan 8, Bus 201, 9050 Ghent, Belgium

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

© 2010 Ongenae et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:Femke.Ongenae@intec.ugent.be
http://creativecommons.org/licenses/by/2.0


problems caused by the gap between the information
and knowledge necessary to implement guidelines and
the information used in guidelines. The developers often
do not have the required medical domain knowledge,
thus a lot of evaluation and testing is needed to make
sure the service works correctly. The evaluation is also
hampered by the fact that the medical staff does not
understand the code of the program as it is not pre-
sented in a human-readable format. Moreover, clinicians
sometimes doubt the effectiveness of the use of a CDSS
[3]. This leads to a very time-consuming and error-
prone development and often results in inconsistencies
[4]. This problem can be approached by using bridge
personnel who have the knowledge of multiple disci-
plines used in this process [5]. However, this personnel
is often difficult to find. As a consequence, a lot of care-
related activities are still being conducted based on
manually constructed guidelines or flow charts. Such a
flow chart contains medical instructions for diagnosis,
treatment and follow-up of a certain medical condition.
However, the key problem encountered here is that
such schemes are often ambiguous, simplified, incom-
plete and fail to cover all situations that may occur
[6-8]. This leads to unnecessary variations in treatments.
The flow charts lack definitions, focus on omission
errors, timing of events, and concurrent drug therapy
[9]. The conditions used in the guideline fail to specify
the parameters on which the decisions are based. These
variables are often described at the wrong level of
abstraction. Moreover, the actions may not be suitable
for execution and are sometimes too abstract [5]. The
sedation guideline, used for the depression of conscious-
ness of critically ill patients, is an example of a complex
guideline which is implemented in the Intensive Care
Units (ICUs) by providing the medical staff with manu-
ally constructed flow charts. These flow charts contain
many ambiguities and simplifications and do not enforce
correct and timely execution of the guideline.
Kawamoto et al [10] argues that automatically provid-

ing decision support as part of the clinicians workflow is
the most important and effective feature of CDSS to
modify the behavior of clinicians. Other factors to
improve the use of decision support systems are: provid-
ing support at the time and location of decision making,
giving a recommendation and using a computer [11,12].
Thus, a semi-automatic verification and translation fra-
mework, capable of turning manually constructed flow
charts into ready to use programs, would combine the
strengths of service-oriented and manual approaches
while decreasing their disadvantages.
The ICU of the Ghent University Hospital is currently

evaluating a service-oriented platform, the Intensive Care
Service Platform (ICSP) [13], that supports physicians in
the follow-up of patients by providing a number of

medical support services that monitor the condition of
the patient and make medical suggestions or produce
new data that can be used by other services. In this paper
we propose an extension of this platform with an archi-
tecture that semi-automatically translates the XML-based
[14] flow charts into Drools Rule Flows [15] by employ-
ing semantic technologies such as ontologies [16] and the
Semantic Web Rule Language (SWRL) [17]. The com-
plete flow of the proposed solution is depicted in Figure
1. The translation process will focus on guidelines repre-
sented as XML-based flow charts. The ontologies encode
the medical and natural language domain knowledge
which can occur in the flow charts. SWRL is used to
write Rules on top of these ontologies. Reasoning on top
of these ontologies and the Rules are responsible for the
translation of the information in the XML flow charts to
the Drools Rule language. Eventually a computerized
clinical guideline is obtained which is deployed on the
ICSP platform as a service and gives notifications to the
medical staff about tasks that need to be performed or
problems that are detected. The goal of this paper is two-
fold. On the one hand, a conceptual description of a
semi-automatic translation framework capable of turning
a clinical guideline, expressed as a flow chart, into a
working Rule-based application is presented. On the
other hand, the applicability of the Drools Rule language
to computerize clinical guidelines is evaluated by expres-
sing an example guideline, namely the sedation protocol,
as a Drools Rule Flow and executing and deploying this
Rule-based application as a part of the ICSP platform.
Related Work
In this section we present some of the research litera-
ture related to computerizing clinical guidelines, Rule-
based systems, ontologies and the ICSP platform.
Computerizing clinical guidelines
A lot of standardization efforts and formalisms for
representing clinical guidelines have been proposed in
literature [18-21]. The most prevalent formats are the
Arden Syntax [22,23], PROforma [24,25], EON [26],
GLIF [27,28], PRODIGY [29], Asbru [30] and Guide
[31]. More information about these formats can be
found in Additional file 1.
Some research has also been done on automatically

translating manually constructed guidelines to computer
programs. Kaiser et al [32] propose a multi-step
approach using information extraction and transforma-
tion to extract process information from clinical guide-
lines. Heuristics were applied to perform this extraction.
Using patterns in the structure of the document and in
expressions, the need of natural language processing
(NLP) was eliminated. This approach differs from our
approach as it only works on very structured docu-
ments. No interaction with a domain expert occurs,
which heightens the chance of errors in the translation.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 2 of 22



Rule-based systems
Rule-based systems [33] are used in the field of Artificial
Intelligence (AI) to represent and manipulate knowledge
in a declarative manner. The domain-specific knowledge
is described by a set of (production) rules in the produc-
tion memory. A Rule can be seen as a simple mathema-
tical implication of the form A ® C, where A is the set
of conditions, or antecedent, and C is the set of actions
to be taken, or consequent. The general idea is that a
Rule-based system holds a predefined set of Rules in its
memory. From that moment on, a large number of
Facts, which represent the data in the Working memory,
can be given to the engine. It will check the conditions
of each Rule against the Facts. If all the conditions of a
Rule are said to be valid, it is fired. When a Rule is
fired, its predefined consequent will be executed.
Rule Engines require extensive pattern matching dur-

ing their execution. It has been estimated that up to
90% of a Rule Engine’s run time is spent on performing
repetitive pattern matching between the Rule set and
the working memory elements [34]. Originally String
comparison algorithms were used for this such as
Boyer-Moore, Knuth-Morris-Pratt and Rabin-Karp. In
1974 the Rete algorithm was published by Dr. Charles L.
Forgy [35]. It makes the Rule-to-Fact matching process
a lot quicker than the previously mentioned algorithms.
When Rules are added, the Rete algorithm constructs a
network of nodes, each representing a pattern from the
conditions of the Rules. These nodes are connected with
each other, whenever the corresponding patterns are in

the same antecedent of one of the Rules. The con-
structed network looks like a tree, with the leaves being
the consequents of the Rules. If a path is traced from
the root node all the way to one of the leaves, a com-
plete Rule is described. When the Facts are added to the
algorithm, they are placed in memory next to each node
where the pattern matches the Fact. Once a full path,
from root to leaf, is described, a Rule is fired and its
consequent is executed.
Ontologies
Ontologies [16] can structure and represent knowledge
about a certain domain in a formal way. This knowledge
can then easily be shared and reused. The Ontology
Web Language (OWL) is the leading language for
encoding these ontologies. Because of the foundation of
OWL in first-order logic, the models and description of
data in these models can be formally proved. It can also
be used to detect inconsistencies in the model as well as
infer new information out of the correlation of this data.
This proofing and classification process is referred to as
Reasoning. Reasoners are implemented as generic soft-
ware-modules, independent of the domain-specific pro-
blem. For this research, the Reasoner Pellet [36] was
used. Existing medical and natural language ontologies
can be used to support the translation process. Cyc
[37,38] and WordNet [39] are two well-known ontolo-
gies that model general knowledge about the English
language such as synonyms and generally true state-
ments. More information about these ontologies can be
found in Additional file 2. A wide range of ontologies

Figure 1 High level overview of the framework to semi-automatically translate clinical guidelines.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 3 of 22



exist about the eHealth domain. Additional file 2 gives
an overview of the most relevant, well-known and well-
developed eHealth ontologies, which are available in
OWL and that could be (partially) reused to support the
semi-automatic translation such as LinkBase [40,41],
SNOMED CT [42-44], the Galen Common Reference
Model [45,46], the NCI Cancer Ontology [47,48], the
Foundational Model of Anatomy Ontology (FMA)
[49,50], the Gene Ontology (GO) [51,52] and the Ontol-
ogy for Biomedical Investigations (OBI) [53,54].
Intensive Care Service Platform (ICSP)
The successful use of CDSS requires structured and
standardised information in the Electronic Health
Record (EHR). However, EHR has some limitations,
such as clinical data limitations (different meaning of
words), technological limitations (usage on PDAs, inter-
operability) and the lack of standardization [55,56].
Another problem is that less than 20% of the hospitals
are completely digital while access through an electronic
platform is necessary to adopt CDSS [57,58].
The computerization of the Intensive Care Unit of

Ghent University hospital was started in 2003 by imple-
menting a system, the ICSP platform, which gathers all
generated patient data and stores it in a large database
called IZIS (Intensive Care Information System). The
ICSP platform consists of a number of services. A bed-
side PC allows the medical staff to input clinical obser-
vations and prescription and administration of medica-
tion. Monitor parameters, administrative data and
results of medical tests are automatically gathered from
monitoring equipment and other databases. Services
monitor the condition of the patient and suggest medi-
cal decisions or produce new data which is stored in the
database and can be used by other services.
The ICSP platform is an example of a Service-

Oriented Architecture (SOA) [59]. The main idea
behind SOA is the separation of the functions of the
system into well-defined, independent, reusable and dis-
tributable components, referred to as services. These
services communicate with each other by passing data
from one service to another or by coordinating an activ-
ity between two or more services. Web Services [60] are
often used to implement this architecture.
Paper Organization
The remainder of this article is organized as follows.
The Methods section begins with an overview of the
high level architecture of the platform. Next, the choice
of Drools as the ideal Rule language for implementing
clincical guidelines is motivated. Thereafter, an architec-
ture for semi-automatically translating the XML-based
flow charts to Drools Rule Flows is detailed. Next, a
description of the platform that integrates this Rule-
based system into a Service-Oriented Architecture
(SOA) is given. This section ends with an overview of

the methods that were used to evaluate the proposed
platform, namely the BMI application and the ICU seda-
tion guideline. The Results section further investigates
the suitability of the Drools Rule language for the imple-
mentation of clinical guidelines by exploring its perfor-
mance. The results of translating the ICU use case, the
sedation guideline, are also detailed. Finally the main
conclusions of this research are discussed and
highlighted.

Methods
High-level architecture
A high level overview of the architecture of the platform
is shown in Figure 2. The components at the top left of
Figure 2 are responsible for the semi-automatic transla-
tion of the clinical guideline into a Drools Rule Flow.
The XML-based flow chart, designed by the medical
staff, enters the platform in the Workflow Interpreter
Component. All the excess XML-code is removed by the
Pre-processing module to ideally prepare the flow chart
for the translation. Then the Combined Reasoning (CR)
module processes and translates the flow chart to an
intermediate language by employing ontologies and
SWRL Rules. The Post-processing module delivers a
working application by translating this intermediate lan-
guage to a Drools Rule Flow. These components are dis-
cussed in more detail in the section on semi-automatic
translation.
The components at the top right of Figure 2 illus-

trate the input of medical data about patients. This
data is collected by querying the IZIS database through
the ICSP platform and communicating with the nur-
sing staff. More information about these components,
which were constructed by the co-authors, can be
found in the Related Work section and the section on
integrating a Rule-based system into a service-oriented
platform.
The components surrounded by a gray shade repre-

sent a Rule-based system which is responsible for the
correct execution of the application. These components
exist independently and are further explored in the fol-
lowing section. The flow (the Rules) is loaded into the
Production memory and the Facts (the medical data) in
the Working memory. Next, the Inference engine will
execute the clinical guideline by employing a Pattern
matcher. This module matches the Rules on Facts.
When a match is found, the parameters in the Rule are
substituted by the Facts and the Rule is executed. As a
consequence, new Rules can be fired. Inputting addi-
tional Facts can also trigger the execution of Rules. This
way the entire clinical guideline is executed. The Agenda
module is responsible for ordering the Rules. When
more than one Rule can be fired at the same time, the
one with the highest priority will be fired first.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 4 of 22



Sometimes the execution of a Rule requires communi-
cation with the medical staff, for example when addi-
tional medical input is needed or when the staff needs
to be made aware that a task has to be executed e.g. giv-
ing medication. This is handled by the Communication
module.
Note, that this component-based architecture is very

flexible and adaptable. One can, for example, easily opt
to use another Rule language by writing a new Post-pro-
cessing module and plugging it into the platform.
Rule-based execution environment: technology choices
In this section, we concentrate in particular on the bot-
tom part of Figure 2 which is surrounded by a gray
shade. A Rule Engine was chosen to implement and
deploy the clinical guideline instead of using one of the

mentioned representation formats developed specifically
for computerizing clinical guidelines (see Related Work
section). The greatest benefit offered by the Rule-based
approach is that by separating the domain-specific
knowledge (described by the Rules) from the imple-
menting logic, it becomes possible to alter and extend
the provided functionality at runtime. Some of the for-
mats, such as GLIF and Guide, have very sophisticated
and complex representations which makes it very diffi-
cult to semi-automatically translate to these formats.
These formats also focus on a specific application
domain, namely medical guidelines. Rules on the other
hand have a simple representation format, which allows
to easily express and evaluate difficult problems. They
are also more easily interpretable by domain experts

Figure 2 High level overview of the architecture. Gives a high level overview of the complete architecture. The top left part of the figure
represents the components responsible for translating XML-based flow charts into Drools Rule Flows. These components were designed by the
authors. The components surrounded by a gray shade visualize the different modules of a Rule-based system such as Drools. These are external
components which exist independently. Every possible Rule Engine could be inserted as long as a Post-processing module exists for it. This
module translates the intermediate language to the specific language of the Rule Engine. The authors have designed a Post-processing module
for Drools. The components at the top right of the figure illustrate the communication of the proposed architecture with the existing ICSP
platform. The ICSP platform and the IZIS database were constructed by the co-authors.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 5 of 22



than hundreds of lines of programming language code.
Moreover, Rule Engines can be used to represent guide-
lines for a wide variety of purposes. This way the semi-
automatic translation framework can be easily employed
in other application domains, such as helpdesk
guidelines.
However, the current framework could easily be

adapted to use one of the mentioned representation for-
mats for computerizing clinical guidelines. A new Post-
processing module needs to be written that translates
the intermediate language, which is outputted by the CR
module, to the representation language of the chosen
clinical guideline format.
The remainder of this subsection is organized as fol-

lows. First, the desired features, which the chosen Rule
Engine should have, are determined. Based on these, the
choice for Drools as the ideal Rule Engine to express
and semi-automatically translate clinical guidelines is
motivated.
Comparison of existing, prevalent Rule Engines
For comparing the different studied Rule Engines, the
following arguments, in order of importance, were taken
into account:

• Nowadays most Rule Engines employ the Rete
algorithm (or a variant of it) (see Related Work sec-
tion). Since the publication of this algorithm not a
lot of improvements have been made. Optimizations
of Rete (such as Leaps, Treats and Rete II) have
been proposed which perform better in very specific
situations. However, Rete is still the leading algo-
rithm for general-purpose Rule Engines. Moreover,
the Rete algorithm sacrifices memory for speed.
Since speed is of critical importance in medical
applications, Rule Engines, which implement this
algorithm, are preferred.
• An important goal of this work is to close the gap
in communication between the domain experts, e.g.
the medical staff, and the IT developers. Rule
Engines are favored which are backed with tools that
support this cause, such as user-friendly Rule Editor
Graphical User Interfaces (GUIs) and explanation
features that visualize how a certain conclusion was
obtained by the Rules.
• A guideline flow chart is in essence a workflow as
it expresses a sequence of steps, such as actions and
decisions that need to be taken. Therefore, Rule
Engines are favored for which an existing integration
with a workflow engine exists. This allows to more
easily translate the guideline to this format which
closely resembles the original flow chart.
• To ease the understanding of the Rule Engine and
its integration into the ICSP platform, it is desired to
be Open Source.

• Platform and database independent Rule Engines
are preferred.
• Actively maintained Rule Engines, with a large user
base and good documentation are favored.
• Rule Engines which offer additional tools, e.g. for
testing or persisting the Rules and Facts, are desired.

A list of possible Rule Engines, including for example
Mandarax [61], Jess [62], Biztalk Server [63] and ILog
JRules [64], was investigated. Eventually, JBoss Drools
[15], a free, Open Source, Java-based Rule Engine, was
chosen. It provides an implementation of the Rete algo-
rithm [65], the ReteOO [66] algorithm, which is basi-
cally an improved version of Rete that takes advantage
of the fact that nowadays programming languages are
object-oriented. Moreover, Drools offers a component,
the Drools Flow engine [67], that allows to implement
Rules in the shape of flow charts. This closely resembles
the format of the original clinical guideline XML-based
flow chart. This helps to close the gap in communica-
tion as the Drools flow charts can easily be visualized to
the medical staff for evaluation. Drools Rule Flow files
are internally stored in XML, which additionally eases
the automatic translation. On top of this, there exists a
Drools plug-in for the Eclipse platform [68] that offers a
wide range of tools for debugging, testing, editing, visua-
lizing and persisting the Rules. Drools is actively main-
tained, has a very large user community and provides
solid documentation.
Drools
The capabilities of Drools were studied in depth to
make sure it was a suitable Rule language to express
clinical guidelines. As we mentioned in the previous sec-
tion, the presence of the Rule Flow component was an
important argument to choose Drools. This is a work
flow or process engine which allows advanced integra-
tion of Rules and processes. A Rule Flow describes the
order in which a series of steps should be executed, by
using a flow chart with an XML-based encoding. A sim-
ple example can be seen in Figure 3. Drools provides
nodes which implement the Split of a path (decision
nodes), the Join of 2 separate paths and Loops. It also
provides a Timer node, which allows triggering an event
after a certain amount of time has passed. This is a very
important feature for clinical guidelines as they often
contain actions that need to be performed after a certain
amount of time or on a regular basis.
It is important that we can interact with the human

user as a consequence of a Rule. The HumanTask node
of the Drools Rule Flow represents an atomic task that
has to be executed by a human interacting with the
application. It can thus be used to communicate with
the medical staff. When a HumanTask node is encoun-
tered, the flow will only continue when this task is

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 6 of 22



completed. Although this node has all the features we
require, it is a fairly new feature in Drools Rule Flow. It
was not completely implemented yet. This problem was
mediated by using another type of node, namely Work
Items. This is a very abstract node which can be used by
the developers to implement any type of needed action
which is not yet included in Drools Flow 5 Milestone 5.
Semi-automatic translation
This section further details the semi-automatic transla-
tion of the XML-based flow chart of the clinical guide-
line into a Drools Rule Flow. This translation is handled
by the Workflow Interpreter, the blue box at the top left
of Figure 2.
A conceptual architecture for this Workflow Interpreter

was created using the Attribute Driven Design (ADD)
method [69]. ADD works in terms of iterations by utiliz-
ing a divide-and-conquer strategy. First, a single module
that comprises the entire system is created. Next, it is
decomposed into smaller subsystems. The most impor-
tant quality attribute for this application is modifiability,
with usability following shortly behind.
The first ADD iteration, which is represented by the

blue box at the top left of Figure 2, is characterized by a
pipes and filters pattern. This pattern bears close resem-
blance to a pipeline where the data flows from one end
to another. Filters can be added, replaced or moved by
placing pipes accordingly. The use of this pattern guaran-
tees modifiability as new components (filters) can easily
be plugged into the system. The XML-based flow chart,
designed by the medical staff, enters the platform in the
Workflow Interpreter Component. All the excess XML-
code will be removed by the first filter, namely the Pre-
processing module, to ideally prepare the flow chart for
the translation. Then the Combined Reasoning (CR) filter
will process and translate the flow chart to an intermedi-
ate language. The last filter, the Post-processing module,
delivers a working application by translating this inter-
mediate language to a Drools Rule Flow. To achieve this,
algorithms will be implemented using the advantages and
properties of this intermediate XML format. This way,
the different components can be detected and the

essential code, necessary for the Drools execution engine,
can be generated. General handler components will be
used which implement a general functionality, such as an
interaction component to communicate with the nursing
staff or a data component to execute a database query.
For example, in the interaction component, only the
message needs to be replaced, the rest of the code stays
the same for each interaction component.
The Combined Reasoning module, where the bulk of

the translation takes place, is molded further in the sec-
ond ADD iteration through the blackboard pattern, as
can be seen in Figure 4. As the name suggests, one can
think of a chalkboard in a class room (the Blackboard
[70]), where students (Knowledge Sources) contribute
their expertise on the contents of the chalkboard. The
teacher (the Coordinator) guarantees that things happen
in an orderly fashion by allowing only one student at
the same time to write on the chalkboard. Moreover,
students always communicate indirectly via the chalk-
board, never through direct conversation.
This pattern is ideal to apply here because there is not

one algorithm that can completely handle the transla-
tion process. There are however different heuristics and
algorithms available that offer a partial solution to the
problem which can be employed as Knowledge Sources.
New algorithms can easily be plugged into the system
which again improves the modifiability of the system.
As Knowledge Sources, existing medical and natural

language ontologies can be used [71]. Some interesting
ontologies are described in the Related Work section.
Additionally an ontology can be constructed that models
information-specific for the hospital or department
where the application will be deployed. The semantics
of a flow chart are not only contained within the text,
but also in the usage of different symbols and figures.
For example, a trapezoid can depict an if-structure. The
Diagram Reasoner Knowledge Source is used to translate
these symbols to the intermediate language. It also
employs an ontology, namely the Diagram Ontology,
which models information about the used symbols, both
in the UML and the intermediate format.

Figure 3 A simple example of a Drools Rule Flow.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 7 of 22



Rules are specified on these ontologies by using SWRL
[17]. OWL Reasoning and these SWRL Rules model
how the translation can take place. Examples of such
Rules can be found in the Results section in the ICU
use case: sedation guideline subsection.
A human interactor will have to be involved in this

translation process as Knowledge Source to solve pro-
blems that may occur such as picking between two pos-
sible situations, clarifying a symbol by giving a synonym
and so on. This human interactor can easily be a medi-
cal domain expert such as a physician or a nurse as
these questions will be posed in a natural language. This
helps to close the gap in communication between the
medical staff and the computer scientist.
The complete workflow of the Combined Reasoning

module is depicted in Figure 5. The Blackboard thus
contains the flow chart in different stages of transforma-
tion. The Coordinator investigates which of the Knowl-
edge Sources, namely the ontologies with accompanying
SWRL Rules and the Diagram Reasoner, can contribute
to the solution at this point. The Coordinator also deter-
mines which Knowledge Source will offer a partial solu-
tion which brings us the closest to the final solution,
namely the complete translation. This Knowledge Source
is allowed to execute and write this partial solution on

the blackboard. When the translation process gets stuck,
questions are posed to the domain expert until the issue
is resolved. Incorrect translations are detected by the
domain expert who monitors the translation. After each
step of the translation process, the Drools Rule Flow
which has been constructed so far is shown to the
domain expert. As can be seen in Figure 3 it looks a lot
like the original flow chart and is thus easy interpretable
by the domain expert. If the expert detects an error in
the flow chart or if additional exceptional situations
need to be supported, he or she can correct it before
continuing the process by using an intuitive Rule Editor
GUI, which allows to add Rules to the application. The
expert can also attach an explanation or remarks. These
new Rules can be represented in a user-friendly GUI to
the domain expert. In case it is not what he/she had in
mind, it can quickly be adapted, without loss of develop-
ment time. This also decreases the evaluation time as
the application does not have to be completely deployed
before errors are noticed. At the end of the translation
the whole Rule Flow is visualized to the domain expert.
It is now ready for initial evaluation. The human-read-
able flow can be evaluated by various medical staff
members and corrections can be made through the
GUI. As a last step an extensive clinical evaluation has

Figure 4 The class diagram of the Combined Reasoning (CR) module. Visualizes the second ADD iteration of the semi-automatical
translation architecture. It represent the Combined Reasoning module through the blackboard pattern. The light blue classes represent Knowledge
Sources, such as the ontologies with accompanying SWRL Rules and the Diagram Reasoner. The yellow class represents the Blackboard, which
contains the flow chart that is currently being translated. The purple class represent the Coordinator which organizes all the activity. The dark
blue class functions as the general entry point to the Combined Reasoning module and contains methods that can be called by other modules.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 8 of 22



to take place to make sure that the application makes
the appropriate decisions under the various possible
circumstances.
Integration into a service-oriented platform
As mentioned in the Related Work section, this archi-
tecture was integrated into a Service-Oriented Architec-
ture (SOA), namely the ICSP platform.
A general applicable framework was developed that

integrates a Rule-based system within an existing SOA,
as visualized in Figure 6. The gray modules depict a ran-
dom Client Application which uses the Rule-based sys-
tem, e.g. a GUI or an ICSP service, and the ICSP
components. The DataLookupService [72] is a Web

Service which allows the ICSP platform to retrieve data
from a database in a flexible manner. The modules in
white represent the Rule Engine Service, which contains
the Rule Flows about the clinical guideline, and its utili-
tary services. The Rule Engine Service offers the actual
Rule-based functionality. It contains methods for main-
taining the various Rule Engine instances, adding and
removing Rules and Facts to a certain Rule Engine
instance and firing the Rules which initiates the process
of matching the Facts on the Rules. It is fully integrated
into the SOA as a Web Service [73]. The RuleDataSer-
vice is used as a persistent container for reusable model
data such as Rules and Facts.

Figure 5 The sequence diagram of the Combined Reasoning (CR) module. Represents how all the components of the Combined Reasoning
module interact with each other and how the data flows between them. The same colors for the classes are used as in Figure 4. Note that all
the function calls are synchronous, which means that the next action cannot be started before the previous one is ended.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 9 of 22



This platform is able to support different Rule Engines
and even different instances of the same Rule Engine at
the same time. This allows every application to use a
separate instance with its own Rule set and Fact base.
To integrate a new Rule Engine, the developer only
needs to write a new Adapter module that translates the
generic Rule format used within the platform to the spe-
cific Rule language constructs of the Rule Engine. Cur-
rently, only an Adapter for Drools is written.
The framework supports a wide variety of applications

by providing the Rule Engine instances with generic
input and output options for maximum compatibility
with the existing services. The Rule Engine Service can
receive and retrieve input from any arbitrary source and
can send output to every future and current service.
To achieve a generic input mechanism the user can

decide what the incoming data model (Facts) looks like
and can then define Rules using this model. To allow
this while still remaining compatible with various exter-
nal services, a module was developed that can automati-
cally translate the dynamic model of the Facts into Java

Beans. The fields of these beans however differ from
Fact to Fact. This makes it impossible to construct a
generic representation of a Fact based on for example
an interface. To resolve this, the program analyzes the
data model specified by the user and dynamically gener-
ates the required beans at runtime [74]. ASM [75], a fra-
mework for Java byte code manipulation, was used to
support this functionality. It is possible to process Facts
that are delivered directly by a service, but the possibi-
lity should also exist to collect the data automatically
from the database. However, the Rule Engine Service is a
passive component that does not take initiative and only
processes requests from client applications. To support
the automatic retrieval of data the JobSchedulerService
was implemented which provides the possibility to
define tasks (jobs) and plan them for execution at a cer-
tain time. During the execution of a job, data (Facts) is
retrieved from a component, e.g. the DataLookupService,
and transformed to input for the Rule Engine Service.
The output of the Rule Engine Service consists of

Actions which can be executed as the consequence of a

RuleEngine
Service

RuleData
Service

Distributor
Service

JobScheduler
Service

DataLookup
Service

ICSP platform

Client 
Application

Schedule Jobs, Manage Jobs

Store and retrieve rule data

Manage rule engines

Get data

Send event

Call services

Distribute events

Execute jobs

Figure 6 Interaction view of the integration framework. Represents how all the components of the integration framework interact with each
other and how the data flows between them. The modules in white represent the Rule Engine Service and its utilitary services. The gray modules
depict a random Client Application which uses the Rule-based system and the ICSP components. The DataLookupService allows the ICSP platform
to retrieve data from a database. The RuleDataService is used as a persistent container for reusable model data. The RuleEngineService offers the
actual Rule-based functionality. The JobSchedulerService allows to automatically retrieve data from a database. The DistributorService an event
handling service which provides access to the existing services in the ICSP platform.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 10 of 22



Rule. This generic output mechanism was achieved by
providing a fully generic Action Descriptor Class and a
processing engine that interprets and executes these
descriptors. New output possibilities can be added by
extending the Action Processing Engine. Currently avail-
able actions are the distribution of events to the Distri-
butorService and the execution of an arbitrary Web
Service method. This last action is easily supported by
executing SOAP [76] requests that can intuitively be
created using a GUI. The DistributorService is an event
handling service which serves as the connection point to
the existing ICSP platform. It allows services from the
ICSP platform to subscribe to events they are interested
in. A Rule can have as consequent a service call to the
DistributorService to trigger a certain event. The Distri-
butorService then alerts all the services which are inter-
ested in this event. The publish/subscribe mechanism of
the DistributorService was implemented through a tech-
nology called SAVAN [77], a C implementation of the
WS-Eventing specification.
To ease the integration of this program into other

applications, all the data, such as the Rules, are saved in
an XML-format by using XStream [78].
Evaluation methods
This subsection details the methods which were used to
evaluate the performance of Drools and the proposed
architecture, namely the BMI application and the clini-
cal ICU use case, the sedation guideline.
Drools performance evaluation
To get a better understanding of the execution times of
Drools, we used the following test case. An application
categorizing Body Mass Index (BMI) values was devel-
oped as a Java class, a Drools Rule file, a Drools Rule
Flow and a BPEL application.
The Drools Rule Flow to categorize BMI values was

also used to analyze the loading times of the Production
memory and the Working memory of the Drools produc-
tion system. A Logger is also loaded when the applica-
tion is started. The loading of the Production memory
consists of loading the Rule Flow and the Rule files,
constructing the Knowledge Base and the packages and
checking for faults. The influence of the number of
decision nodes in the Rule Flow on the loading time
was also examined. This was done by constructing a
Rule Flow and each time increasing the number of Split
nodes. The result is comparable to a binary search tree.
This way Rule Flows with 1, 3, 7, 15, 19, 24, 28 and 31
Split nodes were constructed.
All tests were executed on a MacBook Pro (2.4 GHz

Intel Core 2 Duo, 2 GB RAM, Mac OS X version
10.5.7) using the IDE Eclipse 3.4.2 with the Drools plug-
in. The BPEL application was executed in NetBeans
6.5.1 with a GlassFish V2 application server. Each test
was repeated 10,000 times.

ICU use case: sedation guideline
The sedation guideline [79] is a clinical guideline, used
for managing the depression of consciousness of criti-
cally ill patients in case of severe trauma or for patients
needing ventilatory support due to respiratory, cardiac
or neurologic failure.
The choice of sedative agents differs according to the

expected duration of the sedation, and the given doses
will vary depending on the desired sedation level of the
patient (light sedation vs. deep comatose patients).
These choices are translated into three different sedation
guidelines, i.e. the short, normal and deep/long-term
sedation guideline. Patients requiring only a short term
of sedation are given the most quickly and short acting
medication, by which the required sedation level is easily
achieved. The other patients will be given less expensive,
but longer acting and more difficult to titrate medica-
tions. The sedation level of the patient is measured by
the Richmond Agitation-Sedation Scale (RASS) [80],
which has values ranging from -5 to 4, with -5 being
maximal depression of consciousness, and 0 being fully
awake and calm. Values above zero mean that the
patient is somewhat anxious (value 1), tries to remove
tubes or equipment (value 2 and 3) or is violent (value
4).
The main difficulties of the automatic follow-up pro-

cess of this guideline are:

• The medical staff has to decide whether short or
long acting sedative medication will be used, which
will be reflected in the choice of sedation guideline
(short vs. normal vs. deep/long-term sedation guide-
line). When patients are kept too long on the short
acting medication, the costs become very high. Addi-
tionally, the duration of mechanical ventilation (MV)
has previously been linked to an increased risk of
developing Ventilator-Associated Pneumonia (VAP)
[81]. VAP is one of the more frequently encountered
nosocomial infections in the ICU [82]. Reducing the
duration of MV and length of stay in the ICU are
therefore important issues in the ICU setting. Recent
studies have shown that the use of a sedation algo-
rithm to promote tolerance to the intensive care
environment and preserve consciousness resulted in
a marked decrease in the duration of MV and VAP
[83].
• A goal RASS, which indicates the sedation depth
that needs to be achieved, has to be determined at
the beginning of the sedation by the physician. This
is sometimes not clearly communicated between the
various staff members who care for the patient.
• The RASS score needs to be registered by the nur-
sing staff every four hours, but this is not always
strictly followed due to the high workload.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 11 of 22



• The correct RASS score needs to be achieved and
the proper actions need to be taken to lower or ele-
vate the sedation level. If the patient is sedated too
deep or too long with long acting drugs, it will take
longer to wake him or her up, which will lead to an
increased duration of ventilation and length of stay
in the ICU, all causing an increase in costs.
• All the medication has to be entered in the medi-
cal database.

To execute this guideline, the medical staff currently
uses 5 paper flow charts, which can be found in Addi-
tional file 3. These flow charts contain many ambiguities
and simplifications and do not enforce correct and
timely execution of the guideline. An application, using
Drools Rule Flow, was developed to facilitate the use of
the guideline and mediate the previously mentioned
problems regarding the follow-up of the guideline. To
evaluate this application, the same execution environ-
ment was used as for the Drools performance tests.

Results
This section further investigates the suitability of the
Drools Rule language for the implementation of clinical
guidelines by exploring its performance. The translation
of the clinical use case, the sedation guideline, into a
Drools Rule Flow application is also presented.
Drools performance results
The execution times of the various BMI applications are
shown in Figure 7. The standard deviations are respec-
tively 0.0004, 0.0011, 0.0038 and 0.0195 ms. The plain
Java class outperformed the other applications. The rea-
son is the overhead generated by the other applications.
The execution of a Rule-based system introduces the
processing and loading of external files. The BPEL appli-
cation needs to make a Web Service call to the applica-
tion server. However, a Java class is much less
comprehensible and clear then a Rule (Flow) file. It
would be very difficult and error-prone to implement a
complicated clinical guideline in Java as this would lead
to a lot of intertwined if-structures. However, the execu-
tion times of all the applications are below 2 ms, which
is negligible.
The results of analyzing the loading times of the Pro-

duction memory and Working memory can be seen in
Figure 8. The Production memory occupies 97% of the
loading time, whereas the Working memory (Facts) only
takes 2%. The remaining time (1%) is used by the load-
ing the Logger of the program. Loading the BMI Rule
Flow takes approximately the same time as loading the
BMI Rule file. The total loading time of the application
was on average 2500 ms.
These results can be explained by noting that in a

Rete-based production system, the most loading time is

consumed by building the Rete network. Here the Work-
ing memory (the data) is loaded first and then the Pro-
duction memory (the Rules). The Rete network can only
be build, when both the Facts and Rules are loaded.
This makes it seem like loading the Production memory
takes a lot of time. If we would load the Production
memory first and then the Working memory, it would
seem that loading the data takes a lot of time.
Finally, the influence of the number of decision nodes

in the Rule Flow on the loading time is visualized in
Figure 9. As can be seen, the loading of a Rule Flow is
linear in relation to the number of decision nodes in the
file. The standard deviations are respectively 0.2708,
0.5254, 0.4039, 0.4159, 0.7278, 0.8432, 0.5039 and
0.4905 ms.
We can conclude that the overhead of using Rule

Flows will mainly be introduced by the initial loading
time which is needed to build the Rete network. How-
ever, this only has to be executed once when the appli-
cation is started.
Translation of the sedation guideline
To explore the difficulties the semi-automatic transla-
tion could run into, the paper flow charts of the seda-
tion guideline (see Evaluation Methods subsection) were
manually translated by using the same resources and
methods as the platform would. The original, manually
constructed flow chart (UML diagram) of the normal
sedation guideline and the Drools Rule Flow it was
translated to, can be viewed in Figure 10. As can be
seen, this flow chart contains some simplifications, e.g.
modeling an exceptional situation as a footnote instead
of as a part of the flow chart, and ambiguities, e.g. not
indicating how much time should be left between
adjusting the medication and checking the RASS again.
First the XML of the original UML is filtered by the

Pre-processing module. As visualized in Figure 11, all the
graphical information is filtered. The important informa-
tion is the type of the model symbol used and the infor-
mation about the connections of this model element to
the other model elements. Next, this filtered XML is
translated to the intermediate language by the Combined
Reasoning module. This intermediate language is later
translated to Drools Rule Flow by the Post-processing
module. The method searchNextUMLSymbol() reads a
word from the XML-file until it encounters the <Model
construct. This indicates that the start of the description
of a symbol in the UML diagram is reached. The
method then searches for the id, type and name of the
symbol by looking for constructs of the form “id=12“,
“modelType=ActivityAction“ and “name=Add Morphine
1ml/h, Add Dormicum 2ml/h“, as illustrated in Figure
11.
The symbol is translated by the Diagram Reasoner

Knowledge Source to the correct construct in the

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 12 of 22



intermediate language by using the Diagram ontology. A
part of this ontology is visualized in Figure 12. The
modelType is matched with the names of the subclasses
of the UMLSymbol OWL class in the ontology. A new
instance is created in the ontology of the appropriate
OWL class, with as name the id of the symbol. By rea-
soning on this ontology instance with Pellet, it is discov-
ered which intermediate language symbol(s) should be
created. By inspecting the properties of the OWL classes
that represent these intermediate symbols, it is also
known which additional XML-properties of the symbol

should be translated. For example, if we want to trans-
late a symbol with modelType InitialNode and id ID34,
an instance of the InitialNode OWL class is created in
the ontology with name ID34. Pellet reasons that a Start
symbol needs to be created in the intermediate lan-
guage. The Start OWL class needs an outgoing connec-
tion and can have no incoming connections.
However, most of the time the decision of which sym-

bol(s) should be created is not so straight-forward and
cannot be expressed by utilizing OWL DL. In these
cases, SWRL is used. For example, if we want to

Figure 7 Average execution time of the different implementations of the BMI application.

Figure 8 Analysis of loading times of the working and production memory of a Rule Flow application.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 13 of 22



translate the filtered XML from Figure 11, an instance
of the ActivityAction OWL class is created in the ontol-
ogy with name ID16. However, symbols of the type Acti-
vityAction can be used for various purposes. A
Stereotype property can be defined in the XML that
gives an indication for which purpose the symbol is
used such as “description“ or ‘’subprocess“ or “wait“. The
value of this property is attached to the ActivityAction
OWL class in the ontology through the hasStereoType
property. The following SWRL Rules are defined:

ActivityAction(?x) ⋀ hasStereoType(?x, ?y) ⋀ swrlb:
stringEqualIgnoreCase(?y, “wait”) ® TimeHandler(?
x)
ActivityAction(?x) ⋀ hasStereoType(?x, ?y) ⋀ swrlb:
stringEqualIgnoreCase(?y, “subprocess”) ® SubPro-
cess(?x)

ActivityAction(?x) ⋀ (hasStereoType = 0)(?x) ®
WorkItem(?x)

It is concluded that a WorkItem needs to be created in
the intermediate language. The WorkItem OWL class
needs an associated Action and an incoming and out-
going Connection.
The Diagram Reasoner creates the Action OWL class

out of the name property which was previously read.
This name needs to be analyzed by pattern matching
the different words in this name property to the names
of the classes in the various ontologies such as Open-
Cyc, SNOMED CT and LinkBase. An ontology also
exists that models all the knowledge that is available in
the database of the ICU of the hospital. This ontology
can be mapped on the database by using D2R [84]. Not
all classes can be mapped on information in the

Figure 9 Loading time of a Rule Flow as a function of the number of decision nodes.

Figure 10 Manually constructed UML and Drools Rule Flow of the sedation guideline.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 14 of 22



database. SWRL Rules can be defined on top of the
ontology to indicate how this missing information can
be calculated, e.g.:

Patient(?x) ⋀ hasWeight(?x, ?y) ⋀ hasHeight(?x, ?z) ⋀
swrlb:multiply(?k, ?z, ?z) ⋀ swrlb:divide(?bmi, ?y, ?k)
® hasBMI(?x, ?bmi)

These SWRL Rules can then in turn be analyzed by
the translator to know how the parameter should be cal-
culated in the eventual Drools Rule Flow.

If we want to translate the action “Add Morphine 1ml/
h, Add Dormicum 2ml/h“, the word Morphine can be
matched to the names of the OWL classes in the Hospi-
tal ontology. A Morphine OWL class, which is a subclass
of the Medication OWL class, is discovered. We need to
discover a leaf node in this ontology as we need to find
the specific medication a patient needs. The ontology
contains various OWL subclasses of Morphine. The pro-
gram tries to differ amongst these different possibilities
by involving other words specified in the action such as
1ml/h and 2ml/h. It still arrives at two possible solutions:

Figure 11 Example of XML filtered by the Pre-processing Module.

Figure 12 The Diagram Ontology. Represents a part of the Diagram Ontology. The yellow squares represent the classes. Blue arrows indicate
subclass relationships. Red arrows and lines indicate relations between classes (object properties). Green Ovals represent attributes of classes
(datatype properties).

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 15 of 22



• Morphine IV [20mg/1ml]
• Morphine IV [10mg/1ml]

The selectBestSolution() method specifies Rules (not in
SWRL) that can be used to differ amongst the various
solutions e.g. proximity of 1ml/h to the Morphine word.
Such Rules can also be used to choose between different
solutions which are given by the various ontologies. If
the Rules still do not offer a solution, these options are
shown to the domain expert in a user-friendly GUI. He/
she can indicate which medication is correct. As a con-
sequence a new instance of the Medication OWL class
is created in the ontology.
The same process is followed to discover the correct

Dormicum medication. However, we still need to deter-
mine which type of Action we need to create. Therefore,
we check if there is already a type of Action that com-
plies with the information we have already found. By
doing pattern recognition we discover that the AddMe-
dication OWL class in the ontology meets our needs.
An instance of this OWL class is created with the dis-
covered Medication individuals attached to it.
Only the connections need to be created now. There-

fore, the Diagram Reasoner uses the translateNextWord
() method until it reaches the <RelationshipRef construct
and analyzes its From and To properties to create the
appropriate relations in the ontology. If the symbol to
which this symbol needs to be connected does not exist
in the ontology yet, it is created as an instance of the
high-level OWL class Symbol. This symbol is then
defined more specifically at a later stage of the
translation.
At this point the symbol is completely translated. All

the information, which was created in the ontology (the
instances), is translated to the intermediate XML. The
Post-processing module then translates the intermediate
XML to Drools Rule Flow XML and creates the neces-
sary Java classes. This intermediate result can be visua-
lized to the domain expert for initial evaluation. He/she
can intervene at this point if an error has occurred in
the previous translation step.
Finally, the next symbol can be translated. This whole

process is repeated until the end of the filtered XML
document is reached. This ends the translation process.
At this point the complete result is visualized to the
domain expert, who can make changes if needed.
The problem could occur that the symbol cannot be

found in the Diagram Ontology e.g. the symbol with
ModelType Note, visualized by the asterisk at the bottom
of the original UML figure. There is no general defini-
tion of how this symbol should be handled. The content
of the name property is analyzed with the ontologies as
was done in the above example and the results are
visualized to the domain expert. He/she can indicate

which type of symbol should be created in the Diagram
ontology. Additional questions will be asked by the Dia-
gram Reasoner to the domain expert to fill in the prop-
erties of this symbol. The domain expert can also
choose to model this part of the Drools Rule Flow him/
herself from scratch by using the intuitive GUI.
Similarly, it could occur that a name property cannot

be translated because the ontologies do not contain
enough information about this subject. The property is
presented to the domain expert who can take various
actions. He/she can correct spelling errors or provide an
alternate formulation and try the translation again. If
this does not work, he/she can opt to add a new defini-
tion to the ontology. The domain expert can select the
word out of the name property for which he/she wants
to add a definition to the ontology. A high-level over-
view of the ontology is visualized to the domain expert
who can then select the best high-level concept that
represents this word. The program then leads the
domain expert further down the tree until a leaf node is
reached or no appropriate classes are available. At this
point a new class can be created e.g. as an equal class
(synonyms) or a subclass. An indicator is added to this
class to alert the ontology engineer of this change.
Finally, if all these options do not offer a solution, the
domain expert can opt to model this part of the Drools
Rule Flow him/herself with the GUI.
As can be seen from the previous examples, a domain

expert always needs to be involved in the translation
process as it is difficult for a computer to interpret the
ambiguities and simplifications in the guideline.
The sedation Rule-based application
The translation of the 5 flow charts results in 7 Drools
Rule Flows. First, a Rule Flow of 28 nodes for the nor-
mal sedation guideline and two Rule Flows of 32 and 28
nodes for the short sedation guideline. The Rule Flow
that encodes reducing the normal sedation contains 22
nodes and the Rule Flow for reducing the short sedation
contains 30 nodes. Two Rule Flows were created to
combine these various Rule Flows. They contain 5 and 4
nodes. This adds up to 149 nodes to encode the com-
plete sedation protocol. The developed sedation applica-
tion will give the nursing staff notifications on steps to
be taken and will increase the usability of the guideline.
It was also easily integrated in the already available
ICSP platform by employing the integration framework
as discussed in the section “Integration into a service-
oriented platform”. A GUI, visualized in Figure 13 was
additionally developed to allow the nurse to easily inter-
act with the application and input the needed informa-
tion about the RASS score and medication.
To get a better insight into the internal workings of

sedation guideline application, the different loading
times were analyzed as illustrated in Figure 14. It is

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 16 of 22



obvious that loading and parsing the Rule Flow files
consumes the most time. To reduce these loading times
as much as possible, it was opted to only load those
Rule Flows that were currently necessary to execute the
guideline. Thus, if the patient is currently sedated
according to the normal guideline, only the Rule Flow
of this type is loaded. The disadvantage is that these
files can only be loaded after the type of sedation is
determined. This means that the nursing staff will have
to wait a couple of seconds after inputting this informa-
tion before they get the first instructions of the guide-
line. The average loading time of a Drools Rule Flow of
the sedation guideline is 2719 ms. After the loading of

the Rule Flows, the loading of the rest of the Production
memory consumes the most time. This mainly includes
the initialization of the different Java classes.

Discussion
The results in the previous section indicate that Drools
is an effective Rule language for implementing clinical
guidelines. It has a good performance by utilizing a
object-oriented implementation of the Rete algorithm.
This algorithm sacrifices memory for speed. However,
most of the memory usage was consumed by loading
the Rule Flows. This only has to be done one time,
namely when the application is started. The memory

Figure 13 GUI of the sedation application. The Graphical User interface (GUI) which allows nurses to easily interact with the sedation
application and input the needed information about the patient, the RASS score and the medication. The “Input patient information” screen is
shown at the start of the application. It allows the nurses to input information about the patient (weight, age and sex) and which type of
sedation (short vs. normal vs. deep/long-term) guideline should be used. If this information is already available in the database, the fields will be
filled in with the data found in the database. The nurse can then adjust or confirm this data. The “Medication notification” screen is an example
of a message that is displayed on screen when the medication of the patient should be adjusted. The “Input current Rass” screen prompts the
nurses to input the current RASS of the patient. The time points, at which these RASS scores should be collected, are prescribed by the sedation
guidelines. For example, in the normal sedation guideline, the RASS score needs to be updated every four hours. This means that this screen will
automatically be shown every four hours, unless the RASS score has already been inputted in the database through another interface.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 17 of 22



usage of the applications does tend to increase as the
number of Rules and/or Facts increases. This is caused
by the Rete algorithm as it attaches the Facts in memory
to the nodes in the Rules Tree with which they match.
This can easily be countered by keeping the Rule Flows
simple by splitting large flows up into smaller ones as
we have done in the sedation application.
The main weakness of our performance study is that

we only evaluated the performance of Drools based on
two use cases namely calculating BMI and the sedation
guideline. This makes it difficult to generalize the results
outside the context of these two examples. However, the
performance of Drools has been evaluated on numerous
benchmarks [85]. These benchmarks do not contain
medical data and the evaluation mostly focuses on com-
paring different Rule Engines (or different versions of
Drools). Our case study compares Drools with other
technologies such as BPEL and focuses on medical data.
Moreover, by translating a specific medical use case we
gained a lot of insight into the strengths and weaknesses
of the platform and the shortcomings of the used
ontologies.
Drools is well-suited to support the semi-automatic

translation of XML-based flow charts into working pro-
grams as the Drools Rule Flows closely resemble the ori-
ginal flow charts and have an XML-based encoding.
Drools also allows for quick development, evaluation
and visualization of the Rules by providing various user-

friendly GUIs and an integration with the Eclipse IDE.
Although, the flow charts will be automatically trans-
lated, this can still be very useful. At the end of the
translation process, the Drools Rule Flow can be visually
represented in tree-based manner to the medical staff
for example a physician. This physician can then quickly
perform a first evaluation if the clinical guideline was
correctly translated and implemented.
Semi-automatically translating the flow charts into

Rule Flows, leads to less development and evaluation
time. The IT developer does not have to be present for
each guideline that needs to be implemented. An XML-
based flow chart, which can easily be constructed by
various graphical flow chart editors such as Visual Para-
digm [86], can be given to the application by a physi-
cian. The application automatically translates the
guideline to a Rule Flow. Whenever it runs into a pro-
blem, natural language questions are posed to the physi-
cian until the translation process can move on. This
also detects and resolves ambiguities that were present
in the original flow chart.
In the Introduction some problems in manually con-

structed guidelines were identified which make it diffi-
cult to computerize these guidelines. These problems
are addressed in our translation framework. The lack of
definitions is solved by using ontologies, such as Open-
Cyc, WordNet, LinkBase and SNOMED CT. Ontologies
can exactly be used to store formal knowledge such as

Figure 14 Analysis of the loading times of the sedation guideline Drools Rule Flow.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 18 of 22



medical terms (e.g. synonyms) and English constructs (e.
g. IF...THEN). The domain expert intervenes when
incomplete information, ambiguities and simplifications
in the guideline become apparent during the translation.
To verify if the flow charts are complete, it is checked
that each if construct is also accompanied by an else
construct. If not all situations are covered in the guide-
line, this will also become apparent during the clinical
evaluation of the translated guideline. This guideline can
then easily be adapted by inserting new Rules with the
user-friendly GUI. The domain expert also specifies the
necessary parameters. Because flow chart guidelines are
translated, the correct level of abstraction is used, the
events can be timed and no omission errors can occur.
The flow charts that are translated are suitable for
execution as they are already used in the ICU of the
Ghent University hospital.
As mentioned previously, the physician can evaluate

the outcome visually before running it on some test
cases. The IT developer can support the physician,
when the guideline is not correctly implemented by the
translation process. He or she can use the Rule editor
GUI, as described in the section “Semi-automatic trans-
lation”, to adapt the Rule Flow and visualize the result
to the physician.
A computer-based clinical guideline leads to an

improved execution of the clinical guideline. It reminds
the medical staff of tasks that need to be performed by
giving notifications. This ensures a more timely and cor-
rect execution of the guideline. The Rule-based system
is capable of logging the Rules that were fired to reach a
specific medical recommendation. This will allow medi-
cal staff members to check which Rules have been fired
and how a certain conclusion was reached. This will
increase the trust of the staff members in the applica-
tion. We expect that this will also increase the compli-
ance of the staff members, although this still needs to
be evaluated empirically. Exceptional situations and pro-
blems, e.g. a patient that has been sedated too long or
too deep, can easily be detected by the application as it
continuously monitors the parameters of the patient.
The application can also give the medical staff a notifi-
cation when some information is missing, e.g. the goal
RASS or the current medication of the patient is not
entered into the database. Finally, the condition of the
patient and previously made decisions can be nicely
visualized. This helps to quickly follow the condition of
the patient and supports the communication between
the different staff members.
The same framework could be used to implement

guidelines for therapy of more chronic diseases (e.g. dia-
betes type 2 or hypertension). The main difference is
however the fact that the intensive care unit is extre-
mely data-rich and a lot of the necessary data can be

automatically obtained from linking to GLIMS (global
laboratory information management system) and the
intensive care information system or a computerized
physician order entry system (CPOE). Furthermore, this
sedation guideline requires a lot of staff intervention
and need for continuously monitoring of data. Because
the computerized decision support system automatically
and continuously monitors the data and gives sugges-
tions to the staff accordingly, a lot of benefit is offered
to the medical staff. However, for chronic disease guide-
lines, the time between interventions is larger and it is
not possible to monitor data fully automatically. The
nature of guidelines is different, and the workflow-dri-
ven process framework is not as effective as has been
illustrated by Tu et al. [26] with the EON framework.
As an extension, a self-learning component, which

further improves the execution and follow-up of clinical
guidelines, could easily be integrated into the infrastruc-
ture. On the one hand, many guidelines do not provide
recommendations for all clinical situations encountered
in practice. These situations could easily be detected by
the program either because there is no Rule available
that handles the situation or a wrong Rule is executed
and the medical staff member will choose not to follow
the recommendations. On the other hand, medical staff
members sometimes choose not to comply with the
clinical guidelines and the given recommendations.
These situations and the decision that were conse-
quently made by the staff members could then easily be
investigated by various data mining techniques [87]. The
feedback of these studies could in turn be used to opti-
mize the clincal guideline.
Future work will focus mainly on evaluating if the

semi-automatic translation of guidelines is more efficient
than manually encoding them. Therefore the semi-auto-
matic translation architecture will be applied to various
clinical guidelines in different areas of ICU decision sup-
port. These guidelines will also be manually translated.
In both cases, the time it took to completely and cor-
rectly translate and evaluate the guideline, the amount
of human effort needed and the number of errors still
present in the computerized guideline will be measured
and compared to each other. Simultaneously it will be
evaluated if the current ontologies and SWRL-Rules are
generally applicable to this wide range of use cases and
how much the domain expert is needed to support the
translation process.
Note that the evaluation needs to be applied to multi-

ple guidelines as the semi-automatic translation frame-
work will perform better after a couple of translations.
The most common problems will be resolved by the
domain expert during the first couple of translations
and these solutions will be stored in the various ontolo-
gies and Rules.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 19 of 22



It is important to do a very thorough evaluation of the
translated guidelines in a clinical setting involving medi-
cal staff and real patients.

Conclusions
In this article a semi-automatic verification and transla-
tion framework, capable of turning manually con-
structed XML-based flow charts into ready to use
Drools Rule Flow programs is proposed. For this,
semantic technologies, such as ontologies and SWRL,
are used. This framework aims to close the gap in com-
munication between the medical staff and the computer
scientists for the construction of computer-based clinical
guidelines. This closer collaboration results in a less
time-consuming and less error-prone development
phase and a shorter clinical evaluation phase.
Drools was shown to be an effective Rule language for

computerizing clinical guidelines by translating the seda-
tion protocol to a Drools Rule Flow. Drools allows for
quick development and evaluation, human-readable
visualization of the Rules and has a good performance.
The computer-based clinical guideline supports an

improved execution of the clinical guideline by giving the
medical staff reminders and notifications of tasks that
need to be performed and by automatically detecting
exceptional situations and problems by monitoring the
parameters of the patient. Future work will focus mainly
on evaluating if the semi-automatic translation of guide-
lines is more efficient than manually encoding them by
applying the proposed architecture to various clinical
guidelines in different areas of ICU decision support.

List of abbreviations used
ADD: Attribute Driven Design; AI: Artificial Intelligence;
BMI: Body Mass Index; BPEL: Business Process Execu-
tion Language; CDSS: Computerized decision support
systems; CfMS: Care flow Management System; CPOE:
Computerized Physician Order Entry system; CR module:
Combined Reasoning module; EHR: Electronic Health
Record; EPR: Electronic Patient Record; FMA: Founda-
tional Model of Anatomy; Galen: Generalized Architec-
ture for Languages, Encyclopaedias and Nomenclatures;
GIMS: GuIdeline Management System; GLIF: GuideLine
Interchange Format; GLIMS: Global Laboratory Informa-
tion Management System; GO: Gene Ontology; GUI:
Graphical User Interface; HL7: Health Level 7; ICSP:
Intensive Care Service Platform; ICT: Information and
Communication Technology; ICU: Intensive Care Unit;
IDE: Integrated Development Environment; IFOMIS:
Institute for Formal Ontology and Medical Information
Science; IT: Information Technology; IZIS: Intensive
Care Information System; Jess: Java Expert System Shell;
L&C: Language and Computing; MKM: Medical Knowl-
edge Modules; MTBA: Modeling Better Treatment

Advice; MV: Mechanical Ventilation; NCI: National Can-
cer Institute; NLP: Natural Language Processing; OBI:
Ontology for Biomedical Investigations; OBO: Open Bio-
medical Ontologies; OWL: Ontology Web Language; PC:
Personal Computer; PDA: Personal Digital Assistant;
RASS: Richmond Agitation-Sedation Scale; RIM: Refer-
ence Information Model; SNOMED CT: Systematized
Nomenclature of Medicine-Clinical Terms; SOA: Ser-
vice-Oriented Architecture; SWRL: Semantic Web Rule
Language; UML: Unified Modeling Language; VAP: Ven-
tilator-associated pneumonia; WfMS: Workflow Manage-
ment System; XML: eXtensible Markup Language.

Additional file 1: Appendix A: Overview of the most prevalent
formats for representing clinical guidelines The pdf (appendixA.pdf)
contains a description of the standardization efforts and formalisms for
representing clinical guidelines that have been proposed in literature,
namely the Arden Syntax, PROforma, EON, GLIF, PRODIGY, Asbru and
Guide.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1472-6947-10-3-
S1.PDF ]

Additional file 2: Appendix B: Overview of the existing medical and
natural language ontologies which can be used to support the
translation process The pdf (appendixB.pdf) contains an overview of
the existing medical and natural language ontologies that can be
(partially) reused to support the semi-automatic translation process. Cyc
and WordNet are two well-known ontologies that model general
knowledge about the English language. A wide range of ontologies
about the eHealth domain are described such as LinkBase, SNOMED CT,
the Galen Common Reference Model, the NCI Cancer Ontology, the
Foundational Model of Anatomy Ontology (FMA), the Gene Ontology
(GO) and the Ontology for Biomedical Investigations (OBI). All these
ontologies are available in OWL.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1472-6947-10-3-
S2.PDF ]

Additional file 3: The 5 flow charts (UML diagrams) of the sedation
guideline The zip (sedationGuidelines.zip) contains the 5 flow charts
(UML diagrams) of the sedation guideline in pdf format.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1472-6947-10-3-
S3.ZIP ]

Acknowledgements
Femke Ongenae would like to thank the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT) for her PhD grant.

Author details
1Department of Information Technology (INTEC), Ghent University - IBBT,
Gaston Crommenlaan 8, Bus 201, 9050 Ghent, Belgium. 2Department of
Intensive Care, Ghent University Hospital, De Pintelaan 185, 9000 Ghent,
Belgium.

Authors’ contributions
FO, FDB and KS carried out the study, participated in the development of
the concepts described in this paper and drafted the manuscript. KC
participated in the case study. WK participated in the development of the
integration framework. FDT and JD supervised the study, participated in its
design and coordination and helped to draft the manuscript. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 20 of 22



Received: 7 September 2009
Accepted: 18 January 2010 Published: 18 January 2010

References
1. Morris AH: Developing and Implementing Computerized Protocols for

Standardization of Clinical Decisions. Annals of Internal Medicine 2000,
132(5):373-383.

2. Kawamoto K, Houlihan CA, Balas EA, Lobach DF: Improving clinical
practice using clinical decision support systems: a systematic review of
trials to identify features critical to success. British Medical Journal 2005,
330(7494):765.

3. Garg A, Adhikari N, McDonald H, Rosas-Arellano P, Devereaux P, Beyene J,
Sam J, Haynes B: Effects of computerized clinical decision support
systems on practitioner performance and patient outcomes: A
systematic review. Journal of the American Medical Association 2005,
193(10):1223-1238.

4. Goldstein MK, Coleman RW, Tu SW, Shankar RD, O’Connor MJ, Musen MA,
Martins SB, Lavori PW, Shlipak MG, Oddone E, Advani AA, Gholami P,
Hoffman BB: Translating Research into Practice: Organizational Issues in
Implementing Automated Decision Support for Hypertension in Three
Medical Centers. Journal of the American Medical Informatics Association
2004, 11(5):368-376.

5. Shiffman R, Michel G, Essaihi A, Thornquist E: Bridging the Guideline
Implementation Gap: A Systematic, Document-Centered Approach to
Guideline Implementation. Journal of the American Medical Informatics
Association 2004, 11(5):418-426.

6. Woolf SH, Grol R, Hutchinson A, Eccles M, Grimshaw J: Clinical guidelines:
potential benefits, limitations, and harms of clinical guidelines. British
Medical Journal 1999, 318(7182):527-530.

7. Peleg M, Patel VL, Snow V, Tu S, Mottur-Pilson C, Shortliffe EH, Greenes RA:
Support for guideline development through error classification and
constraint checking. Proceedings of the American Medical Informatics
Association Symposium: 2002 Washington, DC, USA 2002, 607-611.

8. Shiffman RN: Representation of clinical practice guidelines in
conventional and augmented decision tables. Journal of the American
Medical Informatics Association 1997, 4(5):382-393.

9. Tierney WM, Overhage JM, Takesue BY, Harris LE, Murray MD, Vargo DL,
McDonald CJ: Computerizing guidelines to improve care and patient
outcomes: the example of heart failure. Journal of the American Medical
Informatics Association 1995, 2(5):316-322.

10. Kawamoto K, Lobach DF: Clinical Decision Support Provided within
Physician Order Entry Systems: A Systematic Review of Features
Effective for Changing Clinician Behavior. Proceedings of the American
Medical Informatics Association Symposium: 8-12 November 2003
Washington, DC, USA 2003, 361-365.

11. Shiffman RN: Towards effective implementation of a pediatric asthma
guideline: integration of decision support and clinical workflow support.
Proceedings of the 18th Symposium on Computer-Applications in Medical
Care: 1994 Washington, DC, USA 1994, 797-801.

12. Elson RB, Connelly DP: Computerized decision support systems in
primary care. Primary care 1995, 22(2):365-384.

13. Van Hoecke S, Decruyenaere J, Danneels C, Taveirne K, Colpaert K, Hoste E,
Dhoedt B, De Turck F: Service-oriented subscription management of
medical decision data in the intensive care unit. Methods of Information
in Medicine 2008, 47(4):364-380.

14. Bray T, Paoli J, Sperbeg-McQueen CM, Maler E, Yergeau F: Extensible
Markup Language (XML) 1.0. W3C Recommendation , Fifth 2008.

15. Bali M: Drools JBoss Rules 5.0 Developer’s Guide Birmingham, UK: Packt
Publishing 2009.

16. Gruber T: A translation approach to portable ontology specifications.
Knowledge Acquisition 1993, 5:199-220.

17. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M: SWRL: A
Semantic Web Rule Language: Combining OWL and RuleML. W3C
Member Submission 2004.

18. De Clercq P, Kaiser K, Hasman A: Chapter 2: Computer-Interpretable
Guideline formalisms. Computer-based medical guidelines and protocols: a
primer and current trends Amsterdam, The Netherlands: IOS Press 2008,
22-43.

19. Open clinical: Methods and tools for representing computerised clinical
guidelines. http://www.openclinical.org/gmmsummaries.html.

20. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R, Johnson PD,
Jones N, Kumar A, Miksch S, Quaglini S, Seyfang A, Shortliffe EH,
Stefanelli M: Comparing computer-interpretable guideline models: A
case-study approach. Journal of the American Medical Informatics
Associacation 2002, 10:1135-1168.

21. Wang D: Representation primitives, process models and patient data in
computer-interpretable clinical practice guidelines: A literature review of
guideline representation models. International Journal of Medical
Informatics 2002, 68(1-3):59-70.

22. Kim S, Choi I: Arden Syntax as a standard expression language for
medical knowledge. Journal of Korean Society of Medical Informatics 2008,
14:1-7.

23. The Arden Syntax as HL7 standard. http://www.hl7.org/implement/
standards/ansiapproved.cfm.

24. Sutton DR, Fox J: The syntax and semantics of the PROforma guideline
modeling language. Journal of the American Medical Informatics Association
2003, 10(5):433-443.

25. Sutton DR, Taylor P, Earle K: Evaluation of PROforma as a language for
implementing medical guidelines in a practical context. BMC Medical
Informatics and Decision Making 2006, 6:20.

26. Tu SW, Musen MA: A flexible approach to guideline modeling.
Proceedings of the American Medical Informatics Association Symposium: 1999
Washington, DC, USA 1999, 420-424.

27. Peleg M, Boxwala A, Ogunyemi O, Zeng Q, Tu S, Lacson R, Bernstam E,
Ash N, Mork P, Ohno-Machado L, Shortliffe EH, Greenes RA: Glif3: the
evolution of a guideline representation format. Proceedings of the
American Medical Informatics Assocation Annual Symposium: 4-8 November,
2000 Los Angeles, California, USA 2000, 645-649.

28. Ohno-Machado L, Gennari JH, Murphy SN, Jain NL, Tu S, Oliver DE, Pattison-
Gordon E, Greenes RA, Shortliffe EH, Barnett GO: The guideline
interchange format: A model for representing guidelines. Journal of the
American Medical Informatics Association 1998, 5(4):357-372.

29. Johnson PD, Tu S, Booth N, Sugden B, Purves IN: Using scenarios in
chronic disease management guidelines for primary care. Proceedings of
the American Medical Informatics Association Symposium: 4-8 November, 2000
Los Angeles, California, USA 2000, 389-393.

30. Miksch S, Shahar Y, Johnson P: Asbru: a task-specific, intention-based, and
time-oriented language for representing skeletal plans. 7th Workshop on
Knowledge Engineering Methods and Languages (KEML-97): 1997 Milton
Keynes, UK 1997.

31. Quaglini S, Stefanelli M, Cavallini A, Micieli G, Fassino C, Mossa C:
Guidelinebased careflow systems. Artificial Intelligence in Medicine 2000,
20:5-22.

32. Kaiser K, Akkaya C, Miksch S: Gaining process information from clinical
practice guidelines using information extraction. Proceedings of the 10th
Conference on Artificial Intelligence in Medicine (AIME): July 23-27, 2005
Aberdeen, UK 2005, 181-190.

33. Jackson P: Introduction to Expert Systems Essex, UK: Addison Wesley
Publishing 1999.

34. Nikolopoulos C: Expert systems: introduction to first and second generation
and hybrid knowledge based systems USA: CRC Press 1997.

35. Forgy CL: Rete: a fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence 1982, 19:17-37.

36. Sirin E, Bijan P, Grau BC, Kalyanpur A, Katz Y: Pellet: A Practical OWL-DL
Reasoner. Journal of Web Semantics: Science, Services and Agents on the
World Wide Web 2007, 5(2):51-53.

37. Matuszek C, Cabral J, Witbrock M, DeOliveira J: An introduction to the
syntax and content of Cyc. Proceedings of the AAAI Spring Symposium on
Formalizing and Compiling Background and Its Applications to Knowledge
Representation and Question Answering: 27-29 March 2006 California, USA
2006, 44-49.

38. OpenCyc. http://www.opencyc.org.
39. Fellbaum C: WordNet: An Electronic Lexical Database Cambridge,

Massachusetts, USA: MIT Press 1998.
40. Van Gurp M, Decoene M, Holvoet M, dos Santos MC: LinkBase®, a

philosophically-inspired Ontology for NLP/NLU Applications. Second
International Workshop on Formal Biomedical Knowledge Representation (KR-
MED): 8 November 2006 Baltimore, Maryland, USA, National Center for
Ontology Research (NCOR) and the Working Group on Formal (Bio-)Medical
Knowledge Representation of the American Medical Informatics Association
(AMIA) 2006, 67-75.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 21 of 22

http://www.ncbi.nlm.nih.gov/pubmed/10691588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10691588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15767266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15767266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15767266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15187064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15187064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15187064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15187061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15187061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15187061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9292844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9292844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7496881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7496881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7617792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7617792?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18690370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18690370?dopt=Abstract
http://www.openclinical.org/gmmsummaries.html
http://www.ncbi.nlm.nih.gov/pubmed/12467791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12467791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12467791?dopt=Abstract
http://www.hl7.org/implement/standards/ansiapproved.cfm
http://www.hl7.org/implement/standards/ansiapproved.cfm
http://www.ncbi.nlm.nih.gov/pubmed/12807812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12807812?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16597341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9670133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9670133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11185420?dopt=Abstract
http://www.opencyc.org


41. Flett A, Dos Santos M, Ceuster W: Some Ontology Engineering Processes
and their Supporting Technologies. Proceedings of the 13th International
Conference on Knowledge Engineering and Management (EKAW): 1-4 October
2002 Siguenca, Spain 2002, 154-165.

42. SNOMED CT. http://www.ihtsdo.org/snomed-ct/.
43. Wasserman H, Wang J: An Applied Evaluation of SNOMED CT as a Clinical

Vocabulary for the Computerized Diagnosis and Problem List.
Proceedings of the annual American Medical Informatics Association (AMIA)
Symposium: 8-12 November 2003 Washington, DC, USA 2003, 699-703.

44. Elkin PL, Brown SH, Husser CS, Bauer BA, Wahner-Roedler D,
Rosenbloom ST, Speroff T: Evaluation of the Content Coverage of
SNOMED CT: Ability of SNOMED Clinical Terms to Represent Clinical
Problem Lists. Mayo Clinic Proceedings 2006, 81(6):741-748.

45. Galen Common Reference Model. http://www.opengalen.org/.
46. Rector AL, Rogers JE, Zanstra PE, Haring van der E: OpenGALEN: Open

Source Medical Terminology and Tools. Proceedings of the annual
American Medical Informatics Association (AMIA) Symposium: 8-12 November
2003 Washington, DC, USA 2003, 982.

47. NCI Cancer Ontology. http://www.mindswap.org/2003/CancerOntology/.
48. Golbeck J, Fragoso G, Hartel F, Hendler J, Parsia B: The National Cancer

Institute’s Thesaurus and Ontology. Journal of Web Semantics 2003 2003,
1:75-80.

49. Foundational Model of Anatomy Ontology (FMA). http://sig.biostr.
washington.edu/projects/fm/index.html.

50. Rosse C, Mejino JVL: A reference ontology for biomedical informatics: the
Foundational Model of Anatomy. Journal of Biomedical Informatics 2003,
36(6):478-500.

51. Gene Ontology. http://www.geneontology.org/.
52. Blake JA, Harris MA: The Gene Ontology (GO) project: structured

vocabularies for molecular biology and their application to genome and
expression analysis. Current Protocols in Bioinformatics 2008, 23:7.2.1-7.2.9.

53. Ontology for Biomedical Investigations. http://obi-ontology.org/page/
Main_Page.

54. Courtot M, Bug W, Gibson F, Lister AL, Malone J, Schober D, Brinkman R,
RuttenBerg A: The OWL of Biomedical Investigations. Proceedings of the
4th International Workshop on OWL: Experiences and Directions (OWLED): 26-
27 October 2008 Karlsruhe, Germany 2008.

55. Amatayakul M: Electronic Health Records: A Practical Guide for Professionals
and Organizations Chicago, USA: American Health Information Management
Association (AHIMA) 2006.

56. Linden Van Der H, Diepen S, Boers G, Tange H, Talon J: Towards a Generic
Connection of EHR and DSS. Proceedings of the 19th International Congress
of the European Federation for Medical Informatics (MIE2005): 28-31 August
2005 Geneva, Switzerland 2005, 211-216.

57. Lord WP, Wiggins DC: Chapter 25: Medical Decision Support Systems:
The Wide Realm of Possibilities. Advances in Health care Technology Care
Shaping the Future ofMedical, Volume 6 Dordrecht, The Netherlands:
Springer Netherlands 2006, 403-419.

58. Brailer DJ, Terasawa EL: Use and Adoption of Computer-based Patient
Records. California HealthCare Foundation 2003http://www.chcf.org/
documents/healthit/UseAdoptionComputerizedPatientRecords.pdf.

59. Erl T: Service-oriented architecture: concepts, technology and design NJ, USA:
Prentice Hall PTR 2005.

60. Alonso G, Casati F, Kuno H, Machiraju V: Web Services: concepts, architectures
and applications Berlin, Germany: Spring Verlag 2004.

61. Dietrich J: A Rule-Based System for eCommerce Applications. Proceedings
of the 8th International Conference on Knowledge-Based Intelligent
Information and Engineering Systems (KES): 20-25 September, 2004
Wellington, New Zealand 2004, 455-463.

62. Friedman E: Jess in action: Rule-based systems in Java Greenwich, CT, USA:
Manning Publications Co 2003.

63. Microsoft® BizTalk® Server: The Business Rules Framework. http://www.
microsoft.com/biztalk/en/us/business-rule-framework.aspx.

64. WebSphere ILog JRules. http://www.ilog.com/products/jrules/.
65. JBoss Rules Rete. http://legacy.drools.codehaus.org/Rete.
66. JBoss Rules ReteOO. http://legacy.drools.codehaus.org/ReteOO.
67. Verlaenen K: Drools Flow User Guide. 2009https://hudson.jboss.org/

hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/docs/drools-flow/
html_single/index.html.

68. Eclipse IDE. http://www.eclipse.org/.

69. Bachmann F, Bass L: Introduction to the Attribute Driven Design Method.
Proceedings of the 23rd International Conference on Software Engineering
(ICSE01): 12-19 May 2001 Toronto, Ontario, Canada 2001, 745-746.

70. McKenzie C, Preece A, Gray P: Implementing a Semantic Web Blackboard
System using Jena. Proceedings of the Jena User Conference: 10-11 May
2006 Bristol, UK 2006, 204-218.

71. Montayna F, Flanagan J: Formal Ontology: The Foundation for Natural
Language Processing. L&C White Paper 2003.

72. Steurbaut K, Van Hoecke S, Taveirne K, Lamont K, De Turck F, Colpaert K,
Depuydt P, Benoit D, Danneels C, Decruyenaere J: Design of Software
Services for Computer-Based Infection Control and Antibiotic
Management in the Intensive Care Unit. Proceedings of the International
Conference on eHealth, Telemedicine, and Social Medicine (ETelemed): 1-7
February, 2009 Cancun, Mexico 2009, 87-92.

73. Rosenberg F, Dustdar S: Business Rules Integration in BPEL: A Service-
Oriented Approach. Proceedings of the 7th IEEE International Conference on
E-Commerce Technology: 19-22 July, 2005 Mechen, Germany 2005, 476-479.

74. Tirelli E: Dynamically Generated Classes as JBoss Rules Facts. Drools Blog
2006.

75. Bruneton E, Lenglet R, Coupaye T: ASM: a code manipulation tool to
implement adaptable systems. Proceedings of Adaptable and extensible
component systems: November, 2002 Grenoble, France 2002.

76. Mitra N, Lafon Y: SOAP Version 1.2 Part 0: Primer. W3C Recommendation ,
Second 2007.

77. Apache SAVAN: a C implementation of the WS-Eventing specification.
http://ws.apache.org/savan/.

78. Fitzgerald M: Serializing Java Objects with XStream. Published on XML.com
2004http://www.xml.com/lpt/a/1462.

79. Ostermann ME, Keenan SP, Seiferling RA, Sibbald WJ: Sedation in the
Intensive Care Unit: a Systematic Review. Journal of the American Medical
Association 2000, 283(11):1451-1459.

80. Ely EW, Truman B, Shintani A, Thomason JW, Gordon S, Francis J, Speroff T,
Gautam S, Margolin R, Sessler CN, Dittus RS, Bernard GR: Monitoring
sedation status over time in ICU patients: the reliability and validity of
the Richmond Agitation Sedation Scale (RASS). Journal of the American
Medical Association 2003, 289(22):2983-2991.

81. Cook DJ, Walter SD, Cook RJ, Griffith LE, Guyatt GH, Leasa D, Jaeschke RZ,
Brun-Buisson C: Incidence of and risk factors for ventilator-associated
pneumonia in critically ill patients. Annals of Internal Medicine 1998,
129(6):433-440.

82. Rello J, Ollendorf DA, Oster G, Vera-Llonch M, Bellm L, Redman R, Kollef MH:
Epidemiology and outcomes of ventilator-associated pneumonia in a
large US database. Chest 2002, 122(6):2115-2121.

83. Quenot JP, Ladoire S, Devoucoux F, Doise JM, Cailliod R, Cunin N, Aubé H,
Blettery B, Charles PE: Effect of a nurse-implemented sedation protocol
on the incidence of ventilator-associated pneumonia. Critical Care
Medicine 2007, 35(9):2031-2036.

84. Bizer C: D2R MAP - A DB to RDF Mapping Language. Proceedings of the
12th International World Wide Web Conference: 20-24 May 2003 Budapest,
Hungary 2003, poster presentation.

85. Drools performance evaluation on benchmarks. http://blogs.illation.com.
au/category/benchmarks/.

86. Visual Paradigm of UML. http://www.visual-paradigm.com/product/vpuml/.
87. Toussi M, Lamy JB, Le Toumelin P, Venot A: Using data mining techniques

to explore physicians’ therapeutic decisions when clinical guidelines do
not provide recommendations: methods and example for type 2
diabetes. BMC Medical Informatics and Decision Making 2009, 9:28.

Pre-publication history
The pre-publication history for this paper can be accessed here:http://www.
biomedcentral.com/1472-6947/10/3/prepub

doi:10.1186/1472-6947-10-3
Cite this article as: Ongenae et al.: Towards computerizing intensive
care sedation guidelines: design of a rule-based architecture for
automated execution of clinical guidelines. BMC Medical Informatics and
Decision Making 2010 10:3.

Ongenae et al. BMC Medical Informatics and Decision Making 2010, 10:3
http://www.biomedcentral.com/1472-6947/10/3

Page 22 of 22

http://www.ihtsdo.org/snomed-ct/
http://www.ncbi.nlm.nih.gov/pubmed/16770974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16770974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16770974?dopt=Abstract
http://www.opengalen.org/
http://www.mindswap.org/2003/CancerOntology/
http://sig.biostr.washington.edu/projects/fm/index.html
http://sig.biostr.washington.edu/projects/fm/index.html
http://www.ncbi.nlm.nih.gov/pubmed/14759820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14759820?dopt=Abstract
http://www.geneontology.org/
http://obi-ontology.org/page/Main_Page
http://obi-ontology.org/page/Main_Page
http://www.chcf.org/documents/healthit/UseAdoptionComputerizedPatientRecords.pdf
http://www.chcf.org/documents/healthit/UseAdoptionComputerizedPatientRecords.pdf
http://www.microsoft.com/biztalk/en/us/business-rule-framework.aspx
http://www.microsoft.com/biztalk/en/us/business-rule-framework.aspx
http://www.ilog.com/products/jrules/
http://legacy.drools.codehaus.org/Rete
http://legacy.drools.codehaus.org/ReteOO
https://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/docs/drools-flow/html_single/index.html
https://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/docs/drools-flow/html_single/index.html
https://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/docs/drools-flow/html_single/index.html
http://www.eclipse.org/
http://ws.apache.org/savan/
http://www.xml.com/lpt/a/1462
http://www.ncbi.nlm.nih.gov/pubmed/10732935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10732935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12799407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12799407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12799407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9735080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9735080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12475855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12475855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17855817?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17855817?dopt=Abstract
http://blogs.illation.com.au/category/benchmarks/
http://blogs.illation.com.au/category/benchmarks/
http://www.visual-paradigm.com/product/vpuml/
http://www.ncbi.nlm.nih.gov/pubmed/19515252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19515252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19515252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19515252?dopt=Abstract
http://www.biomedcentral.com/1472-6947/10/3/prepub
http://www.biomedcentral.com/1472-6947/10/3/prepub

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Introduction
	Related Work
	Computerizing clinical guidelines
	Rule-based systems
	Ontologies
	Intensive Care Service Platform (ICSP)

	Paper Organization

	Methods
	High-level architecture
	Rule-based execution environment: technology choices
	Comparison of existing, prevalent Rule Engines
	Drools

	Semi-automatic translation
	Integration into a service-oriented platform
	Evaluation methods
	Drools performance evaluation
	ICU use case: sedation guideline


	Results
	Drools performance results
	Translation of the sedation guideline
	The sedation Rule-based application

	Discussion
	Conclusions
	List of abbreviations used
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References
	Pre-publication history

