ML algorithm | Comparison metrics | Original imbalanced classes (%) | Class balancer (%) | SMOTE (%) |
---|---|---|---|---|
RF | Accuracy | 84.8 | 84.1 | 84.2 |
Sensitivity | 68.3 | 82.3 | 82.4 | |
AUC | 89.1 | 89.0 | 89.5 | |
J48 | Accuracy | 85.2 | 83.7 | 83.9 |
Sensitivity | 66.8 | 82.2 | 82.5 | |
AUC | 87.2 | 87.8 | 88.0 | |
K-NN | Accuracy | 84.9 | 84.0 | 84.2 |
Sensitivity | 66.8 | 82.3 | 82.4 | |
AUC | 89.1 | 89.1 | 89.5 | |
SVM | Accuracy | 85.0 | 81.8 | 81.9 |
Sensitivity | 66.3 | 80.1 | 80.0 | |
AUC | 79.8 | 81.8 | 81.8 | |
LR | Accuracy | 84.6 | 81.1 | 81.7 |
Sensitivity | 68.2 | 80.3 | 78.1 | |
AUC | 88.6 | 88.5 | 88.5 | |
Naïve Bayes | Accuracy | 83.9 | 81.2 | 81.8 |
Sensitivity | 70.9 | 79.3 | 75.9 | |
AUC | 88.3 | 88.3 | 88.3 |