Skip to main content

Table 9 Summarization of the performance of predictive models for three emergency department dispositions

From: A meta-analysis of the diagnostic test accuracy of artificial intelligence predicting emergency department dispositions

Disposition

Metric

Characteristic

Data

Sample

Artificial-intelligence technique

Source

Feature Type

Group

Approach

Top algorithm

Ensemble

Cross validation

Admission

Sens

Public > Private

S > B > U

A = Y > E > M

DL > ML

CNN

No ensemble > Ensemble

No CV > CV

Spec

Public > Private

S > B > U

M > A > Y > E

ML > DL

CNN

No ensemble > Ensemble

No CV > CV

Critical care

Sens

Private > Public

S > B

M > A > Y

ML > DL

XGB

Ensemble > No ensemble

CV > No CV

Spec

Private > Public

S > B

A > M > Y

ML > DL

LightGBM

Ensemble > No ensemble

No CV > CV

Mortality

Sens

Public > Private

S > B

Y > E > A > M

ML > DL

RF/LightGBM

Ensemble > No ensemble

CV = No CV

Spec

Public > Private

S > B

A > M > Y > E

ML > DL

RF

Ensemble > No ensemble

CV > No CV

  1. Notes:
  2. 1. Metric: Sens = Sensitivity and Spec = Specificity
  3. 2. Source: Public = public data source and Private = private data source
  4. 3. Type of feature: S = structured data, B = structured and unstructured data, and U = unstructured data
  5. 4. Sample: A = adults, Y = youths, E = elders, and M = mixed samples
  6. 5. Approach: ML = machine learning and DL = deep learning
  7. 6. CNN = Convolutional neural network, XGB = eXtreme gradient boosting, and RF = Random forest
  8. 7. Cross-validation: CV = cross-validation