Skip to main content

Table 7 Summary estimates for sensitivity and specificity of critical care studies

From: A meta-analysis of the diagnostic test accuracy of artificial intelligence predicting emergency department dispositions

Characteristic

Covariate

Metric

n

Estimate

95%

C.I.

p value

Data

Public dataset

Sens

5

0.76

0.64

0.85

0.316

Public dataset

Specs

5

0.73

0.62

0.82

0.103

Private dataset

Sens

40

0.87

0.79

0.92

[Reference]

Private dataset

Specs

40

0.90

0.85

0.94

[Reference]

Combined

Sens

12

0.86

0.77

0.92

0.865

Combined

Specs

12

0.87

0.80

0.92

0.626

Structured

Sens

32

0.86

0.77

0.92

[Reference]

Structured

Specs

32

0.90

0.83

0.95

[Reference]

Image

Sens

5

0.87

0.76

0.94

0.530

Image

Specs

5

0.86

0.80

0.90

0.861

Free text

Sens

8

0.83

0.67

0.92

[Reference]

Free text

Specs

8

0.87

0.74

0.94

[Reference]

Sample

Adult

Sens

38

0.86

0.78

0.91

0.664

Adult

Specs

38

0.90

0.83

0.94

0.616

Youth

Sens

2

0.85

0.73

0.92

0.762

Youth

Specs

2

0.72

0.51

0.86

0.204

Mixed

Sens

3

0.90

0.74

0.96

[Reference]

Mixed

Specs

3

0.84

0.75

0.90

[Reference]

Artificial intelligence technique

Machine learning

Sens

31

0.88

0.80

0.93

0.205

Machine learning

Specs

31

0.91

0.84

0.95

0.171

Deep learning

Sens

14

0.78

0.69

0.85

[Reference]

Deep learning

Specs

14

0.83

0.78

0.87

[Reference]

Random forest

Sens

9

0.91

0.77

0.97

0.465

Random forest

Specs

9

0.96

0.83

0.99

0.297

eXtreme gradient boosting

Sens

11

0.95

0.85

0.99

0.302

eXtreme gradient boosting

Specs

11

0.84

0.71

0.92

0.965

LightGBM

Sens

3

0.69

0.29

0.92

0.439

LightGBM

Specs

3

0.98

0.59

1.00

0.259

Logistic regression

Sens

2

0.78

0.71

0.84

0.673

Logistic regression

Specs

2

0.84

0.80

0.87

0.922

Deep neural network

Sens

10

0.75

0.64

0.83

0.442

Deep neural network

Specs

10

0.83

0.77

0.88

0.932

Convolutional neural network

Sens

3

0.84

0.63

0.94

[Reference]

Convolutional neural network

Specs

3

0.84

0.74

0.90

[Reference]

Ensemble

Sens

25

0.91

0.82

0.95

0.032

Ensemble

Specs

25

0.91

0.82

0.96

0.339

No ensemble

Sens

20

0.76

0.69

0.82

[Reference]

No ensemble

Specs

20

0.86

0.81

0.90

[Reference]

Cross validation

Sens

27

0.86

0.76

0.92

0.952

Cross validation

Specs

27

0.87

0.79

0.92

0.288

No cross validation

Sens

18

0.87

0.75

0.93

[Reference]

No cross validation

Specs

18

0.92

0.83

0.96

[Reference]

  1. Note: C.I. = Confidence Interval, Sens = Sensitivity, and Specs = Specificity