Skip to main content

Table 6 Summary estimates for sensitivity and specificity of admission studies

From: A meta-analysis of the diagnostic test accuracy of artificial intelligence predicting emergency department dispositions

Characteristic

Covariate

Metric

n

Estimate

95% C.I.

p value

Data

Public dataset

Sens

6

0.94

0.57

0.99

0.284

Public dataset

Specs

6

0.90

0.70

0.97

0.581

Private dataset

Sens

33

0.79

0.73

0.84

[Reference]

Private dataset

Specs

33

0.86

0.79

0.91

[Reference]

Unstructured

Sens

3

0.72

0.70

0.74

0.387

Unstructured

Specs

3

0.80

0.74

0.86

0.521

Combined

Sens

5

0.74

0.61

0.84

0.362

Combined

Specs

5

0.82

0.68

0.91

0.510

Structured

Sens

31

0.83

0.75

0.89

[Reference]

Structured

Specs

31

0.88

0.81

0.93

[Reference]

Sample

Adult

Sens

21

0.81

0.72

0.87

0.308

Adult

Specs

21

0.87

0.76

0.93

0.448

Youth

Sens

6

0.82

0.69

0.90

0.218

Youth

Specs

6

0.80

0.67

0.88

0.064

Elder

Sens

3

0.76

0.74

0.79

0.541

Elder

Specs

3

0.75

0.70

0.79

0.027

Mixed

Sens

5

0.70

0.55

0.82

[Reference]

Mixed

Specs

5

0.92

0.84

0.96

[Reference]

Artificial intelligence technique

Machine learning

Sens

28

0.80

0.72

0.86

0.535

Machine learning

Specs

28

0.87

0.80

0.92

0.770

Deep learning

Sens

11

0.85

0.71

0.93

[Reference]

Deep learning

Specs

11

0.85

0.73

0.92

[Reference]

Random forest

Sens

10

0.82

0.61

0.93

0.147

Random forest

Specs

10

0.92

0.77

0.98

0.720

eXtreme Gradient Boosting

Sens

8

0.77

0.69

0.84

0.022

eXtreme Gradient Boosting

Specs

8

0.86

0.77

0.91

0.788

Deep neural network

Sens

7

0.70

0.65

0.75

0.002

Deep neural network

Specs

7

0.78

0.74

0.82

0.360

Recurrent neural network

Sens

2

0.97

0.31

1.00

0.604

Recurrent neural network

Specs

2

0.93

0.58

0.99

0.899

Convolutional neural network

Sens

2

0.99

0.15

1.00

[Reference]

Convolutional neural network

Specs

2

0.99

0.02

1.00

[Reference]

Ensemble

Sens

26

0.78

0.71

0.84

0.301

Ensemble

Specs

26

0.86

0.78

0.91

0.713

No-ensemble

Sens

13

0.86

0.73

0.93

[Reference]

No-ensemble

Specs

13

0.88

0.76

0.95

[Reference]

Cross validation

Sens

26

0.84

0.76

0.90

0.170

Cross validation

Specs

26

0.86

0.76

0.92

0.541

No cross validation

Sens

13

0.74

0.65

0.82

[Reference]

No cross validation

Specs

13

0.88

0.82

0.93

[Reference]

  1. Note: C.I. = Confidence Interval, Sens = Sensitivity, and Specs = Specificity