Skip to main content

Table 3 Performance evaluation of six machine learning algorithms

From: A machine learning–based framework for predicting postpartum chronic pain: a retrospective study

 

CE

F1 score

AUC

PRAUC

Precision

Recall

Sensitivity

Specificity

KNN

0.212

0.789

0.862

0.817

0.751

0.830

0.830

0.751

Logistic

0.342

0.628

0.719

0.676

0.652

0.606

0.606

0.706

LDA

0.343

0.627

0.720

0.675

0.648

0.607

0.607

0.702

Naive bayes

0.346

0.629

0.711

0.660

0.642

0.616

0.616

0.689

Ranger

0.219

0.775

0.856

0.834

0.757

0.794

0.794

0.771

xgboost

0.147

0.851

0.876

0.821

0.822

0.882

0.882

0.827

  1. Abbreviations: Areas under the curve, AUC; Classification error, CE; K-nearest neighbor, KNN; linear discriminant analysis, LDA; Precision and recall areas under the receiver operating characteristic curve, PRAUC