Skip to main content

Table 7 Hyperparameter search spaces for evaluated models

From: Identification of relevant features using SEQENS to improve supervised machine learning models predicting AML treatment outcome

Model

Parameter

Search space

XGBoost

booster

[gbtree]

objective

[binary:logistic]

n_estimators

50 — 150

learning_rate

0.001 — 1

max_depth

1 — 10

grow_policy

[depthwise, lossguide]

subsample

0.8 — 1

colsample_bytree

0.5 — 1

colsample_bylevel

0.5 — 1

colsample_bynode

0.5 — 1

reg_alpha

0.0001 — 1

reg_lambda

0.0001 — 1

MultilayerPerceptron

n_layers

1 — 10

n_neurons/layer

5 — 50

activation

[tanh, relu]

solver

[sgd, adam]

alpha

[0.0001, 1]

batch_size

10 — 100

learning_rate

[constant, invscaling, adaptive]

learning_rate_init

0.001 — 0.1

max_iter

100 — 300

LogisticRegression

C

0.001 — 100

penalty

[l1, l2, elasticnet]

solver

[lbfgs, liblinear, saga]

l1_ratio

0 — 1

max_iter

100 — 300