Skip to main content

Table 2 Hyperparameters in machine learning algorithms

From: Anesthesia depth prediction from drug infusion history using hybrid AI

Model

Hyperparameters

Random Forest (RF)

Number of estimators: [100, 200, 300]

Max features: [1, 10, ‘log2’, ‘sqrt’]

Criterion: squared error

Logistic Regression (LR)

Regularization: [L1, L2]

C: [0.01, 0.1, 1, 10]

Naive Bayes (NB)

Model: [Gaussian, Multinomial]

Laplace smoothing: [True, False]

AdaBoost (ADB)

Number of estimators: [100, 200, 300]

Gradient Boosting (GB)

Number of estimators: [100, 200, 300]

Learning rate: [0.01, 0.1, 0.2]

Max depth: [3, 5, 7]

XGBoost (XGB)

Number of estimators: [100, 200, 300]

Learning rate: [0.01, 0.1, 0.2]

Max depth: [3, 5, 7]